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Abstract

We present a novel approach for unsu-
pervised induction of a Reordering Gram-
mar using a modified form of permuta-
tion trees (Zhang and Gildea, 2007), which
we apply to preordering in phrase-based
machine translation. Unlike previous ap-
proaches, we induce in one step both the
hierarchical structure and the transduction
function over it from word-aligned parallel
corpora. Furthermore, our model (1) han-
dles non-ITG reordering patterns (up to
5-ary branching), (2) is learned from all
derivations by treating not only labeling
but also bracketing as latent variable, (3) is
entirely unlexicalized at the level of re-
ordering rules, and (4) requires no linguis-
tic annotation.

Our model is evaluated both for accuracy
in predicting target order, and for its im-
pact on translation quality. We report sig-
nificant performance gains over phrase re-
ordering, and over two known preordering
baselines for English-Japanese.

1 Introduction

Preordering (Collins et al., 2005) aims at permut-
ing the words of a source sentence s into a new
order ś, hopefully close to a plausible target word
order. Preordering is often used to bridge long dis-
tance reorderings (e.g., in Japanese- or German-
English), before applying phrase-based models
(Koehn et al., 2007). Preordering is often bro-
ken down into two steps: finding a suitable tree
structure, and then finding a transduction function
over it. A common approach is to use monolin-
gual syntactic trees and focus on finding a trans-
duction function of the sibling subtrees under the
nodes (Lerner and Petrov, 2013; Xia and Mccord,
2004). The (direct correspondence) assumption

underlying this approach is that permuting the sib-
lings of nodes in a source syntactic tree can pro-
duce a plausible target order. An alternative ap-
proach creates reordering rules manually and then
learns the right structure for applying these rules
(Katz-Brown et al., 2011). Others attempt learn-
ing the transduction structure and the transduction
function in two separate, consecutive steps (DeN-
ero and Uszkoreit, 2011). Here we address the
challenge of learning both the trees and the trans-
duction functions jointly, in one fell swoop, from
word-aligned parallel corpora.

Learning both trees and transductions jointly
raises two questions. How to obtain suitable trees
for the source sentence and how to learn a distri-
bution over random variables specifically aimed
at reordering in a hierarchical model? In this
work we solve both challenges by using the fac-
torizations of permutations into Permutation Trees
(PETs) (Zhang and Gildea, 2007). As we ex-
plain next, PETs can be crucial for exposing the
hierarchical reordering patterns found in word-
alignments.

We obtain permutations in the training data by
segmenting every word-aligned source-target pair
into minimal phrase pairs; the resulting alignment
between minimal phrases is written as a permuta-
tion (1:1 and onto) on the source side. Every per-
mutation can be factorized into a forest of PETs
(over the source sentences) which we use as a la-
tent treebank for training a Probabilistic Context-
Free Grammar (PCFG) tailor made for preorder-
ing as we explain next.

Figure 1 shows two alternative PETs for the
same permutation over minimal phrases. The
nodes have labels (like P3142) which stand for lo-
cal permutations (called prime permutation) over
the child nodes; for example, the root label P3142
stands for prime permutation 〈3, 1, 4, 2〉, which
says that the first child of the root becomes 3rd on
the target side, the second becomes 1st, the third
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becomes 4th and the fourth becomes 2nd. The
prime permutations are non-factorizable permuta-
tions like 〈1, 2〉, 〈2, 1〉 and 〈2, 4, 1, 3〉.

We think PETs are suitable for learning pre-
ordering for two reasons. Firstly, PETs specify ex-
actly the phrase pairs defined by the permutation.
Secondly, every permutation is factorizable into
prime permutations only (Albert and Atkinson,
2005). Therefore, PETs expose maximal sharing
between different permutations in terms of both
phrases and their reordering. We expect this to be
advantageous for learning hierarchical reordering.

