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Abstract
We show that semantic relationships can
be used to improve word alignment, in ad-
dition to the lexical and syntactic features
that are typically used. In this paper, we
present a method based on a neural net-
work to automatically derive word simi-
larity from monolingual data. We present
an extension to word alignment models
that exploits word similarity. Our exper-
iments, in both large-scale and resource-
limited settings, show improvements in
word alignment tasks as well as translation
tasks.

1 Introduction

Word alignment is an essential step for learn-
ing translation rules in statistical machine trans-
lation. The task is to find word-level transla-
tion correspondences in parallel text. Formally,
given a source sentence e consisting of words
e1, e2, . . . , el and a target sentence f consisting
of words f1, f2, . . . , fm, we want to infer an
alignment a, a sequence of indices a1, a2, . . . , am

which indicates, for each target word fi, the corre-
sponding source word eai or a null word. Machine
translation systems, including state-of-the-art sys-
tems, then use the word-aligned corpus to extract
translation rules.

The most widely used methods, the IBM mod-
els (Brown et al., 1993) and HMM (Vogel et al.,
1996), define a probability distribution p(f ,a | e)
that models how each target word fi is gener-
ated from a source word eai with respect to an
alignment a. The models, however, tend to mis-
align low-frequency words as they have insuffi-
cient training samples. The problem can get worse
in low-resource languages. Two branches of re-
search have tried to alleviate the problem. The

†Most of the work reported here was performed while the
second author was at the University of Southern California.

first branch relies solely on the parallel data; how-
ever, additional assumptions about the data are re-
quired. This includes, but is not limited to, ap-
plying prior distributions (Mermer and Saraçlar,
2011; Vaswani et al., 2012) or smoothing tech-
niques (Zhang and Chiang, 2014). The other
branch uses information learned from monolin-
gual data, which is generally easier to acquire than
parallel data. Previous work in this branch mostly
involves applying syntactic constraints (Yamada
and Knight, 2001; Cherry and Lin, 2006; Wang
and Zong, 2013) and syntactic features (Toutanova
et al., 2002) into the models. The use of syntac-
tic relationships can, however, be limited between
historically unrelated language pairs.

Our motivation lies in the fact that a meaningful
sentence is not merely a grammatically structured
sentence; its semantics can provide insightful in-
formation for the task. For example, suppose that
the models are uncertain about aligning e to f . If
the models are informed that e is semantically re-
lated to e′, f is semantically related to f ′, and f ′ is
a translation of e′, it should intuitively increase the
probability that f is a translation of e. Our work
focuses on using such a semantic relationship, in
particular, word similarity, to improve word align-
ments.

In this paper, we propose a method to learn sim-
ilar words from monolingual data (Section 2) and
an extension to word alignment models in which
word similarity can be incorporated (Section 3).
We demonstrate its application in word alignment
and translation (Section 4) and then briefly discuss
the novelty of our work in comparison to other
methods (Section 5).

2 Learning word similarity

Given a word w, we want to learn a word simi-
larity model p(w′ | w) of what words w′ might
be used in place of w. Word similarity can be
used to improve word alignment, as in this pa-
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per, but can potentially be useful for other nat-
ural language processing tasks as well. Such a
model might be obtained from a monolingual the-
saurus, in which humans manually provide sub-
jective evaluation for word similarity probabilities,
but an automatic method would be preferable. In
this section, we present a direct formulation of the
word similarity model, which can automatically be
trained from monolingual data, and then consider
a more practical variant, which we adopt in our
experiments.

2.1 Model
Given an arbitrary word type w, we define a word
similarity model p(w′ | w) for all word types w′

in the vocabulary V as

p(w′ | w) =
∑

c

p(c | w) p(w′ | c)

where c is a word context represented by a se-
quence w1, w2, . . . , w2n consisting of n word to-
kens on the left and n word tokens on the right
of w, excluding w. The submodel p(c | w) can
be a categorical distribution. However, modeling
the word context model, p(w′ | c), as a categori-
cal distribution would cause severe overfitting, be-
cause the number of all possible contexts is |V |2n,
which is exponential in the length of the context.
We therefore parameterize it using a feedforward
neural network as shown in Figure 1, since the
structure has been shown to be effective for lan-
guage modeling (Bengio et al., 2006; Vaswani et
al., 2013). The input to the network is a one-hot
representation of each word in c, where the spe-
cial symbols <s>, </s>, <unk> are reserved for
sentence beginning, sentence ending, and words
not in the vocabulary. There is an output node
for each w′ ∈ V , whose activation is p(w′ | c).
Following Bengio et al. (2006), the network uses
a shared linear projection matrix to the input em-
bedding layer, which allows information sharing
among the context words and also substantially
reduces the number of parameters. The input em-
bedding layer has a dimensionality of 150 for each
input word. The network uses two hidden layers
with 1,000 and 150 rectified linear units, respec-
tively, and a softmax output layer. We arbitrarily
use n = 5 throughout this paper.

2.2 Training
We extract training data by either collecting or
sampling the target words w ∈ V and their word

input
word

. . . . . .

w1 w2n

. . .
input

embeddings
. . . . . .

hidden layer 1 . . .

hidden layer 2 . . .

output
layer

. . .

Figure 1: The structure of the word context model

contexts from monolingual data. The submodel
p(c | w) can be independently trained easily by
maximum likelihood estimation, while the word
context model p(w′ | c) may be difficult to train at
scale. We follow previous work (Mnih and Teh,
2012; Vaswani et al., 2013) in adopting noise-
contrastive estimation (Gutmann and Hyvärinen,
2010), a fast and simple training algorithm that
scales independently of the vocabulary size.

