Classifying Idiomatic and Literal Expressions Using Topic Models and
Intensity of Emotions

Jing Peng & Anna Feldman
Computer Science/Linguistics
Montclair State University
Montclair, New Jersey, USA

Ekaterina Vylomova
Computer Science
Bauman State Technical University
Moscow, Russia

{pengj, feldmana}@mail .montclair.edu evylomova@gmail.com

Abstract

We describe an algorithm for automatic clas-
sification of idiomatic and literal expressions.
Our starting point is that words in a given text
segment, such as a paragraph, that are high-
ranking representatives of a common topic of
discussion are less likely to be a part of an id-
iomatic expression. Our additional hypothesis
is that contexts in which idioms occur, typi-
cally, are more affective and therefore, we in-
corporate a simple analysis of the intensity of
the emotions expressed by the contexts. We
investigate the bag of words topic represen-
tation of one to three paragraphs containing
an expression that should be classified as id-
iomatic or literal (a target phrase). We ex-
tract topics from paragraphs containing idioms
and from paragraphs containing literals us-
ing an unsupervised clustering method, Latent
Dirichlet Allocation (LDA) (Blei et al., 2003).
Since idiomatic expressions exhibit the prop-
erty of non-compositionality, we assume that
they usually present different semantics than
the words used in the local topic. We treat
idioms as semantic outliers, and the identifi-
cation of a semantic shift as outlier detection.
Thus, this topic representation allows us to dif-
ferentiate idioms from literals using local se-
mantic contexts. Our results are encouraging.

1 Introduction

The definition of what is literal and figurative is still
object of debate. Ariel (2002) demonstrates that lit-
eral and non-literal meanings cannot always be distin-
guished from each other. Literal meaning is originally
assumed to be conventional, compositional, relatively
context independent, and truth conditional. The prob-
lem is that the boundary is not clear-cut, some figu-
rative expressions are compositional — metaphors and
many idioms; others are conventional — most of the id-
ioms. Idioms present great challenges for many Natu-
ral Language Processing (NLP) applications. They can
violate selection restrictions (Sporleder and Li, 2009)
as in push one’s luck under the assumption that only
concrete things can normally be pushed. Idioms can
disobey typical subcategorization constraints (e.g., in

line without a determiner before line), or change the
default assignments of semantic roles to syntactic cate-
gories (e.g., in X breaks something with Y, Y typically
is an instrument but for the idiom break the ice, it is
more likely to fill a patient role as in How fo break the
ice with a stranger). In addition, many potentially id-
iomatic expressions can be used either literally or fig-
uratively, depending on the context. This presents a
great challenge for machine translation. For example,
a machine translation system must translate held fire
differently in Now, now, hold your fire until I've had a
chance to explain. Hold your fire, Bill. You’re too quick
to complain. and The sergeant told the soldiers to hold
their fire. Please hold your fire until I get out of the
way. In fact, we tested the last two examples using the
Google Translate engine and we got proper translations
of the two neither into Russian nor into Hebrew, Span-
ish, or Chinese. Most current translation systems rely
on large repositories of idioms. Unfortunately, these
systems are not capable to tell apart literal from figura-
tive usage of the same expression in context. Despite
the common perception that phrases that can be idioms
are mainly used in their idiomatic sense, Fazly et al.
(2009)’s analysis of 60 idioms has shown that close to
half of these also have a clear literal meaning; and of
those with a literal meaning, on average around 40% of
their usages are literal.

In this paper we describe an algorithm for automatic
classification of idiomatic and literal expressions. Our
starting point is that words in a given text segment,
such as a paragraph, that are high-ranking representa-
tives of a common topic of discussion are less likely
to be a part of an idiomatic expression. Our additional
hypothesis is that contexts in which idioms occur, typ-
ically, are more affective and therefore, we incorpo-
rate a simple analysis of the intensity of the emotions
expressed by the contexts. We investigate the bag of
words topic representation of one to three paragraphs
containing an expression that should be classified as
idiomatic or literal (a target phrase). We extract top-
ics from paragraphs containing idioms and from para-
graphs containing literals using an unsupervised clus-
tering method, Latent Dirichlet Allocation (LDA) (Blei
et al., 2003). Since idiomatic expressions exhibit the
property of non-compositionality, we assume that they
usually present different semantics than the words used
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in the local topic. We treat idioms as semantic outliers,
and the identification of semantic shift as outlier detec-
tion. Thus, this topic representation allows us to differ-
entiate idioms from literals using the local semantics.