For learning preordering, we first extract an ini-
tial PCFG from the latent treebank of PETs over
the source sentences only. We initialize the non-
terminal set of this PCFG to the prime permuta-
tions decorating the PET nodes. Subsequently we
split these coarse labels in the same way as latent
variable splitting is learned for treebank parsing
(Matsuzaki et al., 2005; Prescher, 2005; Petrov et
al., 2006; Saluja et al., 2014). Unlike treebank
parsing, however, our training treebank is latent
because it consists of a whole forest of PETs per
training instance (s).

Learning the splits on a latent treebank of PETs
results in a Reordering PCFG which we use to
parse input source sentences into split-decorated
trees, i.e., the labels are the splits of prime permu-
tations. After parsing s, we map the splits back on
their initial prime permutations, and then retrieve
a reordered version ś of s. In this sense, our latent
splits are dedicated to reordering.

We face two technical difficulties alien to work
on latent PCFGs in treebank parsing. Firstly, as
mentioned above, permutations may factorize into
more than one PET (a forest) leading to a latent
training treebank.1 And secondly, after we parse
a source string s, we are interested in ś, the per-
muted version of s, not in the best derivation/PET.
Exact computation is a known NP-Complete prob-
lem (Sima’an, 2002). We solve this by a new
Minimum-Bayes Risk decoding approach using
Kendall reordering score as loss function, which
is an efficient measure over permutations (Birch
and Osborne, 2011; Isozaki et al., 2010a).

In summary, this paper contributes:
• A novel latent hierarchical source reordering

model working over all derivations of PETs

1All PETs for the same permutation share the same set
of prime permutations but differ only in bracketing structure
(Zhang and Gildea, 2007).

• A label splitting approach based on PCFGs
over minimal phrases as terminals, learned
from an ambiguous treebank, where the label
splits start out from prime permutations.
• A fast Minimum Bayes Risk decoding over

Kendall τ reordering score for selecting ś.
We report results for extensive experiments on
English-Japanese showing that our Reordering
PCFG gives substantial improvements when used
as preordering for phrase-based models, outper-
forming two existing baselines for this task.

2 PETs and the Hidden Treebank

We aim at learning a PCFG which we will use for
parsing source sentences s into synchronous trees,
from which we can obtain a reordered source ver-
sion ś. Since PCFGs are non-synchronous gram-
mars, we will use the nonterminal labels to encode
reordering transductions, i.e., this PCFG is implic-
itly an SCFG. We can do this because s and ś are
over the same alphabet.

Here, we have access only to a word-aligned
parallel corpus, not a treebank. The following
steps summarize our approach for acquiring a la-
tent treebank and how it is used for learning a Re-
ordering PCFG:

1. Obtain a permutation over minimal phrases
from every word-alignment.

2. Obtain a latent treebank of PETs by factoriz-
ing the permutations.

3. Extract a PCFG from the PETs with initial
nonterminals taken from the PETs.

4. Learn to split the initial nonterminals and es-
timate rule probabilities.

These steps are detailed in the next section, but we
will start out with an intuitive exposition of PETs,
the latent treebank and the Reordering Grammar.

Figure 1 shows examples of how PETs look
like – see (Zhang and Gildea, 2007) for algorith-
mic details. Here we label the nodes with nonter-
minals which stand for prime permutations from
the operators on the PETs. For example, non-
terminals P12, P21 and P3142 correspond re-
spectively to reordering transducers 〈1, 2〉, 〈2, 1〉
and 〈3, 1, 4, 2〉. A prime permutation on a source
node µ is a transduction dictating how the chil-
dren of µ are reordered at the target side, e.g.,
P21 inverts the child order. We must stress that
any similarity with ITG (Wu, 1997) is restricted
to the fact that the straight and inverted operators
of ITG are the binary case of prime permutations
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P12

