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Abstract

IBM Model 1 is a classical alignment
model. Of the first generation word-based
SMT models, it was the only such model
with a concave objective function. For
concave optimization problems like IBM
Model 1, we have guarantees on the con-
vergence of optimization algorithms such
as Expectation Maximization (EM). How-
ever, as was pointed out recently, the ob-
jective of IBM Model 1 is not strictly con-
cave and there is quite a bit of alignment
quality variance within the optimal solu-
tion set. In this work we detail a strictly
concave version of IBM Model 1 whose
EM algorithm is a simple modification of
the original EM algorithm of Model 1 and
does not require the tuning of a learning
rate or the insertion of an [ penalty. More-
over, by addressing Model 1’s shortcom-
ings, we achieve AER and F-Measure im-
provements over the classical Model 1 by
over 30%.

1 Introduction

The IBM translation models were introduced in
(Brown et al., 1993) and were the first-generation
Statistical Machine Translation (SMT) systems.
In the current pipeline, these word-based models
are the seeds for more sophisticated models which
need alignment tableaus to start their optimization
procedure. Among the original IBM Models, only
IBM Model 1 can be formulated as a concave opti-
mization problem. Recently, there has been some
research on IBM Model 2 which addresses either
the model’s non-concavity (Simion et al., 2015)
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or over parametrization (Dyer et al., 2013). We
make the following contributions in this paper:

e We utilize and expand the mechanism intro-
duced in (Simion et al., 2015) to construct
strictly concave versions of IBM Model 1.
As was shown in (Toutanova and Galley,
2011), IBM Model 1 is not a strictly con-
cave optimization problem. What this means
in practice is that although we can initialize
the model with random parameters and get to
the same objective cost via the EM algorithm,
there is quite a bit of alignment quality vari-
ance within the model’s optimal solution set
and ambiguity persists on which optimal so-
lution truly is the best. Typically, the easiest
way to make a concave model strictly con-
cave is to append an [ regularizer. However,
this method does not allow for seamless EM
training: we have to either use a learning-rate
dependent gradient based algorithm directly
or use a gradient method within the M step of
EM training. In this paper we show how to
get via a simple technique an infinite supply
of models that still allows a straightforward
application of the EM algorithm.

e As a concrete application of the above, we
detail a very simple strictly concave version
of IBM Model 1 and study the performance
of different members within this class. Our
strictly concave models combine some of the
elements of word association and positional
dependance as in IBM Model 2 to yield a sig-
nificant model improvement. Furthermore,

"Please refer as needed to the Appendix for examples

and definitions of convexity/concavity and strict convex-
ity/concavity.
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we now have guarantees that the solution we
find is unique.

e We detail an EM algorithm for a subclass of
strictly concave IBM Model 1 variants. The
EM algorithm is a small change to the orig-
inal EM algorithm introduced in (Brown et
al., 1993).

Notation. Throughout this paper, for any posi-
tive integer N, we use [N] to denote {1... N} and
[IV]o todenote {0... N}. We denote by R’} the set
of nonnegative n dimensional vectors. We denote
by [0, 1] the n—dimensional unit cube.

2 IBM Model 1

We begin by reviewing IBM Model 1 and in-
troducing the necessary notation. To this end,
throughout this section and the remainder of the
paper we assume that our set of training exam-
ples is (e®), f#)) for k = 1...n, where e
is the k’th English sentence and f*) is the k’th
French sentence. Following standard convention,
we assume the task is to translate from French (the
“source” language) into English (the “target” lan-
guage). We use E to denote the English vocabu-
lary (set of possible English words), and F' to de-
note the French vocabulary. The k’th English sen-
tence is a sequence of words egk) . el(:) where [,

is the length of the k’th English sentence, and each
(k)
e

. € Ej; similarly the k’th French sentence isa

sequence fl(k) (k) where each f € F. We

define eék) for Kk = 1...n to be a special NULL
word (note that ' contains the NULL word).

For each English word e € E, we will assume
that D(e) is a dictionary specifying the set of pos-
sible French words that can be translations of e.
The set D(e) is a subset of F'. In practice, D(e)
can be derived in various ways; in our experiments
we simply define D(e) to include all French words
f such that e and f are seen in a translation pair.

Given these definitions, the IBM Model 1 opti-
mization problem is given in Fig. 1 and, for exam-
ple, (Koehn, 2008). The parameters in this prob-
lem are ¢(f|e). The t(f|e) parameters are transla-
tion parameters specifying the probability of En-
glish word e being translated as French word f.
The objective function is then the log-likelihood
of the training data (see Eq. 3):
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Input: Define E, F, L, M, (e(k), f(k), Iy, my,) for
k=1...n,D(e) for e € E as in Section 2.