The paper is organized as follows. Section 2 briefly
describes previous approaches to idiom recognition or
classification. In Section 3 we describe our approach in
detail, including the hypothesis, the topic space repre-
sentation, and the proposed algorithm. After describing
the preprocessing procedure in Section 4, we turn to the
actual experiments in Sections 5 and 6. We then com-
pare our approach to other approaches (Section 7) and
discuss the results (Section 8).

2 Previous Work

Previous approaches to idiom detection can be classi-
fied into two groups: 1) Type-based extraction, i.e., de-
tecting idioms at the type level; 2) token-based detec-
tion, i.e., detecting idioms in context. Type-based ex-
traction is based on the idea that idiomatic expressions
exhibit certain linguistic properties that can distinguish
them from literal expressions (Sag et al. (2002); Fa-
zly et al. (2009)), among many others, discuss various
properties of idioms. Some examples of such proper-
ties include 1) lexical fixedness: e.g., neither ‘shoot
the wind’ nor ‘hit the breeze’ are valid variations of
the idiom shoot the breeze and 2) syntactic fixedness:
e.g., The guy kicked the bucket is potentially idiomatic
whereas The bucket was kicked is not idiomatic any-
more; and of course, 3) non-compositionality. Thus,
some approaches look at the tendency for words to oc-
cur in one particular order, or a fixed pattern. Hearst
(1992) identifies lexico-syntactic patterns that occur
frequently, are recognizable with little or no precoded
knowledge, and indicate the lexical relation of interest.
Widdows and Dorow (2005) use Hearst’s concept of
lexicosyntactic patterns to extract idioms that consist
of fixed patterns between two nouns. Basically, their
technique works by finding patterns such as “thrills and
spills”, whose reversals (such as “spills and thrills™) are
never encountered.

While many idioms do have these properties, many
idioms fall on the continuum from being composi-
tional to being partly unanalyzable to completely non-
compositional (Cook et al. (2007)). Fazly et al. (2009);
Li and Sporleder (2010), among others, notice that
type-based approaches do not work on expressions that
can be interpreted idiomatically or literally depending
on the context and thus, an approach that considers to-
kens in context is more appropriate for the task of idiom
recognition.

A number of token-based approaches have been
discussed in the literature, both supervised (Katz
and Giesbrech (2006)), weakly supervised (Birke and
Sarkar (2006)) and unsupervised (Sporleder and Li
(2009); Fazly et al. (2009)). Fazly et al. (2009) de-
velop statistical measures for each linguistic property
of idiomatic expressions and use them both in a type-

based classification task and in a token identification
task, in which they distinguish idiomatic and literal us-
ages of potentially idiomatic expressions in context.
Sporleder and Li (2009) present a graph-based model
for representing the lexical cohesion of a discourse.
Nodes represent tokens in the discourse, which are con-
nected by edges whose value is determined by a seman-
tic relatedness function. They experiment with two dif-
ferent approaches to semantic relatedness: 1) Depen-
dency vectors, as described in Pado and Lapata (2007);
2) Normalized Google Distance (Cilibrasi and Vitanyi
(2007)). Sporleder and Li (2009) show that this method
works better for larger contexts (greater than five para-
graphs). Li and Sporleder (2010) assume that literal
and figurative data are generated by two different Gaus-
sians, literal and non-literal and the detection is done by
comparing which Gaussian model has a higher prob-
ability to generate a specific instance. The approach
assumes that the target expressions are already known
and the goal is to determine whether this expression is
literal or figurative in a particular context. The impor-
tant insight of this method is that figurative language
in general exhibits less semantic cohesive ties with the
context than literal language.