Professor Chomsky ,   I   would like to  thank you

Ebenso möchte Ich Ihnen , Herr Professor Chomsky , herzlich danken

P3142

P12
P21

(a) Canonical PET

P12

Professor Chomsky ,   I   would like to  thank you

Ebenso möchte Ich Ihnen , Herr Professor Chomsky , herzlich danken

P3142

P12
P21

(b) Alternative PET

Figure 1: Possible Permutation Trees (PETs) for one sentence pair

in PETs (P12 and P21). ITGs recognize only the
binarizable permutations, which is a major restric-
tion when used on the data: there are many non-
binarizable permutations in actual data (Welling-
ton et al., 2006). In contrast, our PETs are ob-
tained by factorizing permutations obtained from
the data, i.e., they exactly fit the range of prime
permutations in the parallel corpus. In practice we
limit them to maximum arity 5.

We can extract PCFG rules from the PETs, e.g.,
P21 → P12 P2413. However, these rules are
decorated with too coarse labels. A similar prob-
lem was encountered in non-lexicalized monolin-
gual parsing, and one solution was to lexicalize
the productions (Collins, 2003) using head words.
But linguistic heads do not make sense for PETs,
so we opt for the alternative approach (Matsuzaki
et al., 2005), which splits the nonterminals and
softly percolates the splits through the trees gradu-
ally fitting them to the training data. Splitting has
a shadow side, however, because it leads to com-
binatorial explosion in grammar size.

Suppose for example node P21 could split into
P211 and P212 and similarly P2413 splits into
P24131 and 24132. This means that rule P21 →
P12 P2413 will form eight new rules:

P211 → P121 P24131 P211 → P121 P24132

P211 → P122 P24131 P211 → P122 P24132

P212 → P121 P24131 P212 → P121 P24132

P212 → P122 P24131 P212 → P122 P24132

Should we want to split each nonterminal into
30 subcategories, then an n-ary rule will split
into 30n+1 new rules, which is prohibitively large.
Here we use the “unary trick” as in Figure 2. The
superscript on the nonterminals denotes the child
position from left to right. For example P212

1

means that this node is a second child, and the

mother nonterminal label is P211. For the running
example rule, this gives the following rules:

P211 → P211
1 P212

1 P212 → P211
2 P212

2

P211
1 → P121 P212

1 → P24131

P211
1 → P122 P212

1 → P24132

P211
2 → P121 P212

2 → P24131

P211
2 → P122 P212

2 → P24132

The unary trick leads to substantial reduction in
grammar size, e.g., for arity 5 rules and 30 splits
we could have had 306 = 729000000 split-rules,
but with the unary trick we only have 30+302∗5 =
4530 split rules. The unary trick was used in
early lexicalized parsing work (Carroll and Rooth,
1998).2 This split PCFG constitutes a latent
PCFG because the splits cannot be read of a tree-
bank. It must be learned from the latent treebank
of PETs, as described next.

P12

Professor Chomsky ,   I   would like to  thank you

Ebenso möchte Ich Ihnen , Herr Professor Chomsky , herzlich danken

P3142

P12 P21

P121 P122

P121 P122

P211 P212

P31421

P31422

P31423

P31424

Figure 2: Permutation Tree with unary trick

3 Details of Latent Reordering PCFG

Obtaining permutations Given a source sen-
tence s and its alignment a to a target sentence

2After applying the unary trick, we add a constraint on
splitting: all nonterminals on an n-ary branching rule must
be split simultaneously.
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t in the training corpus, we segment 〈s,a, t〉 into
a sequence of minimal phrases sm (maximal se-
quence) such that the reordering between these
minimal phrases constitutes a permutation πm.
We do not extract non-contiguous or non-minimal
phrases because reordering them often involves
complicated transductions which could hamper
the performance of our learning algorithm.3

Unaligned words Next we describe the use of
the factorization of permutations into PET forests
for training a PCFG model. But first we need
to extend the PETs to allow for unaligned words.
An unaligned word is joined with a neighboring
phrase to the left or the right, depending on the
source language properties (e.g., whether the lan-
guage is head-initial or -final (Chomsky, 1970)).
Our experiments use English as source language
(head-initial), so the unaligned words are joined
to phrases to their right. This modifies a PET by
adding a new binary branching node µ (dominat-
ing the unaligned word and the phrase it is joined
to) which is labeled with a dedicated nonterminal:
P01 if the unaligned word joins to the right and
P10 if it joins to the left.