Parameters:
o A parameter ¢(f|e) foreache € E, f € D(e).

Constraints:

Vee E, f € D(e),
Ve € F,

t(fle) > 0 (M
Y tfle) =1

feD(e)
Objective: Maximize
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with respect to the ¢(f|e) parameters.

Figure 1: The IBM Model 1 Optimization Prob-
lem.

While IBM Model 1 is concave optimization
problem, it is not strictly concave (Toutanova and
Galley, 2011). Therefore, optimization methods
for IBM Model 1 (specifically, the EM algorithm)
are typically only guaranteed to reach a global
maximum of the objective function (see the Ap-
pendix for a simple example contrasting convex
and strictly convex functions). In particular, al-
though the objective cost is the same for any op-
timal solution, the translation quality of the so-
lutions is not fixed and will still depend on the
initialization of the model (Toutanova and Galley,
2011).

3 A Strictly Concave IBM Model 1

We now detail a very simple method to make IBM
Model 1 strictly concave with a unique optimal so-
lution without the need for appending an [5 loss.

Theorem 1. Consider IBM Model I and modify
its objective to be
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where h; ;1 : Ry — Ry is strictly concave. With
the new objective and the same constraints as IBM
Model 1, this new optimization problem is strictly
concave.

Proof. To prove concavity, we now show that the
new likelihood function

n mg
ZZmka V1))
kljl =0

is strictly concave (concavity follows in the same
way trivially). Suppose by way of contradiction
that there is (t) # (t’) and # € (0,1) such
that equality hold for Jensen’s inequality. Since
h; j i is strictly concave and (t) # (t') we must
have that there must be some (k, j,7) such that
t(f;k)]egk)) # t’(f](k)|e§k)) so that Jensen’s in-
equality is strict for h; ; ;, and we have

hi g 000 lef) + (1= 001 (£71ef))
> Ohi (4 1e)) + (1= 0) ki (@ (£ )

Using Jensen’s inequality, the monotonicity of the
log, and the above strict inequality we have
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The IBM Model 1 strictly concave optimiza-
tion problem is presented in Fig. 2. In (7) it is
crucial that each h; ;. be strictly concave within
Zi’;o hi,j’k(t(f](k)\egk))). For example, we have
that \/x1 + x2 is concave but not strictly concave
and the proof of Theorem 1 would break down. To
see this, we can consider (x1,x3) # (z1,23) and
note that equality holds in Jensen’s inequality. We
should be clear: the main reason why Theorem 1
works is that we have h; ; . are strictly concave (on
R ) and all the lexical probabilities that are argu-
ments to L are present within the log-likelihood.

Input: Define E, F, L, M, (e(k), f(k), I, my,) for
k=1...n,D(e)fore € E asin Section 2. A set
of strictly concave functions h; ;, : Ry — Ry.

Parameters:
e A parameter t(f|e) foreache € E, f € D(e).

Constraints:
Vee E, feD(e), t(fle) =0 (5)
Ve € E, > t(fle) =1 (6)
feD(e)
Objective: Maximize
Lk k) (k
fZZmkaﬂ ®y
k=1j=1 =0

with respect to the ¢( f|e) parameters.

Figure 2: The IBM Model 1 strictly concave opti-
mization problem.

4 Parameter Estimation via EM

For the IBM Model 1 strictly concave optimization
problem, we can derive a clean EM Algorithm if
we base our relaxation of

higw (£ ]eP)) =

with A(ef”, 1) < 1. To justify this, we first
need the following:

(k) £(k)
a(el, NP 1)

Lemma 1. Consider h : Ry — R, given by
h(x) = x” where 3 € (0,1). Then h is strictly
concave.

Proof. The proof of this lemma is elementary
and follows since the second derivative given by
B’ (x) = B(B — 1)zP~2 is strictly negative. O

For our concrete experiments, we picked a
model based on Lemma 1 and used h(z) = az”
with o, 3 € (0,1) so that

5 o0,

hi g et 1e8)) = a8, M) (10 1e{F))

Using this setup, parameter estimation for the new
model can be accomplished via a slight modifica-
tion of the EM algorithm for IBM Model 1. In
particular, we have that the posterior probabilities
of this model factor just as those of the standard
Model 1 and we have an M step that requires opti-
mizing

S ala®e®), £ 9) log p(£¥), o)

a(k)
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1: Input: Define E, F, L, M, (e<k)7 f(k), lg,mg) fork = 1...n,
D(e) fore € E asin Section 2. An integer 1" specifying the number of
passes over the data. A set of weighting parameter a(e, f), B(e, f) €
(0,1) foreache € E, f € D(e). A tuning parameter A > 0.
Parameters:

o A parameter ¢( f|e) foreache € E, f € D(e).