Feldman and Peng (2013) describe several ap-
proaches to automatic idiom identification. One of
them is idiom recognition as outlier detection. They
apply principal component analysis for outlier detec-
tion — an approach that does not rely on costly an-
notated training data and is not limited to a specific
type of a syntactic construction, and is generally lan-
guage independent. The quantitative analysis provided
in their work shows that the outlier detection algorithm
performs better and seems promising. The qualitative
analysis also shows that their algorithm has to incor-
porate several important properties of the idioms: (1)
Idioms are relatively non-compositional, comparing to
literal expressions or other types of collocations. (2)
Idioms violate local cohesive ties, as a result, they are
semantically distant from the local topics. (3) While
not all semantic outliers are idioms, non-compositional
semantic outliers are likely to be idiomatic. (4) Id-
iomaticity is not a binary property. Idioms fall on the
continuum from being compositional to being partly
unanalyzable to completely non-compositional.

The approach described below is taking Feldman
and Peng (2013)’s original idea and is trying to address
(2) directly and (1) indirectly. Our approach is also
somewhat similar to Li and Sporleder (2010) because it
also relies on a list of potentially idiomatic expressions.

3 Our Hypothesis

Similarly to Feldman and Peng (2013), out starting
point is that idioms are semantic outliers that violate
cohesive structure, especially in local contexts. How-
ever, our task is framed as supervised classification and
we rely on data annotated for idiomatic and literal ex-
pressions. We hypothesize that words in a given text
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segment, such as a paragraph, that are high-ranking
representatives of a common topic of discussion are
less likely to be a part of an idiomatic expression in
the document.

3.1 Topic Space Representation

Instead of the simple bag of words representation of a
target document (segment of three paragraphs that con-
tains a target phrase), we investigate the bag of words
topic representation for target documents. That is, we
extract topics from paragraphs containing idioms and
from paragraphs containing literals using an unsuper-
vised clustering method, Latent Dirichlet Allocation
(LDA) (Blei et al., 2003). The idea is that if the LDA
model is able to capture the semantics of a target docu-
ment, an idiomatic phrase will be a “semantic” outlier
of the themes. Thus, this topic representation will al-
low us to differentiate idioms from literals using the
semantics of the local context.

Let d = {wy, - ,wy} be a segment (document)
containing a target phrase, where N denotes the num-
ber of terms in a given corpus, and ¢ represents trans-
pose. We first compute a set of m topics from d. We
denote this set by

T(d) = {tlv T 7tm}a

where t; = (w1, - ,wy)". Here w; represents a word
from a vocabulary of W words. Thus, we have two
representations for d: (1) d, represented by its original
terms, and (2) d, represented by its topic terms. Two
corresponding term by document matrices will be de-
noted by Mp and M p, respectively, where D denotes
a set of documents. That is, Mp represents the original
“text” term by document matrix, while M ;, represents
the “topic” term by document matrix.

Figure 1 shows the potential benefit of topic space
representation. In the figure, text segments containing
target phrase “blow whistle” are projected on a two di-
mensional subspace. The left figure shows the projec-
tion in the “text” space, represented by the term by doc-
ument matrix M p. The middle figure shows the projec-
tion in the topic space, represented by M. The topic
space representation seems to provide a better separa-
tion.

We note that when learning topics from a small data
sample, learned topics can be less coherent and inter-
pretable, thus less useful. To address this issue, regu-
larized LDA has been proposed in the literature (New-
man et al., 2011). A key feature is to favor words that
exhibit short range dependencies for a given topic. We
can achieve a similar effect by placing restrictions on
the vocabulary. For example, when extracting topics
from segments containing idioms, we may restrict the
vocabulary to contain words from these segments only.
The middle and right figures in Figure 1 illustrate a case
in point. The middle figure shows a projection onto the
topic space that is computed with a restricted vocabu-
lary, while the right figure shows a projection when we

place no restriction on the vocabulary. That is, the vo-
cabulary includes terms from documents that contain
both idioms and literals.

