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Abstract

This paper is concerned with the task of
bilingual lexicon induction using image-
based features. By applying features from
a convolutional neural network (CNN), we
obtain state-of-the-art performance on a
standard dataset, obtaining a 79% relative
improvement over previous work which
uses bags of visual words based on SIFT
features. The CNN image-based approach
is also compared with state-of-the-art lin-
guistic approaches to bilingual lexicon in-
duction, even outperforming these for one
of three language pairs on another stan-
dard dataset. Furthermore, we shed new
light on the type of visual similarity met-
ric to use for genuine similarity versus re-
latedness tasks, and experiment with using
multiple layers from the same network in
an attempt to improve performance.

1 Introduction

Bilingual lexicon induction is the task of finding
words that share a common meaning across differ-
ent languages. It plays an important role in a va-
riety of tasks in information retrieval and natural
language processing, including cross-lingual in-
formation retrieval (Lavrenko et al., 2002; Levow
et al., 2005) and statistical machine translation
(Och and Ney, 2003). Although parallel corpora
have been used successfully for inducing bilin-
gual lexicons for some languages (Och and Ney,
2003), these corpora are either too small or un-
available for many language pairs. Consequently,
mono-lingual approaches that rely on compara-
ble instead of parallel corpora have been devel-
oped (Fung and Yee, 1998; Koehn and Knight,
2002). These approaches work by mapping lan-
guage pairs to a shared bilingual space and ex-

tracting lexical items from that space. Bergsma
and Van Durme (2011) showed that this bilingual
space need not be linguistic in nature: they used
labeled images from the Web to obtain bilingual
lexical translation pairs based on the visual fea-
tures of corresponding images. Local features are
computed using SIFT (Lowe, 2004) and color his-
tograms (Deselaers et al., 2008) and aggregated as
bags of visual words (BOVW) (Sivic and Zisser-
man, 2003) to get bilingual representations in a
shared visual space. Their highest performance is
obtained by combining these visual features with
normalized edit distance, an orthographic similar-
ity metric (Navarro, 2001).

There are several advantages to having a vi-
sual rather than a linguistic intermediate bilin-
gual space: First, while labeled images are readily
available for many languages through resources
such as Google Images, language pairs that have
sizeable comparable, let alone parallel, corpora
are relatively scarce. Second, it has been found
that meaning is often grounded in the perceptual
system, and that the quality of semantic repre-
sentations improves significantly when they are
grounded in the visual modality (Silberer and La-
pata, 2012; Bruni et al., 2014). Having an inter-
mediate visual space means that words in differ-
ent languages can be grounded in the same space.
Third, it is natural to use vision as an intermediate:
when we communicate with someone who does
not speak our language, we often communicate
by directly referring to our surroundings. Lan-
guages that are linguistically far apart will, by cog-
nitive necessity, still refer to objects in the same
visual space. While some approaches to bilingual
lexicon induction rely on orthographic properties
(Haghighi et al., 2008; Koehn and Knight, 2002)
or properties of frequency distributions (Schafer
and Yarowsky, 2002) that will work only for
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closely related languages, a visual space can work
for any language, whether it’s English or Chinese,
Arabic or Icelandic, or all Greek to you.

It has recently been shown, however, that much
better performance can be achieved on seman-
tic similarity and relatedness tasks by using vi-
sual representations from deep convolutional neu-
ral networks (CNNs) instead of BOVW features
(Kiela and Bottou, 2014). In this paper we ap-
ply such CNN-derived visual features to the task
of bilingual lexicon induction. To obtain a trans-
lation of a word in a source language, we find
the nearest neighbours from words in the target
language, where words in both languages reside
in a shared visual space made up of CNN-based
features. Nearest neighbours are found by apply-
ing similarity metrics from both Kiela and Bottou
(2014) and Bergsma and Van Durme (2011). In
summary, the contributions of this paper are:

• We obtain a relative improvement of 79%
over Bergsma and Van Durme (2011) on a
standard dataset based on fifteen language
pairs.
• We shed new light on the question of whether

genuine similarity versus semantic related-
ness tasks require different similarity metrics
for optimal performance (Kiela and Bottou,
2014).
• We experiment with using different layers of

the CNN and find that performance is not af-
fected significantly in either case, obtaining
a slight improvement for the relatedness task
but no improvement for genuine similarity.
• Finally, we show that the visual approach out-

performs the linguistic approaches on one of
the three language pairs on a standard dataset.
To our knowledge this is the first work to pro-
vide a comparison of visual and state-of-the-
art linguistic approaches to bilingual lexicon
induction.

2 Related Work

2.1 Bilingual Lexicon Learning

Bilingual lexicon learning is the task of auto-
matically inducing word translations from raw
data, and is an attractive alternative to the time-
consuming and expensive process of manually
building high-quality resources for a wide vari-
ety of language pairs and domains. Early ap-
proaches relied on limited and domain-restricted

parallel data, and the induced lexicons were typi-
cally a by-product of word alignment models (Och
and Ney, 2003). To alleviate the issue of low cov-
erage, a large body of work has been dedicated
to lexicon learning from more abundant and less
restricted comparable data, e.g., (Fung and Yee,
1998; Rapp, 1999; Gaussier et al., 2004; Shezaf
and Rappoport, 2010; Tamura et al., 2012). How-
ever, these models typically rely on the availabil-
ity of bilingual seed lexicons to produce shared
bilingual spaces, as well as large repositories of
comparable data. Therefore, several approaches
attempt to learn lexicons from large monolingual
data sets in two languages (Koehn and Knight,
2002; Haghighi et al., 2008), but their perfor-
mance again relies on language pair-dependent
clues such as orthographic similarity. A further
approach removed the requirement of seed lexi-
cons, and induced lexicons using bilingual spaces
spanned by multilingual probabilistic topic mod-
els (Vulić et al., 2011; Liu et al., 2013; Vulić and
Moens, 2013b). However, these models require
document alignments as initial bilingual signals.

In this work, following recent research in
multi-modal semantics and image representation
learning—in particular deep learning and con-
volutional neural networks—we test the ability
of purely visual data to induce shared bilingual
spaces and to consequently learn bilingual word
correspondences in these spaces. By compiling
images related to linguistic concepts given in dif-
ferent languages, the potentially prohibitive data
requirements and language pair-dependence from
prior work is removed.

2.2 Deep Convolutional Neural Networks

Deep convolutional neural networks (CNNs) have
become extremely popular in the computer vi-
sion community. These networks currently pro-
vide state-of-the-art performance for a variety of
key computer vision tasks such as object recogni-
tion (Razavian et al., 2014). They tend to be rel-
atively deep, consisting of a number of rectified
linear unit layers (Nair and Hinton, 2010) and a
series of convolutional layers (Krizhevsky et al.,
2012). Recently, such layers have been used in
transfer learning techniques, where they are used
as mid-level features in other computer vision
tasks (Oquab et al., 2014). Although the idea of
transferring CNN features is not new (Driancourt
and Bottou, 1990), the simultaneous availability of
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Figure 1: Illustration of calculating similarity be-
tween images from different languages.

massive amounts of data and cheap GPUs has led
to considerable advances in computer vision, simi-
lar in scale to those witnessed with SIFT and HOG
descriptors a decade ago (Razavian et al., 2014).