3.1 Probability model

We decompose the permutation πm into a forest
of permutation trees PEF (πm) in O(n3), follow-
ing algorithms in (Zhang et al., 2008; Zhang and
Gildea, 2007) with trivial modifications. Each
PET ∆ ∈ PEF (πm) is a different bracketing
(differing in binary branching structure only). We
consider the bracketing hidden in the latent tree-
bank, and apply unsupervised learning to induce a
distribution over possible bracketings. Our prob-
ability model starts from the joint probability of a
sequence of minimal phrases sm and a permuta-
tion πm over it. This demands summing over all
PETs ∆ in the forest PEF (πm), and for every
PET also over all its label splits, which are given
by the grammar derivations d:

P (sm, πm) =
∑

∆∈PEF (πm)

∑
d∈∆

P (d, sm) (1)

The probability of a derivation d is a product of
probabilities of all the rules r that build it:

P (sm, πm) =
∑

∆∈PEF (πm)

∑
d∈∆

∏
r∈d

P (r) (2)

3Which differs from (Quirk and Menezes, 2006).

As usual, the parameters of this model are the
PCFG rule probabilities which are estimated from
the latent treebank using EM as explained next.

3.2 Learning Splits on Latent Treebank

For training the latent PCFG over the latent tree-
bank, we resort to EM (Dempster et al., 1977)
which estimates PCFG rule probabilities to max-
imize the likelihood of the parallel corpus in-
stances. Computing expectations for EM is
done efficiently using Inside-Outside (Lari and
Young, 1990). As in other state splitting models
(Matsuzaki et al., 2005), after splitting the non-
terminals, we distribute the probability uniformly
over the new rules, and we add to each new rule
some random noise to break the symmetry. We
split the non-terminals only once as in (Matsuzaki
et al., 2005) (unlike (Petrov et al., 2006)). For es-
timating the distribution for unknown words we
replace all words that appear ≤ 3 times with the
“UNKNOWN” token.

3.3 Inference

We use CKY+ (Chappelier and Rajman, 1998) to
parse a source sentence s into a forest using the
learned split PCFG. Unfortunately, computing the
most-likely permutation (or alternatively ś) as in

argmax
π∈Π

∑
∆∈PEF (π)

∑
d∈∆

P (d, πm)

from a lattice of permutations Π using a PCFG
is NP-complete (Sima’an, 2002). Existing tech-
niques, like variational decoding or Minimum-
Bayes Risk (MBR), used for minimizing loss over
trees as in (Petrov and Klein, 2007), are not di-
rectly applicable here. Hence, we opt for mini-
mizing the risk of making an error under a loss
function over permutations using the MBR deci-
sion rule (Kumar and Byrne, 2004):

π̂ = argmin
π

∑
πr

Loss(π, πr)P (πr) (3)

The loss function we minimize is Kendall τ (Birch
and Osborne, 2011; Isozaki et al., 2010a) which
is a ratio of wrongly ordered pairs of words (in-
cluding gapped pairs) to the total number of pairs.
We do Monte Carlo sampling of 10000 derivations
from the chart of the s and then find the least risky
permutation in terms of this loss. We sample from
the true distribution by sampling edges recursively
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using their inside probabilities. An empirical dis-
tribution over permutations P (π) is given by the
relative frequency of π in the sample.