Note that by computing M », the topic term by doc-
ument matrix, from the training data, we have created
a vocabulary, or a set of “features” (i.e., topic terms)
that is used to directly describe a query or test segment.
The main advantage is that topics are more accurate
when computed by LDA from a large collection of id-
iomatic or literal contexts. Thus, these topics capture
more accurately the semantic contexts in which the tar-
get idiomatic and literal expressions typically occur. If
a target query appears in a similar semantic context, the
topics will be able to describe this query as well. On the
other hand, one might similarly apply LDA to a given
query to extract query topics, and create the query vec-
tor from the query topics. The main disadvantage is
that LDA may not be able to extract topic terms that
match well with those in the training corpus, when ap-
plied to the query in isolation.

3.2 Algorithm

The main steps of the proposed algorithm, called
TopSpace, are shown below.

Input: D= {dla e 7dk)a dk+17 e ,dn}: training
documents of k idioms and n — k literals.
Q =A{q, - ,q}: ! query documents.

1. Let Dicl be the vocabulary determined solely
from idioms {d1, - - - ,d }. Similarly, let DicL
be the vocabulary obtained from literals
{di41,-+  dn}.

2. For a document d; in {dy, - - ,dy}, apply LDA
to extract a set of m topics T'(d;) = {t1, - ,tm}
using Dicl. Ford; € {dg+1,- - ,dn}, DicL is
used.

3. Let D = {dy, - ,dp,dgs1, - ,dn} be the
resulting topic representation of D.

4. Compute the term by document matrix M p, from
D, and let DicT and gw be the resulting
dictionary and global weight (idf), respectively.

5. Compute the term by document matrix Mg from
@, using DicT and gw from the previous step.

Output: My and Mg

To summarize, after splitting our corpus (see section
4) into paragraphs and preprocessing it, we extract top-
ics from paragraphs containing idioms and from para-
graphs containing literals. We then compute a term by
document matrix, where terms are topic terms and doc-
uments are topics extracted from the paragraphs. Our
test data are represented as a term-by-document matrix
as well (See the details in section 5).
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2D Text Space: Blow Whistle

2D Topic Space: Blow Whistle

2D Topic Space: Blow Whistle

*  Idioms
O Literals

Figure 1: 2D projection of text segments containing “blow whistle.” Left panel: Original text space. Middle panel:
Topic space with restricted vocabulary. Right panel: Topic space with enlarged vocabulary.

3.3 Fisher Linear Discriminant Analysis

Once Mp and Mg are obtained, a classification rule
can be applied to predict idioms vs. literals. The ap-
proach we are taking in this work for classifying id-
ioms vs. literals is based on Fisher’s discriminant anal-
ysis (FDA) (Fukunaga, 1990). FDA often significantly
simplifies tasks such as regression and classification by
computing low-dimensional subspaces having statisti-
cally uncorrelated or discriminant variables. In lan-
guage analysis, statistically uncorrelate or discriminant
variables are extracted and utilized for description, de-
tection, and classification. Woods et al. (1986), for ex-
ample, use statistically uncorrelated variables for lan-
guage test scores. A group of subjects is scored on a
battery of language tests, where the subtests measure
different abilities such as vocabulary, grammar or read-
ing comprehension. Horvath (1985) analyzes speech
samples of Sydney speakers to determine the relative
occurrence of five different variants of each of five
vowels sounds. Using this data, the speakers cluster
according to such factors as gender, age, ethnicity and
socio-economic class.

A similar approach has been discussed in Peng et al.
(2010). FDA is a class of methods used in machine
learning to find the linear combination of features that
best separate two classes of events. FDA is closely
related to principal component analysis (PCA), where
a linear combination of features that best explains the
data. Discriminant analysis explicitly exploits class in-
formation in the data, while PCA does not.

Idiom classification based on discriminant analysis
has several advantages. First, as has been mentioned,
it does not make any assumption regarding data distri-
butions. Many statistical detection methods assume a
Gaussian distribution of normal data, which is far from
reality. Second, by using a few discriminants to de-
scribe data, discriminant analysis provides a compact
representation of the data, resulting in increased com-
putational efficiency and real time performance.