2.3 Multi-Modal Semantics

Multi-modal semantics is motivated by parallels
with human concept acquisition. It has been found
that semantic knowledge, from a very early age,
relies heavily on perceptual information (Louw-
erse, 2008), and there exists substantial evidence
that many concepts are grounded in the percep-
tual system (Barsalou, 2008). One way to accom-
plish such grounding is by combining linguistic
representations with information from a percep-
tual modality, obtained from, e.g., property norm-
ing experiments (Silberer and Lapata, 2012; Sil-
berer et al., 2013; Roller and Schulte im Walde,
2013; Hill and Korhonen, 2014) or extracting
features from raw image data (Feng and Lapata,
2010; Leong and Mihalcea, 2011; Bruni et al.,
2014; Kiela et al., 2014). Such multi-modal vi-
sual approaches often rely on local descriptors,
such as SIFT (Lowe, 2004), SURF (Bay et al.,
2008), or HOG (Dalal and Triggs, 2005), as well
as pyramidal variants of these descriptors such as
PHOW (Bosch et al., 2007). However, deep CNN
features have recently been successfully trans-
ferred to multi-modal semantics (Kiela and Bot-
tou, 2014; Shen et al., 2014). Deep learning tech-
niques have also been successfully employed in
cross-modal tasks (Frome et al., 2013; Socher et
al., 2014; Lazaridou et al., 2014; Kiros et al.,
2014). Other examples of multi-modal deep learn-
ing use restricted Boltzmann machines (Srivastava
and Salakhutdinov, 2014) or auto-encoders (Wu et
al., 2013; Silberer and Lapata, 2014).

3 A Purely Visual Approach to Bilingual
Lexicon Learning

We assume that the best translation, or match-
ing lexical item, of a word ws (in the source lan-
guage) is the word wt (in the target language)
that is the nearest cross-lingual neighbour to ws

in the bilingual visual space. Hence a similarity
(or distance) score between lexical items from dif-
ferent languages is required. In this section, we
describe: one, how to build image representations
from sets of images associated with each lexical
item, i.e. how to induce a shared bilingual visual
space in which all lexical items are represented;
and two, how to compute the similarity between
lexical items using their visual representations in
the shared bilingual space. We also describe the
evaluation datasets and metrics we use.

To facilitate further research, we will make our
code and data publicly available. Please see the
following webpage: http://www.cl.cam.
ac.uk/˜dk427/bli.html.

3.1 Image Representations
We use Google Images to extract the top n ranked
images for each lexical item in the evaluation
datasets. It has been shown that images from
Google yield higher quality representations than
comparable sources such as Flickr (Bergsma and
Goebel, 2011) and that Google-derived datasets
are competitive with “hand prepared datasets”
(Fergus et al., 2005). Google Images also has
the advantage that it has full coverage and is
multi-lingual, as opposed to other potential im-
age sources such as ImageNet (Deng et al., 2009)
or the ESP Game Dataset (von Ahn and Dabbish,
2004). For each Google search we specify the tar-
get language corresponding to the lexical item’s
language. Figure 2 gives some example images
retrieved using the same query terms in different
languages. For each image, we extract the pre-
softmax layer of an AlexNet (Krizhevsky et al.,
2012). The network contains a number of lay-
ers, starting with five convolutional layers, two
fully connected layers and finally a softmax, and
has been pre-trained on the ImageNet classifica-
tion task using Caffe (Jia et al., 2014). See Figure
1 for a simple diagram illustrating the approach.

3.2 Visual Similarity
Suppose that, as part of the evaluation, the similar-
ity between bicycle and fiets is required. Each of
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the two words has n images associated with it – the
top n as returned by Google image search, using
bicycle and fiets as separate query terms. Hence
to calculate the similarity, a measure is required
which takes two sets of images as input. The stan-
dard approach in multi-modal semantics is to de-
rive a single image representation for each word,
e.g., by averaging the n images. An alternative is
to take the pointwise maximum across the n im-
age vector representations, also producing a sin-
gle vector (Kiela and Bottou, 2014). Kiela and
Bottou call these combined representations CNN-
MEAN and CNN-MAX, respectively. Cosine is
then used to calculate the similarity between the
resulting pair of image vectors.