With large samples it is hard to efficiently com-
pute expected Kendall τ loss for each sampled
hypothesis. For sentence of length k and sam-
ple of size n the complexity of a naive algorithm
is O(n2k2). Computing Kendall τ alone takes
O(k2). We use the fact that Kendall τ decom-
poses as a linear function over all skip-bigrams b
that could be built for any permutation of length k:

Kendall(π, πr) =
∑
b

1− δ(π, b)
k(k−1)

2

δ(πr, b) (4)

Here δ returns 1 if permutation π contains the skip
bigram b, otherwise it returns 0. With this decom-
position we can use the method from (DeNero et
al., 2009) to efficiently compute the MBR hypoth-
esis. Combining Equations 3 and 4 we get:

π̂ = argmin
π

∑
πr

∑
b

1− δ(π, b)
k(k−1)

2

δ(πr, b)P (πr) (5)

We can move the summation inside and reformu-
late the expected Kendall τ loss as expectation
over the skip-bigrams of the permutation.

= argmin
π

∑
b

(1− δ(π, b))
[∑

πr
δ(πr, b)P (πr)

]
(6)

= argmin
π

∑
b

(1− δ(π, b))EP (πr)δ(πr, b) (7)

= argmax
π

∑
b

δ(π, b)EP (πr)δ(πr, b) (8)

This means we need to pass through the sampled
list only twice: (1) to compute expectations over
skip bigrams and (2) to compute expected loss of
each sampled permutation. The time complexity
is O(nk2) which is quite fast in practice.

4 Experiments

We conduct experiments with three baselines:
• Baseline A: No preordering.
• Baseline B: Rule based preordering (Isozaki

et al., 2010b), which first obtains an HPSG
parse tree using Enju parser 4 and after that
swaps the children by moving the syntactic
head to the final position to account for differ-
ent head orientation in English and Japanese.

4http://www.nactem.ac.uk/enju/

• Baseline C: LADER (Neubig et al., 2012):
latent variable preordering that is based on
ITG and large-margin training with latent
variables. We used LADER in standard set-
tings without any linguistic features (POS
tags or syntactic trees).

And we test four variants of our model:
• RGleft - only canonical left branching PET
• RGright - only canonical right branching PET
• RGITG-forest - all PETs that are binary (ITG)
• RGPET-forest - all PETs.

We test these models on English-Japanese
NTCIR-8 Patent Translation (PATMT) Task. For
tuning we use all NTCIR-7 dev sets and for test-
ing the test set from NTCIR-9 from both direc-
tions. All used data was tokenized (English with
Moses tokenizer and Japanese with KyTea 5) and
filtered for sentences between 4 and 50 words. A
subset of this data is used for training the Reorder-
ing Grammar, obtained by filtering out sentences
that have prime permutations of arity > 5, and for
the ITG version arity > 2. Baseline C was trained
on 600 sentences because training is prohibitively
slow. Table 1 shows the sizes of data used.

corpus #sents #words #words
source target

train RGPET 786k 21M –
train RGITG 783k 21M –
train LADER 600 15k –
train translation 950k 25M 30M
tune translation 2k 55K 66K
test translation 3k 78K 93K

Table 1: Data stats

The Reordering Grammar was trained for 10 it-
erations of EM on train RG data. We use 30 splits
for binary non-terminals and 3 for non-binary.
Training on this dataset takes 2 days and parsing
tuning and testing set without any pruning takes
11 and 18 hours respectively.

4.1 Intrinsic evaluation

We test how well our model predicts gold reorder-
ings before translation by training the alignment
model using MGIZA++ 6 on the training corpus
and using it to align the test corpus. Gold re-
orderings for the test corpus are obtained by sort-
ing words by their average target position and
(unaligned words follow their right neighboring

5http://www.phontron.com/kytea/
6http://www.kyloo.net/software/doku.php/mgiza:overview
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word). We use Kendall τ score for evaluation
(note the difference with Section 3.3 where we de-
fined it as a loss function).

Table 2 shows that our models outperform all
baselines on this task. The only strange result
here is that rule-based preordering obtains a lower
score than no preordering, which might be an ar-
tifact of the Enju parser changing the tokenization
of its input, so the Kendall τ of this system might
not really reflect the real quality of the preorder-
ing. All other systems use the same tokenization.