In FDA, within-class, between-class, and mixture
scatter matrices are used to formulate the criteria of
class separability. Consider a J class problem, where

my is the mean vector of all data, and m; is the mean
vector of jth class data. A within-class scatter ma-
trix characterizes the scatter of samples around their
respective class mean vector, and it is expressed by

J lj
Sw=> 9y Y (@l —my)(@] —my)’, (D)
j=1 i=1

where [; is the size of the data in the jth class, p;
oo ;pj = 1) represents the proportion of the jth class
contribution, and ¢ denotes the transpose operator. A
between-class scatter matrix characterizes the scatter of
the class means around the mixture mean myg. It is ex-
pressed by

J
Sb = ij(mj — mo)(m]- — mo)t. (2)
j=1

The mixture scatter matrix is the covariance matrix of
all samples, regardless of their class assignment, and it
is given by

l
Sm = Z(.’EZ — mo)(l'l — mo)t = Sw + Sb. (3)
i=1
The Fisher criterion is used to find a projection matrix
W € R9*4 that maximizes

WS
WS, W’

In order to determine the matrix W that maximizes
J(W), one can solve the generalized eigenvalue prob-
lem: Spw; = \;S,,w;. The eigenvectors corresponding
to the largest eigenvalues form the columns of W. For a
two class problem, it can be written in a simpler form:
Su,W = m = mi — meo, where m; and mo are the
means of the two classes.

J(W) “

4 Data preprocessing

4.1 Verb-noun constructions

For our experiments we use the British National Cor-
pus (BNC, Burnard (2000)) and a list of verb-noun con-
structions (VNCs) extracted from BNC by Fazly et al.
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(2009); Cook et al. (2008) and labeled as L (Literal),
I (Idioms), or Q (Unknown). The list contains only
those VNCs whose frequency was greater than 20 and
that occurred at least in one of two idiom dictionaries
(Cowie et al., 1983; Seaton and Macaulay, 2002). The
dataset consists of 2,984 VNC tokens. For our experi-
ments we only use VNCs that are annotated as I or L.

4.2 Lemmatization

Instead of dealing with various forms of the same root,
we use lemmas provided by the BNC XML annotation,
so our corpus is lemmatized. We also apply the (modi-
fied) Google stop list before extracting the topics. The
reason we modified the stop list is that some function
words can potentially be idiom components (e.g., cer-
tain prepositions).

4.3 Paragraphs

We use the original SGML annotation to extract para-
graghs from BNC. We only kept the paragraphs that
contained VNCs for our experiments. We experi-
mented with texts of one paragraph length (single para-
graph contexts) and of three-paragraph length (multi-
paragraph contexts). An example of multi-paragraph
contexts is shown below:

So, reluctantly, I joined Jack Hobbs in not rocking
the boat, reporting the play and the general uproar with
perhaps too much impartiality. My reports went to all
British newspapers, with special direct services by me
to India, South Africa and West Indies; even to King
George Vin Buckingham Palace, who loved his cricket.
In other words, I was to some extent leading the British
public astray.

I regret I can shed little new light on the mystery of
who blew the whistle on the celebrated dressing-room
scene after Woodfull was hit. while he was lying on the
massage table after his innings waiting for a doctor,
Warner and Palairet called to express sympathy.

Most versions of Woodfull’s reply seem to agree that
he said. There are two teams out there on the oval.
One is playing cricket, the other is not. This game is
too good to be spoilt. It is time some people got out of
it. Warner and Palairet were too taken aback to reply.
They left the room in embarrassment.

Single paragraph contexts simply consist of the mid-
dle paragraph.

S Experiments

5.1 Methods

We have carried out an empirical study evaluating the
performance of the proposed algorithm. For compar-
ison, the following methods are evaluated. (1) The
proposed algorithm TopSpace (1), where the data are
represented in topic space. (2) TexSpace algorithm,
where the data are represented in original text space.
For each representation, two classification schemes are

applied: a) FDA (Eq. 4), followed by the nearest neigh-
bor rule. b) SVMs with Gaussian kernels (Cristianini
and Shawe-Taylor (2000)). For the nearest neighbor
rule, the number of nearest neighbors is set to [n/5],
where n denotes the number of training examples. For
SVMs, kernel width and soft margin parameters are set
to default values.

5.2 Data Sets

The following data sets are used to evaluate the perfor-
mance of the proposed technique. These data sets have
enough examples from both idioms and literals to make
our results meaningful. On average, the training data is
6K word tokens. Our test data is of a similar size.