An alternative strategy, however, is to consider
the similarities between individual images instead
of their aggregated representations. Bergsma and
Van Durme (2011) propose two similarity met-
rics based on this principle: taking the average
of the maximum similarity scores (AVGMAX), or
the maximum of the maximum similarity scores
(MAXMAX) between associated images. Contin-
uing with our example, for each of the n images
for bicycle, the maximum similarity is found by
searching over the n images for fiets. AVGMAX

then takes the average of those n maximum simi-
larites; MAXMAX takes the maximum. To avoid
confusion, we will refer to the CNN-based mod-
els that use these metrics as CNN-AVGMAX and
CNN-MAXMAX. Formally, these metrics are de-
fined as in Table 1. We experiment with both kinds
of MAX and find that they optimize for different
kinds of similarity.

3.3 Evaluations

Test Sets. Bergsma and Van Durme’s primary
evaluation dataset consists of a set of five hundred
matching lexical items for fifteen language pairs,
based on six languages. (The fifteen pairs results
from all ways of pairing six languages). The data
is publicly available online.1 In order to get the
five hundred lexical items, they first rank nouns
by the conditional probability of them occurring
in the pattern “{image,photo,photograph,picture}
of {a,an} ” in the web-scale Google N-gram
corpus (Lin et al., 2010), and take the top five hun-
dred words as their English lexicon. For each item

1http://www.clsp.jhu.edu/˜sbergsma/LexImg/

AVGMAX 1
n

∑
is∈I(ws)

max
it∈I(wt)

sim(is, it)

MAXMAX max
is∈I(ws)

max
it∈I(wt)

sim(is, it)

CNN-MEAN sim( 1
n

∑
is∈I(ws)

is,
1
n

∑
it∈I(wt)

it)

CNN-MAX sim(max′ I(ws),max′ I(wt))

Table 1: Visual similarity metrics between two
sets of n images. I(ws) represents the set of im-
ages for a given source word ws, I(wt) the set of
images for a given target word wt; max′ takes a
set of vectors and returns the single element-wise
maximum vector.

in the English lexicon, they obtain correspond-
ing items in the other languages—Spanish, Ital-
ian, French, German and Dutch—through Google
Translate. We call this dataset BERGSMA500.

In addition to that dataset, we evaluate on a
dataset constructed to measure the general perfor-
mance of bilingual lexicon learning models from
comparable Wikipedia data (Vulić and Moens,
2013a). The dataset comprises 1, 000 nouns in
three languages: Spanish (ES), Italian (IT), and
Dutch (NL), along with their one-to-one gold-
standard word translations in English (EN) com-
piled semi-automatically using Google Translate
and manual annotators for each language. We call
this dataset VULIC10002. The test set is accom-
panied with comparable data for training, for the
three language pairs ES/IT/NL-EN on which text-
based models for bilingual lexicon induction were
trained (Vulić and Moens, 2013a).

Given the way that the BERGSMA500 dataset
was created, in particular the use of the pattern
described above, it contains largely concrete lin-
guistic concepts (since, eg, image of a democracy
is unlikely to have a high corpus frequency). In
contrast, VULIC1000 was designed to capture
general bilingual word correspondences, and con-
tains several highly abstract test examples, such as
entendimiento (understanding) and desigualdad
(inequality) in Spanish, or scoperta (discovery)
and cambiamento (change) in Italian. Using the
two evaluation datasets can potentially provide

2http://people.cs.kuleuven.be/˜ivan.vulic/software/
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Figure 2: Example images for the languages in the Bergsma and Van Durme dataset.

Method P@1 P@5 P@20 MRR
B&VD Visual-Only 31.1 41.4 53.7 0.367
B&VD Visual + NED 48.0 59.5 68.7 0.536

CNN-AVGMAX 56.7 69.2 77.4 0.658
CNN-MAXMAX 42.8 60.0 64.5 0.529
CNN-MEAN 50.5 62.7 71.1 0.586
CNN-MAX 51.4 64.9 74.8 0.608

Table 2: Performance on BERGSMA500 com-
pared to Bergsma and Van Durme (B&VD).

some insight into how purely visual models for
bilingual lexicon induction behave with respect to
both abstract and concrete concepts.