Kendall τ
ANo preordering 0.7655
BRule based 0.7567
CLADER 0.8176
RGleft-branching 0.8201
RGright-branching 0.8246
RGITG-forest 0.823
RGPET-forest 0.8255

Table 2: Reordering prediction

4.2 Extrinsic evaluation in MT

The reordered output of all the mentioned base-
lines and versions of our model are translated with
phrase-based MT system (Koehn et al., 2007) (dis-
tortion limit set to 6 with distance based reordering
model) that is trained on gold preordering of the
training data 7 ś − t. The only exception is Base-
line A which is trained on original s− t.

We use a 5-gram language model trained with
KenLM 8, tune 3 times with kb-mira (Cherry and
Foster, 2012) to account for tuner instability and
evaluated using Multeval 9 for statistical signifi-
cance on 3 metrics: BLEU (Papineni et al., 2002),
METEOR (Denkowski and Lavie, 2014) and TER
(Snover et al., 2006). We additionally report
RIBES score (Isozaki et al., 2010a) that concen-
trates on word order more than other metrics.

Single or all PETs? In Table 3 we see that
using all PETs during training makes a big im-
pact on performance. Only the all PETs variants

7Earlier work on preordering applies the preordering
model to the training data to obtain a parallel corpus of
guessed ś − t pairs, which are the word re-aligned and then
used for training the back-end MT system (Khalilov and
Sima’an, 2011). We skip this, we take the risk of mismatch
between the preordering and the back-end system, but this
simplifies training and saves a good amount of training time.

8http://kheafield.com/code/kenlm/
9https://github.com/jhclark/multeval

System BLEU ↑ METEOR ↑ TER ↓ RIBES ↑
ANo preord. 27.8 48.9 59.2 68.29
BRule based 29.6 48.7 59.2 71.12
CLADER 31.1 50.5 56.0 74.29

RGleft 31.2AB 50.5AB 56.3AB
C 74.45

RGright 31.4AB 50.5AB 56.3AB
C 75.29

RGITG-forest 31.6ABC 50.8ABC 55.7ABC 75.29
RGPET-forest 32.0ABC 51.0ABC 55.7ABC 75.62

Table 3: Comparison of different preordering
models. Superscripts A, B and C signify if the sys-
tem is significantly better (p < 0.05) than the re-
spective baseline or significantly worse (in which
case it is a subscript). Significance tests were not
computed for RIBES. Score is bold if the system
is significantly better than all the baselines.

(RGITG-forest and RGPET-forest) significantly outper-
form all baselines. If we are to choose a single
PET per training instance, then learning RG from
only left-branching PETs (the one usually cho-
sen in other work, e.g. (Saluja et al., 2014)) per-
forms slightly worse than the right-branching PET.
This is possibly because English is mostly right-
branching. So even though both PETs describe the
same reordering, RGright captures reordering over
English input better than RGleft.

All PETs or binary only? RGPET-forest performs
significantly better than RGITG-forest (p < 0.05).
Non-ITG reordering operators are predicted rarely
(in only 99 sentences of the test set), but they
make a difference, because these operators often
appear high in the predicted PET. Furthermore,
having these operators during training might allow
for better fit to the data.

How much reordering is resolved by the
Reordering Grammar? Obviously, completely
factorizing out the reordering from the transla-
tion process is impossible because reordering de-
pends to a certain degree on target lexical choice.
To quantify the contribution of Reordering Gram-
mar, we tested decoding with different distortion
limit values in the SMT system. We compare the
phrase-based (PB) system with distance based cost
function for reordering (Koehn et al., 2007) with
and without preordering.