BlowWhistle: This data set has 78 examples, 27 of
which are idioms and the remaining 51 are literals. The
training data for BlowWhistle consist of 40 randomly
chosen examples (20 paragraphs containing idioms and
20 paragraphs containing literals). The remaining 38
examples (7 idiomatic and 31 literals) are used as test
data.

MakeScene: This data set has 50 examples, 30 of
which are paragraphs containing idioms and the re-
maining 20 are paragraphs containing literals. The
training data for MakeScene consist of 30 randomly
chosen examples, 15 of which are paragraphs contain-
ing make scene as an idiom and the rest 15 are para-
graphs containing make scene as a literal. The remain-
ing 20 examples (15 idiomatic paragraphs and 5 liter-
als) are used as test data.

LoseHead: This data set has 40 examples, 21 of
which are idioms and the remaining 19 are literals.
The training data for LoseHead consist of 30 randomly
chosen examples (15 idiomatic and 15 literal). The
remaining 10 examples (6 idiomatic and 4 literal) are
used as test data.

TakeHeart: This data set has 81 examples, 61 of
which are idioms and the remaining 20 are literals. The
training data for TakeHeart consist of 30 randomly
chosen examples (15 idiomatic and 15 literals). The
remaining 51 examples (46 idiomatic and 5 literals) are
used as test data.

5.3 Adding affect

Nunberg et al. (1994) notice that “idioms are typically
used to imply a certain evaluation or affective stance
toward the things they denote”. Language users usu-
ally choose an idiom in non-neutral contexts. The situ-
ations that idioms describe can be positive or negative;
however, the polarity of the context is not as impor-
tant as the strength of the emotion expressed. So, we
decided to incorporate the knowledge about the emo-
tion strength into our algorithm. We use a database of
word norms collected by Warriner et al. (2013). This
database contains almost 14,000 English lemmas an-
notated with three components of emotions: valence
(the pleasantness of a stimulus), arousal (the intensity
of emotion provoked by a stimulus), and dominance
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Table 1: Average accuracy of competing methods on four datasets in single paragraph contexts: A = Arousal

Model BlowWhistle LoseHead MakeScene TakeHeart
Prec Recall Acc |Prec Recall Acc |Prec Recall Acc |Prec Recall Acc
FDA-Topics 044 040 0.79/0.70 090 0.70|0.82 097 081|091 097 0.89
FDA-Topics+A |0.51 0.51 0.75[/0.78 0.68 0.66|0.80 0.99 0.80|0.93 0.84 0.80
FDA-Text 0.37 0.81 0.63|/0.60 0.88 0.58/0.82 089 0.77(0.36 0.38 041
FDA-Text+A 042 049 0.76|0.64 092 0.63/0.83 095 0.82]/0.75 0.53 0.53
SVMs-Topics 0.08 0.39 059028 0.25 045|059 074 0.61](091 1.00 091
SVMs-Topics+A | 0.06 021 0.69]0.38 0.18 044|053 040 044|091 1.00 091
SVMs-Text 0.08 0.39 059|036 0.60 0.52|023 030 040(042 0.16 0.22
SVMs-Text+A |0.15 051 0.60[0.31 038 048[0.37 040 045|095 048 0.50

(the degree of control exerted by a stimulus). These
components were elicited from human subjects via an
Amazon Mechanical Turk crowdsourced experiment.
We only used the arousal feature in our experiments
because we were interested in the intensity of the emo-
tion rather than its valence.

For a document d = {wy,--- ,wy}, we calculate
the corresponding arousal value a; for each w;, ob-
taining d4 = {a1, -+ ,an}!. Let ma be the aver-

age arousal value calculated over the entire training
data. The centered arousal value for a training docu-
ment is obtained by subtracting m 4 fromd 4,i.e.,ds4 =

da—ma ={a1—ma, - ,any —ma}t. Similarly, the
centered arousal value for a query is computed accord-
ingto ga = qa —ma = {q —ma, - ,qv —ma}".