Evaluation Metrics. We measure performance in
a standard way using mean-reciprocal rank:

MRR =
1
M

M∑
i=1

1
rank(ws, wt)

(1)

where rank(ws, wt) denotes the rank of the cor-
rect translation wt (as provided in the gold stan-
dard) in the ranked list of translation candidates
for ws, andM is the number of test cases. We also
use precision at N (P@N) (Gaussier et al., 2004;
Tamura et al., 2012; Vulić and Moens, 2013a),
which measures the proportion of test instances
where the correct translation is within the top N
highest ranked translations.

4 Results

We evaluate the four similarity metrics on the
BERGSMA500 dataset and compare the results to
the systems of Bergsma and Van Durme, who
report results for the AVGMAX function, hav-
ing concluded that it performs better than MAX-
MAX on English-Spanish translations. We report
their best-performing visual-only system, which
combines SIFT-based descriptors with color his-
tograms, as well as their best-performing overall
system, which combines the visual approach with
normalized edit distance (NED). Results are aver-
aged over fifteen language pairs.

The results can be seen in Table 2. Each of the
CNN-based methods outperforms the B&VD sys-
tems. The best performing method overall, CNN-
AVGMAX, provides a 79% relative improvement
over the B&VD visual-only system on the MRR
measure, and a 23% relative improvement over
their best-performing approach, which includes
non-visual information in the form of orthographic
similarity. Moreover, their methods include a tun-
ing parameter λ that governs the contributions
of SIFT-based, color histogram and normalized
edit distance similarity scores, whilst our approach
does not require any parameter tuning.

4.1 Similarity and Relatedness

The results in Table 2 indicate that the per-
image CNN-AVGMAX metric outperforms the
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Language Pair Method P@1 P@5 P@10 P@20 MRR

ES⇒ EN

BOOTSTRAP 57.7 74.7 80.9 84.8 0.652

CNN-AVGMAX 41.9 54.6 59.1 65.6 0.485

CNN-MAXMAX 34.9 47.4 53.7 58.5 0.414

CNN-MEAN 35.4 48.5 51.7 55.8 0.416

CNN-MAX 33.3 46.3 50.3 54.5 0.395

IT⇒ EN

BOOTSTRAP 64.7 80.6 85.6 89.7 0.716

CNN-AVGMAX 28.3 40.6 44.8 50.9 0.343

CNN-MAXMAX 22.6 33.5 38.6 44.4 0.282

CNN-MEAN 22.7 33.2 37.9 42.6 0.281

CNN-MAX 21.3 32.7 36.8 41.5 0.269

NL⇒ EN

BOOTSTRAP 20.6 35.7 43.4 51.3 0.277

CNN-AVGMAX 38.4 48.5 53.7 58.6 0.435

CNN-MAXMAX 30.8 42.6 47.8 52.9 0.367

CNN-MEAN 32.3 42.3 46.5 50.1 0.373

CNN-MAX 30.4 41.0 44.3 49.3 0.356

Table 4: Performance on VULIC1000 compared to the linguistic bootstrapping method of Vulić and
Moens (2013b).

Method MEN SimLex-999

CNN-AVGMAX 0.56 0.34

CNN-MAXMAX 0.55 0.36
CNN-MEAN 0.61 0.32

CNN-MAX 0.60 0.27

Table 3: Spearman ρs correlation for the visual
similarity metrics on a relatedness (MEN) and a
genuine similarity (SimLex-999) dataset.

aggregated visual representation-based metrics of
CNN-MEAN and CNN-MAX, despite the fact
that Kiela and Bottou (2014) achieved optimal per-
formance using the latter metrics on a well-known
conceptual relatedness dataset. It has been noted
before that there is a clear distinction between sim-
ilarity and relatedness. This is one of the reasons
that, for example, WordSim353 (Finkelstein et al.,
2002) has been criticized: it gives high similarity
scores to cases of genuine similarity as well as re-
latedness (Agirre et al., 2009; Hill et al., 2014).
The MEN dataset (Bruni et al., 2014) that Kiela
and Bottou (2014) evaluate on explicitly measures
word relatedness. In contrast, the current lexicon
learning task seems to require something else than
relatedness: whilst a chair and table are semanti-
cally related, a translation for chair is not a good
translation for table. For example, we want to
make sure we translate chair to stuhl in German,
and not to tisch. In other words, what we are inter-

ested in for this particular task is genuine similar-
ity, rather than relatedness.