Figure 3 shows that Reordering Grammar
gives substantial performance improvements at
all distortion limits (both BLEU and RIBES).
RGPET-forest is less sensitive to changes in decoder
distortion limit than standard PBSMT. The perfor-
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Figure 3: Distortion effect on BLEU and RIBES

mance of RGPET-forest varies only by 1.1 BLEU
points while standard PBSMT by 4.3 BLEU
points. Some local reordering in the decoder
seems to help RGPET-forest but large distortion
limits seem to degrade the preordering choice.
This shows also that the improved performance of
RGPET-forest is not only a result of efficiently ex-
ploring the full space of permutations, but also a
result of improved scoring of permutations.

System BLEU ↑ METEOR ↑ TER ↓ RIBES ↑
DPBMSD 29.6 50.1 58.0 68.97
EHiero 32.6 52.1 54.5 74.12

RGPET-forest+MSD 32.4D 51.3D
E 55.3D

E 75.72

Table 4: Comparison to MSD and Hiero

Does the improvement remain for a decoder
with MSD reordering model? We compare the
RGPET-forest preordered model against a decoder
that uses the strong MSD model (Tillmann, 2004;
Koehn et al., 2007). Table 4 shows that using
Reordering Grammar as front-end to MSD re-
ordering (full Moses) improves performance by
2.8 BLEU points. The improvement is confirmed
by METEOR, TER and RIBES. Our preordering
model and MSD are complementary – the Re-
ordering Grammar captures long distance reorder-
ing, while MSD possibly does better local reorder-
ings, especially reorderings conditioned on the
lexical part of translation units.

Interestingly, the MSD model (BLEU 29.6)
improves over distance-based reordering (BLEU
27.8) by (BLEU 1.8), whereas the difference be-
tween these systems as back-ends to Reordering
Grammar (respectively BLEU 32.4 and 32.0) is

far smaller (0.4 BLEU). This suggests that a ma-
jor share of reorderings can be handled well by
preordering without conditioning on target lexical
choice. Furthermore, this shows that RGPET-forest
preordering is not very sensitive to the decoder’s
reordering model.

Comparison to a Hierarchical model (Hiero).
Hierarchical preordering is not intended for a hi-
erarchical model as Hiero (Chiang, 2005). Yet,
here we compare our preordering system (PB
MSD+RG) to Hiero for completeness, while we
should keep in mind that Hiero’s reordering model
has access to much richer training data. We will
discuss these differences shortly.

Table 4 shows that the difference in BLEU is
not statistically significant, but there is more dif-
ference in METEOR and TER. RIBES, which
concentrates more on reordering, prefers Reorder-
ing Grammar over Hiero. It is somewhat sur-
prising that a preordering model combined with a
phrase-based model succeeds to rival Hiero’s per-
formance on English-Japanese. Especially when
looking at the differences between the two:

1. Reordering Grammar uses only minimal
phrases, while Hiero uses composite (longer)
phrases which encapsulate internal reorder-
ings, but also non-contiguous phrases.

2. Hiero conditions its reordering on the lexical
target side, whereas the Reordering Grammar
does not (by definition).

3. Hiero uses a range of features, e.g., a lan-
guage model, while Reordering Grammar is
a mere generative PCFG.

The advantages of Hiero can be brought to bear
upon Reordering Grammar by reformulating it as
a discriminative model.

Which structure is learned? Figure 4 shows
an example PET output showing how our model
learns: (1) that the article “the” has no equiva-
lent in Japanese, (2) that verbs go after their ob-
ject, (3) to use postpositions instead of preposi-
tions, and (4) to correctly group certain syntactic
units, e.g. NPs and VPs.

5 Related work

The majority of work on preordering is based
on syntactic parse trees, e.g., (Lerner and Petrov,
2013; Khalilov and Sima’an, 2011; Xia and Mc-
cord, 2004). Here we concentrate on work that
has common aspects with this work. Neubig et
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Figure 4: Example parse of English sentence that predicts reordering for English-Japanese

al (2012) trains a latent non-probabilistic discrim-
inative model for preordering as an ITG-like gram-
mar limited to binarizable permutations. Tromble
and Eisner (2009) use ITG but do not train the
grammar. They only use it to constrain the lo-
cal search. DeNero and Uszkoreit (2011) present
two separate consecutive steps for unsupervised
induction of hierarchical structure (ITG) and the
induction of a reordering function over it. In con-
trast, here we learn both the structure and the re-
ordering function simultaneously. Furthermore, at
test time, our inference with MBR over a mea-
sure of permutation (Kendall) allows exploiting
both structure and reordering weights for infer-
ence, whereas test-time inference in (DeNero and
Uszkoreit, 2011) is also a two step process – the
parser forwards to the next stage the best parse.