That is, the training arousal mean is used to center both
training and query arousal values. The corresponding
arousal matrices for D, D, and Q are Ap, Ap, Ag, re-
spectively. To incorporate the arousal feature, we sim-
ply compute

Op =Mp+ Ap, (5)

and

The arousal feature can be similarly incoporated into
query O = Mg + Ag.

6 Results

Table 1 shows the average precision, recall, and ac-
curacy of the competing methods on the four data
sets over 10 runs in simple paragraph contexts. Table
2 shows the results for the multi-paragraph contexts.
Note that for single paragraph contexts, we chose two
topics, each having 10 terms. For multi-paragrah con-
texts, we had four topics, with 10 terms per topic. No
optimization was made for selecting the number of top-
ics as well as the number of terms per topic. In the
tables, the best performance in terms of the sum of pre-
cision, recall and accuracy is given in boldface.

The results show that the topic representation
achieved the best performance in 6 out of 8 cases. Fig-
ure 2 plots the overall aggregated performance in terms
of topic vs text representations across the entire data
sets, regardless of the classifiers used. Everything else

being equal, this clearly shows the advantage of topics
over simple text representation.

:
I Topics
r| I Text

Precision

Recall Accuracy

Figure 2: Aggregated performance: Topic vs text rep-
resentations.

The arousal feature (Eqs 5 and 6) also improved the
overall performance, particularly in text representation
(Eq. 5). This can be seen in the top panel in Figure 3.
In fact, in 2/8 cases, text representation coupled with
the arousal feature achieved the best performance. One
possible explanation is that the LDA model already per-
formed “feature” selection (choosing topic terms), to
the extent possible. Thus, any additional information
such as arousal only provides marginal improvement
at the best (bottom panel in Figure 3). On the other
hand, original text represents “raw” features, whereby
arousal information helps provide better contexts, thus
improving overall performance.

Figure 4 shows a case in point: the average (sorted)
arousal values of idioms and literals of the target phrase
“lose head.” The upper panel plots arousal values in
the text space, while lower panel plots arousal values
in the topic space. The plot supports the results shown
in Tables 1 and 2, where the arousal feature generally
improves text representation.

7 Comparisons with other approaches

Even though we used Fazly et al. (2009)’s dataset for
these experiments, the direct comparison with their
method is impossible here because our task is formu-
lated differently and we do not use the full dataset for
the experiments. Fazly et al. (2009)’s unsupervised
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Table 2: Average accuracy of competing methods on four datasets in multiple paragraph contexts: A = Arousal

Model BlowWhistle LoseHead MakeScene TakeHeart
Prec Recall Acc |Prec Recall Acc |Prec Recall Acc |Prec Recall Acc
FDA-Topics 0.62 0.60 0.83/0.76 097 0.78/0.79 095 0.77(093 0.99 0.92
FDA-Topics+A |0.47 0.44 0.79(0.74 093 0.74|0.82 0.69 0.65/0.92 098 091
FDA-Text 0.65 043 084|072 0.73 0.65/0.79 095 0.77/046 040 042
FDA-Text+A 045 049 0.78|0.67 0.88 0.65/0.80 099 0.80][047 029 033
SVMs-Topics 0.07 040 056|0.60 0.83 0.61/046 057 0.55(090 1.00 0.90
SVMs-Topics+A | 0.21  0.54 0.55]0.66 0.77 0.64|042 029 041091 1.00 091
SVMs-Text 0.17 090 025|030 0.50 0.50|0.10 0.01 0.26|065 021 0.26
SVMs-Text+A 024 087 041]0.66 0.85 0.61[0.07 0.01 026|074 0.13 0.20
0.7 o 0.2
I Texi:A ol

Precision

Recall Accuracy

T
I Topics
r | I Topics+A

Recall

Precision

Accuracy

Figure 3: Aggregated performance: Text
VS. text+Arousal representations (top) and Top-
ics vs. Topics+Arousal representations (bottom).

model that relies on the so-called canonical forms gives
72.4% (macro-)accuracy on the extraction of idiomatic
tokens when evaluated on their test data.