Thus, we can evaluate the quality of our simi-
larity metrics by comparing their performance on
similarity and relatedness tasks: if a metric per-
forms well at measuring genuine similarity, this is
indicative of its performance in the bilingual lexi-
con induction task. In order to examine this ques-
tion further, we evaluate performance on the MEN
dataset, which measures relatedness (Bruni et al.,
2014), and the nouns-subset of the SimLex-999
dataset, which measures genuine similarity (Hill
et al., 2014). For each pair in the dataset, we cal-
culate the similarity score and report the Spearman
ρs correlation, which measures how well the rank-
ing of pairs given by the automatic system matches
that according to the gold-standard human similar-
ity scores. The results are reported in Table 3.

It is clear that the per-image similarity met-
rics perform better on genuine similarity, as mea-
sured by SimLex-999, than on relatedness, as mea-
sured by MEN. In fact, the “aggressive” CNN-
MAXMAX method, which picks out a single pair
of images to represent a linguistic pair, works best
for SimLex-999, indicating how stringently it fo-
cuses on genuine similarity. For the aggregated vi-
sual representation-based metrics, we see the op-
posite effect: they perform better on the related-
ness task. This sheds light on a question raised
by Kiela and Bottou (2014), where they speculate
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that certain errors are a result of whether their vi-
sual similarity metric measures genuine similar-
ity on the one hand or relatedness on the other:
we are better off using per-image visual metrics
for genuine similarity, while aggregated visual
representation-based metrics yield better perfor-
mance on relatedness tasks.

4.2 Results on VULIC1000

This section compares our visual-only approach
to linguistic approaches for bilingual lexicon in-
duction. Since BERGSMA500 has not been eval-
uated with such methods, we evaluate on the
VULIC1000 dataset (Vulić and Moens, 2013a).
This dataset has been used to test the ability of
bilingual lexicon induction models to learn trans-
lations from comparable data (see sect. 3.3). We
do not necessarily expect visual methods to out-
perform linguistic ones, but it is instructive to see
the comparison.

We compare our visual models against the cur-
rent state-of-the-art lexicon induction model us-
ing comparable data (Vulić and Moens, 2013b).
This model induces translations from compara-
ble Wikipedia data in two steps: (1) It learns a
set of highly reliable one-to-one translation pairs
using a shared bilingual space obtained by ap-
plying the multilingual probabilistic topic model-
ing (MuPTM) framework (Mimno et al., 2009).
(2) These highly reliable one-to-one translation
pairs serve as dimensions of a word-based bilin-
gual semantic space (Gaussier et al., 2004; Tamura
et al., 2012). The model then bootstraps from
the high-precision seed lexicon of translations and
learns new dimensions of the bilingual space until
convergence. This model, which we call BOOT-
STRAP, obtains the current best results on the eval-
uation dataset. For more details about the boot-
strapping model and its comparison against other
approaches, we refer to Vulić and Moens (2013b).