Dyer and Resnik (2010) treat reordering as a la-
tent variable and try to sum over all derivations
that lead not only to the same reordering but also
to the same translation. In their work they consider
all permutations allowed by a given syntactic tree.

Saers et al (2012) induce synchronous gram-
mar for translation by splitting the non-terminals,
but unlike our approach they split generic non-
terminals and not operators. Their most expres-
sive grammar covers only binarizable permuta-
tions. The decoder that uses this model does not
try to sum over many derivations that have the
same yield. They do not make independence as-
sumption like our “unary trick” which is proba-
bly the reason they do not split more than 8 times.
They do not compare their results to any other
SMT system and test on a very small dataset.

Saluja et al (2014) attempts inducing a refined
Hiero grammar (latent synchronous CFG) from
Normalized Decomposition Trees (NDT) (Zhang
et al., 2008). While there are similarities with

the present work, there are major differences. On
the similarity side, NDTs are decomposing align-
ments in ways similar to PETs, and both Saluja’s
and our models refine the labels on the nodes of
these decompositions. However, there are major
differences between the two:

• Our model is completely monolingual and
unlexicalized (does not condition its reorder-
ing on the translation) in contrast with the La-
tent SCFG used in (Saluja et al., 2014),
• Our Latent PCFG label splits are defined

as refinements of prime permutations, i.e.,
specifically designed for learning reordering,
whereas (Saluja et al., 2014) aims at learn-
ing label splitting that helps predicting NDTs
from source sentences,
• Our model exploits all PETs and all deriva-

tions, both during training (latent treebank)
and during inferences. In (Saluja et al., 2014)
only left branching NDT derivations are used
for learning the model.
• The training data used by (Saluja et al., 2014)

is about 60 times smaller in number of words
than the data used here; the test set of (Saluja
et al., 2014) also consists of far shorter sen-
tences where reordering could be less crucial.

A related work with a similar intuition is presented
in (Maillette de Buy Wenniger and Sima’an,
2014), where nodes of a tree structure similar
to PETs are labeled with reordering patterns ob-
tained by factorizing word alignments into Hierar-
chical Alignment Trees. These patterns are used
for labeling the standard Hiero grammar. Unlike
this work, the labels extracted by (Maillette de
Buy Wenniger and Sima’an, 2014) are clustered
manually into less than a dozen labels without the
possibility of fitting the labels to the training data.
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6 Conclusion

We present a generative Reordering PCFG model
learned from latent treebanks over PETs obtained
by factorizing permutations over minimal phrase
pairs. Our Reordering PCFG handles non-ITG
reordering patterns (up to 5-ary branching) and
it works with all PETs that factorize a permuta-
tion (rather than a single PET). To the best of our
knowledge this is the first time both extensions
are shown to improve performance. The empiri-
cal results on English-Japanese show that (1) when
used for preordering, the Reordering PCFG helps
particularly with relieving the phrase-based model
from long range reorderings, (2) combined with
a state-of-the-art phrase model, Reordering PCFG
shows performance not too different from Hiero,
supporting the common wisdom of factorizing
long range reordering outside the decoder, (3) Re-
ordering PCFG generates derivations that seem
to coincide well with linguistically-motivated re-
ordering patterns for English-Japanese. There are
various direction we would like to explore, the
most obvious of which are integrating the learned
reordering with other feature functions in a dis-
criminative setting, and extending the model to
deal with non-contiguous minimal phrases.
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