We cannot compare our method directly with the
other methods discussed in section 2 either because
each uses a different dataset or formulates the task
differently (detection vs. recognition vs. identifica-
tion). However, we can compare the method presented
here with Feldman and Peng (2013) who also experi-
ment with LDA, use similar data, and frame the prob-
lem as classification. Their goal, however, is to clas-
sify sentences as either idiomatic or literal. To obtain
a discriminant subspace, they train their model on a
small number of randomly selected idiomatic and non-
idiomatic sentences. They then project both the train-
ing and the test data on the chosen subspace and use
the three nearest neighbor (3NN) classifier to obtain
accuracy. The average accuracy they report is 80%.

Idioms
Literals | |

Arousal Values
1
o
o

o 5 10 15
Text Terms

Topic Representation

Idioms
Literals

Arousal Values

o 5 10 15
Topic Terms

Figure 4: Average arousal values—Upper panel: Text
space. Lower panel: Topic space.

Our method clearly outperforms the Feldman and Peng
(2013) approach (at least on the dataset we use).

8 Discussion and Conclusion

We have described an algorithm for automatic classi-
fication of idiomatic and literal expressions. We have
investigated the bag of words topic representation for
target documents (segments of one or three paragraphs
that contains a target phrase). The approach definitely
outperforms the baseline model that is based on the
simple bag of words representation, but it also outper-
forms approaches previously discussed in the literature.
Our model captures the local semantics and thus is ca-
pable to identify semantic outliers (=idioms).

While we realize that the data set we use is small, the
results are encouraging. We notice that using 3 para-
graphs for local contexts improves the performance of
the classifiers. The reason is that some paragraphs are
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relatively short. A larger context provides more related
terms, which gives LDA more opportunities to sample
these terms.

Idioms are also relatively non-compositional. While
we do not measure their non-compositionality in this
approach, we indirectly touch upon this property by hy-
pothesizing that non-compositional idiomatic expres-
sions are likely to be far from the local topics.

We feel that incorporating the intensity of emotion
expressed by the context into our model improves per-
formance, in particular, in text representation. When
we performed a qualitative analysis of the results try-
ing to determine the causes of false positives and neg-
atives, we noticed that there were quite a number of
cases that improved after incorporating the arousal fea-
ture into the model. For example, the FDA:topic classi-
fier labels "blow the whistle” as literal in the following
context, but FDA:topics+A marks this expression as id-
iomatic (italicized words indicate words with relatively
high arousal values):

Peter thought it all out very carefully. He decided the wis-
est course was to pool all he had made over the last two years,
enabling Julian to purchase the lease of a high street property.
This would enable them to set up a business on a more set-
tled and permanent trading basis. Before long they opened a
grocery-cum-delicatessen in a good position as far as passing
trade was concerned. Peter’s investment was not misplaced.
The business did very well with the two lads greatly appreci-
ated locally for their hard work and quality of service. The
range of goods they were able to carry was welcomed in the
area, as well as lunchtime sandwich facilities which had pre-
viously been missing in the neighbourhood.

Success was the fruit of some three years’ strenuous work.
But it was more than a shock when Julian admitted to Pe-
ter that he had been running up huge debts with their bank.
Peter knew that Julian gambled, but he hadn’t expected him
to gamble to that level, and certainly not to use the shop as
security. With continual borrowing over two years, the bank
had blown the whistle. Everything was gone. Julian was
bankrupt. Even if they’d had a formal partnership, which
they didn’t, it would have made no difference. Peter lost all
he’d made, and with it his chance to help his parents and his
younger brother and sister, Toby and Laura.

Peter was heartbroken. His father had said all along: nei-
ther a lender nor a borrower. Peter had found out the hard
way. But as his mother observed, he was the same Peter, he’d
pick himself up somehow. Once again, Peter was resolute. He
made up his mind he’d never make the same mistake twice. It
wasn’t just the money or the hard work, though the waste of
that was difficult enough to accept. Peter had been working
a debt of love. He’d done all this for his parents, particularly
for his father, whose dedication to his children had always
impressed Peter and moved him deeply. And now it had all
come to nothing.

Therefore, we think that idioms have the tendency to
appear in more affective contexts; and we think that in-
corporating more sophisticated sentiment analysis into

our model will improve the results.
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