Table 4 shows the results for the language pairs
in the VULIC1000 dataset. Of the four similar-
ity metrics, CNN-AVGMAX again performs best,
as it did for BERGSMA500. The linguistic BOOT-
STRAP method outperforms our visual approach
for two of the three language pairs, but, for the
NL-EN language pair, the visual methods in fact
perform better. This can be explained by the ob-
servation that Vulić and Moens’s NL-EN training
data for the BOOTSTRAP model is less abundant
(2-3 times fewer Wikipedia articles) and of lower

Method FC7 FC6+FC7 POOL5+
FC6+FC7

MEN

CNN-AVGMAX 0.56 0.57 0.57

CNN-MAXMAX 0.55 0.55 0.56

CNN-MEAN 0.61 0.61 0.61

CNN-MAX 0.60 0.62 0.61

SimLex-999

CNN-AVGMAX 0.34 0.33 0.31

CNN-MAXMAX 0.36 0.35 0.34

CNN-MEAN 0.32 0.32 0.31

CNN-MAX 0.27 0.26 0.26

Table 5: Spearman ρs correlation for the visual
similarity metrics on a relatedness (MEN) and
a genuine similarity (SimLex-999) dataset using
more than one layer from the CNN.

quality than the data for their ES-EN and IT-EN
models. We view these results as highly encourag-
ing: while purely visual methods cannot yet reach
the peak performance of linguistic approaches that
are trained on sufficient amounts of high-quality
text data, they outperform linguistic state-of-the-
art methods when there is less or lower quality text
data available —which one might reasonably ex-
pect to be the default scenario.

4.3 Adding CNN Layers
The AlexNet (Krizhevsky et al., 2012) from which
our image representations are extracted contains
a number of layers. Kiela and Bottou (2014)
only use the fully connected pre-softmax layer
(which we call FC7) for their image representa-
tions. It has been found, however, that other layers
in the network, especially the preceding fully con-
nected (FC6) and fifth convolutional max pooling
(POOL5) layers, also have good properties for
usage in transfer learning (Girshick et al., 2014;
Yosinski et al., 2014). Hence we performed a
(very) preliminary investigation of whether perfor-
mance increases with the use of additional layers.

In light of our findings concerning the differ-
ence between genuine similarity and relatedness,
this also gives rise to the question of whether the
additional layers might be useful for similarity
or relatedness, or both. We hypothesize that the
nature of the task matters here: if we are only
concerned with genuine similarity, layer FC7 is
likely to contain all the necessary information to
judge whether two images are similar or not, since
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Dataset Language Image dispersion

BERGSMA500

EN 0.640 (σ=0.074)

ES 0.639 (σ=0.072)

IT 0.646 (σ=0.071)

FR 0.647 (σ=0.072)

DE 0.642 (σ=0.072)

NL 0.645 (σ=0.074)

VULIC1000

EN 0.705 (σ=0.095)

ES 0.694 (σ=0.092)

IT 0.725 (σ=0.078)

NL 0.716 (σ=0.080)

Table 6: Average image dispersion for the
datasets, by language.

the network has been trained for object recogni-
tion. If, however, we are interested in related-
ness, related properties may just as well be en-
coded deeper in the network, so in the layers pre-
ceding FC7 rather than in FC7 itself.

We combined CNN layers with each other by
concatenating the normalized layers. For the bilin-
gual lexicon induction tasks, we found that perfor-
mance did not signficantly increase, which is con-
sistent with our hypothesis (since bilingual lexicon
induction requires genuine similarity rather than
relatedness, and so only requires FC7). We then
tested on the MEN dataset (Bruni et al., 2014) for
relatedness and the nouns subset of the SimLex-
999 dataset (Hill et al., 2014) for genuine similar-
ity. The results can be found in Table 5.

The results appear to indicate that adding such
additional information does not have a clear effect
for genuine similarity, but may lead to a small per-
formance increase for relatedness. This could ex-
plain why we did not see increased performance
on the bilingual lexicon induction task with ad-
ditional layers. However, the increase in perfor-
mance on the relatedness task is relatively minor,
and further investigation is required into the utility
of the additional layers for relatedness tasks.

5 Discussion

A possible explanation for the difference in per-
formance between languages and datasets is that
some words are more concrete than others: a vi-
sual representation for elephant is likely to be
of higher quality than one for happiness. Visual
representations in multi-modal models have been
found to perform much better for concrete than ab-
stract concepts (Kiela et al., 2014).