N

Initialization:
eVe € E, f € D(e),sett(fle) =1/|D(e)l.
EM Algorithm:
forallt =1...7 do
Ve € E, f € D(e), count(f,e) =0
Ve € E, count(e) =0
EM Algorithm: Expectation
forallk =1...ndo
forallj =1...my do
(51[1] =0Vie [lk]o
A =0
forall: = 0...l; do

) (k ’ 3(FF) (R
8uli] = a(f ™, e (e(f P M) PUa e
Aq 4= 1]
foralli =0.. ilk do
01li] = Li[f]

count(fi*, ey += p(£™, e")o1[i]
count(egk)) += ﬁ(f;k)7 egk))él [7]
EM Algorithm: Maximization

foralle € E do
forall f € D(e) do

23: t(fle) _ count(e, f)

count(e)

DO M= = e e e e et e
TR0 R RN R RV W

[N
N —

24: Output: t parameters

Figure 3: Pseudocode for 7' iterations of the EM
Algorithm for the IBM Model 1 strictly concave
optimization problem.

where
mg
k), (k
g(a®™e®, ) o I ha§-’“),j,k(t(f§ lley)
j=1 ’

are constants gotten in the E step. This optimiza-
tion step is very similar to the regular Model 1 M
step since the 3 drops down using log t° = logt;
the exact same count-based method can be ap-
plied. The details of this algorithm are in Fig. 3.

5 Choosing « and (3

The performance of our new model will rely heav-
ily on the choice of a(egk), f;k)), ﬂ(ez(-k), f](k)) €
(0,1) we use. In particular, we could make (3 de-
pend on the association between the words, or the
words’ positions, or both. One classical measure
of word association is the dice coefficient (Och
and Ney, 2003) given by

2¢(e, f)
c(e) +c(f)

In the above, the count terms ¢ are the number
of training sentences that have either a particular
word or a pair of of words (e, f). As with the other
choices we explore, the dice coefficient is a frac-
tion between 0 and 1, with 0 and 1 implying less

dice(e, f) =

and more association, respectively. Additionally,
we make use of positional constants like those of
the IBM Model 2 distortions given by

:1=20
21 #£0

1
(+1)z(5,tm)
le_M%_%‘
(+1)Z(5,L,m)

d(ilj,1,m) =

In the above, Z(j,l,m) is the partition func-
tion discussed in (Dyer et al., 2013). The previ-
ous measures all lead to potential candidates for
B(e, f), we have t(fle) € (0,1), and we want to
enlarge competing values when decoding (we use
at” instead of ¢ when getting the Viterbi align-
ment). The above then implies that we will have
the word association measures inversely propor-
tional to (3, and so we set (e, f) = 1 —dice(e, f)
or B(e, f) = 1 —d(i|j,l,m). In our experiments
we picked a(f](k),egk)) = d(i|j, lk, my) or 1; we
hold A to a constant of either 16 or 0 and do not
estimate this variable (A = 16 can be chosen by

cross validation on a small trial data set).

6 Experiments

6.1 Data Sets

For our alignment experiments, we used a subset
of the Canadian Hansards bilingual corpus with
247,878 English-French sentence pairs as training
data, 37 sentences of development data, and 447
sentences of test data (Michalcea and Pederson,
2003). As a second validation corpus, we con-
sidered a training set of 48,706 Romanian-English
sentence-pairs, a development set of 17 sentence
pairs, and a test set of 248 sentence pairs (Michal-
cea and Pederson, 2003).

6.2 Methodology

Below we report results in both AER (lower is
better) and F-Measure (higher is better) (Och and
Ney, 2003) for the English — French translation
direction. To declare a better model we have to
settle on an alignment measure. Although the
relationship between AER/F-Measure and trans-
lation quality varies (Dyer et al., 2013), there
are some positive experiments (Fraser and Marcu,
2004) showing that F-Measure may be more use-
ful, so perhaps a comparison based on F-Measure
is ideal.