Although concreteness ratings are available for
(some) English words, this is not the case for other
languages, so in order to examine the concreteness
of the datasets we use a substitute method that has
been shown to closely mirror how abstract a con-
cept is: image dispersion (Kiela et al., 2014). The
image dispersion d of a concept word w is defined
as the average pairwise cosine distance between
all the image representations {i1 . . . in} in the set
of images for a given word:

d(w) =
2

n(n− 1)

∑
i<j≤n

1− ij · ik
|ij ||ik| (2)

The average image dispersions for the two
datasets, broken down by language, are shown in
Table 6. BERGSMA500 has a lower average im-
age dispersion score in general, and thus is more
concrete than VULIC1000. It also has less vari-
ance. This may explain why we score higher, in
absolute terms, on that dataset than on the more
abstract one.

When examining individual languages in the
datasets, we note that the worst performing lan-
guage on VULIC1000 is Italian, which is also the
most abstract dataset, with the highest average im-
age dispersion score and the lowest variance.

There is some evidence that abstract concepts
are also perceptually grounded (Lakoff and John-
son, 1999), but in a more complex way, since
abstract concepts express more varied situations
(Barsalou and Wiemer-Hastings, 2005). Using an
image resource like Google Images that has full
coverage for almost any word, means that we can
retrieve what we might call “associated” images
(such as images of voters for words like democ-
racy) as opposed to “extensional” images (such
as images of cats for cat). This explains why we
still obtain good performance on the more abstract
VULIC1000 dataset, in some cases outperform-
ing linguistic methods: even abstract concepts can
have a clear visual representation, albeit of the as-
sociated rather than extensional kind.

However, abstract concepts are overall more
likely to yield noisier image sets. Thus, one way to
improve results would be to take a multi-modal ap-
proach, where we also include linguistic informa-
tion, if available, especially for abstract concepts.

6 Conclusions and Future Work

We have presented a novel approach to bilingual
lexicon induction that uses convolutional neural
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network-derived visual features. Using only such
visual features, we outperform existing visual and
orthographic systems, and even a state-of-the-art
linguistic approach for one language, on standard
bilingual lexicon induction tasks. In doing so,
we have shed new light on which visual similar-
ity metric to use for similarity or relatedness tasks,
and have experimented with using multiple layers
from a CNN. The beauty of the current approach is
that it is completely language agnostic and closely
mirrors how humans would perform bilingual lex-
icon induction: by referring to the external world.

Acknowledgments

DK is supported by EPSRC grant EP/I037512/1.
IV is supported by the PARIS project (IWT-SBO
110067) and the PDM Kort postdoctoral fellow-
ship from KU Leuven. SC is supported by ERC
Starting Grant DisCoTex (306920) and EPSRC
grant EP/I037512/1. We thank Marco Baroni for
useful feedback and the anonymous reviewers for
their helpful comments.

References
Eneko Agirre, Enrique Alfonseca, Keith B. Hall, Jana

Kravalova, Marius Pasca, and Aitor Soroa. 2009.
A study on similarity and relatedness using distribu-
tional and WordNet-based approaches. In NAACL,
pages 19–27.

Lawrence W. Barsalou and Katja Wiemer-Hastings.
2005. Situating abstract concepts. In Grounding
cognition: The role of perception and action in mem-
ory, language, and thought, pages 129–163.

Lawrence W. Barsalou. 2008. Grounded cognition.
Annual Review of Psychology, 59(1):617–645.

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc
J. Van Gool. 2008. Speeded-up robust features
(SURF). Computer Vision and Image Understand-
ing, 110(3):346–359.

Shane Bergsma and Randy Goebel. 2011. Using vi-
sual information to predict lexical preference. In
RANLP, pages 399–405.

Shane Bergsma and Benjamin Van Durme. 2011.
Learning bilingual lexicons using the visual similar-
ity of labeled web images. In IJCAI, pages 1764–
1769.

Anna Bosch, Andrew Zisserman, and Xavier Muñoz.
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