Table 1 contains our results for the Hansards
data. For the smaller Romanian data, we obtained
similar behavior, but we leave out these results due
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(o, (1,1)  (d,1) (1,1 —dice) (1,1—d) (d,1—d)
Iteration AER
0 0.8716  0.6750 0.6240 0.6597 0.5570
1 0.4426 0.2917 0.4533 0.2738 0.3695
2 0.3383  0.2323 0.4028 0.2318 0.3085
3 0.3241  0.2190 0.3845 0.2252 0.2881
4 0.3191 0.2141 0.3751 0.2228 0.2833
5 0.3175 0.2118 0.3590 0.2229 0.2812
6 0.3160 0.2093 0.3566 0.2231 0.2793
7 0.3203  0.2090 0.3555 0.2236 0.2783
8 0.3198  0.2075 0.3546 0.2276 0.2777
9 0.3198  0.2066 0.3535 0.2323 0.2769
10 0.3177  0.2065 0.3531 0.2352 0.2769
Iteration F-Measure
0 0.0427 0.1451 0.2916 0.1897 0.2561
1 0.4213 0.5129 0.4401 0.5453 0.4427
2 0.5263 0.5726 0.4851 0.5940 0.5014
3 0.5413 0.5852 0.5022 0.6047 0.5199
4 0.5480 0.5909 0.5111 0.6085 0.5255
5 0.5500 0.5939 0.5264 0.6101 0.5273
6 0.5505 0.5959 0.5282 0.6101 0.5286
7 0.5449  0.5965 0.5298 0.6096 0.5296
8 0.5456  0.5977 0.5307 0.6068 0.5300
9 0.5451 0.5985 0.5318 0.6040 0.5309
10 0.5468 0.5984 0.5322 0.6024 0.5311

Table 1: Results on the English-French data for
various («, 3) settings as discussed in Section 5.
For the d parameters, we use A = 16 throughout.
The standard IBM Model 1 is column 1 and cor-
responds to a setting of (1,1). The not necessarily
strictly concave model with (d,1) setting gives the
best AER, while the strictly concave model given
by the (1, 1—d) setting has the highest F-Measure.

to space limitations. Our experiments show that
using

hi g (8 e)) = (t(F el d@lidim)

yields the best F-Measure performance and is not
far off in AER from the “fake”” IBM Model 2
(gotten by setting («, 5) = (d, 1)) whose results
are in column 2 (the reason why we use this model
at all is since it should be better than IBM 1: we
want to know how far off we are from this obvi-
ous improvement). Moreover, we note that dice
does not lead to quality 3 exponents and that, un-
fortunately, combining methods as in column 5
((er, B) = (d,1 — d)) does not necessarily lead
to additive gains in AER and F-Measure perfor-
mance.

2Generally speaking, when using

hi g (E(F 1)) = d(ilg, b, m )t (£ M)

with d constant we cannot use Theorem 3 since h is linear.
Most likely, the strict concavity of the model will hold be-
cause of the asymmetry introduced by the d term; however,
there will be a necessary dependency on the data set.

7 Comparison with Previous Work

In this section we take a moment to also compare
our work with the classical IBM 1 work of (Moore,
2004). Summarizing (Moore, 2004), we note that
this work improves substancially upon the classi-
cal IBM Model 1 by introducing a set of heuris-
tics, among which are to (1) modify the lexical
parameter dictionaries (2) introduce an initializa-
tion heuristic (3) modify the standard IBM 1 EM
algorithm by introducing smoothing (4) tune ad-
ditional parameters. However, we stress that the
main concern of this work is not just heuristic-
based empirical improvement, but also structured
learning. In particular, although using an regular-
izer lo and the methods of (Moore, 2004) would
yield a strictly concave version of IBM 1 as well
(with improvements), it is not at all obvious how
to choose the learning rate or set the penalty on
the lexical parameters. The goal of our work was
to offer a new, alternate form of regularization.
Moreover, since we are changing the original log-
likelihood, our method can be thought of as way
of bringing the ly regularizer inside the log like-
lihood. Like (Moore, 2004), we also achieve ap-
preciable gains but have just one tuning parame-
ter (when 3 = 1 — d we just have the centering
A parameter) and do not break the probabilistic in-
terpretation any more than appending a regularizer
would (our method modifies the log-likelihood but
the simplex constrains remain).

8 Conclusion

In this paper we showed how IBM Model 1 can
be made into a strictly convex optimization prob-
lem via functional composition. We looked at a
specific member within the studied optimization
family that allows for an easy EM algorithm. Fi-
nally, we conducted experiments showing how the
model performs on some standard data sets and
empirically showed 30% important over the stan-
dard IBM Model 1 algorithm. For further re-
search, we note that picking the optimal h; ; . is
an open question, so provably finding and justify-
ing the choice is one topic of interest.
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