2.3 Model variants
The above formulation of the word similarity
model can be interpreted as a mixture model in
which w′ is similar to w if any of the context prob-
abilities agrees. However, to guard against false
positives, we can alternatively reformulate it as a
product of experts (Hinton, 1999),

p(w′ | w) =
1

Z(w)
exp

∑
c

p(c | w) log p(w′ | c)

where Z(w) is a normalization constant. Under
this model, w′ is similar to w if all of the context
probabilities agree. Both methods produce reason-
ably good word similarity; however, in practice,
the latter performs better.

Since most of the p(w′ | w) will be close
to zero, for computational efficiency, we can se-
lect the k most similar words and renormalize
the probabilities. Table 1 shows some examples
learned from the 402M-word Xinhua portion of
the English Gigaword corpus (LDC2007T07), us-
ing a vocabulary V of the 30,000 most frequent
words. We set k = 5 for illustration purposes.

3 Word alignment model

In this section, we present our word alignment
models by extending the standard IBM models.
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p(w′ | country) p(w′ | region) p(w′ | area)
country 0.8363 region 0.8338 area 0.8551
region 0.0558 area 0.0760 region 0.0524
nation 0.0522 country 0.0524 zone 0.0338
world 0.0282 province 0.0195 city 0.0326
city 0.0273 city 0.0181 areas 0.0258

Table 1: Examples of word similarity

The method can easily be applied to other related
models, for example, the log-linear reparameteri-
zation of Model 2 by Dyer et al. (2013). Basically,
all the IBM models involve modeling lexical trans-
lation probabilities p(f | e) which are parameter-
ized as categorical distributions. IBM Model 1, for
instance, is defined as

p(f ,a | e) ∝
m∏

i=1

p(fi | eai) =
m∏

i=1

t(fi | eai)

where each t(f | e) denotes the model parameters
directly corresponding to p(f | e). Models 2–5
and the HMM-based model introduce additional
components in order to capture word ordering and
word fertility. However, they have p(f | e) in
common.

3.1 Model
To incorporate word similarity in word alignment
models, we redefine the lexical translation proba-
bilities as

p(f | e) =
∑
e′,f ′

p(e′ | e) t(f ′ | e′) p(f | f ′)

for all f, e, including words not in the vocabulary.
While the factor p(e′ | e) can be directly computed
by the word similarity model, the factor p(f | f ′)
can be problematic because it vanishes for f out
of vocabulary. One possible solution would be to
use Bayes’ rule

p(f | f ′) =
p(f ′ | f) p(f)

p(f ′)

where p(f ′ | f) is computed by the word similar-
ity model. However, we find that this is prone to
numerical instability and other complications. In
our experiments, we tried the simpler assumption
that p(f | f ′) ≈ p(f ′ | f), with the rationale that
both probabilities are measures of word similarity,
which is intuitively a symmetric relation. We also
compared the performance of both methods. Ta-
ble 2 shows that this simple solution works as well
as the more exact method of using Bayes’ rule. We
describe the experiment details in Section 4.

Model F1
BLEU

Test 1 Test 2

Chinese-English
Bayes’ rule 75.7 30.0 27.0
Symmetry assumption 75.3 29.9 27.0

Arabic-English
Bayes’ rule 70.4 37.9 36.7
Symmetry assumption 69.5 38.2 36.8

Table 2: Assuming that word similarity is sym-
metric, i.e. p(f | f ′) ≈ p(f ′ | f), works as well
as computing p(f | f ′) using Bayes’ rule.

3.2 Re-estimating word similarity
Depending on the quality of word similarity and
the distribution of words in the parallel data, ap-
plying word similarity directly to the model could
lead to an undesirable effect where similar but not
interchangeable words rank in the top of the trans-
lation probabilities. On the other hand, if we set

p(e′ | e) = 1[e′ = e]
p(f ′ | f) = 1[f ′ = f ]

where 1 denotes the indicator function, the model
reduces to the standard IBM models. To get the
best of both worlds, we smooth the two models
together so that we rely more on word similarity
for rare words and less for frequent words

p̃(w′ | w) =
count(w)1[w′ = w] + αp(w′ | w)

count(w) + α

This can be thought of as similar to Witten-Bell
smoothing, or adding α pseudocounts distributed
according to our p(w′ | w). The hyperparame-
ter α controls how much influence our word sim-
ilarity model has. We investigated the effect of α
by varying this hyperparameter in our word align-
ment experiments whose details are described in
Section 4. Figure 2 shows that performance of the
model, as measured by F1 score, is rather insensi-
tive to the choice of α. We used a value of 40 in
our experiments.

3.3 Training
Our word alignment models can be trained in the
same way as the IBM models using the Expec-
tation Maximization (EM) algorithm to maximize
the likelihood of the parallel data. Our extension
only introduces an additional time complexity on
the order of O(k2) on top of the base models,
where k is the number of word types used to es-
timate the full-vocabulary word similarity models.
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Figure 2: Alignment F1 is fairly insensitive to α
over a large range of values

The larger the value of k is, the closer to the full-
vocabulary models our estimations are. In prac-
tice, a small value of k seems to be effective since
p(w′ | w) is negligibly small for most w′.

4 Experiments

4.1 Alignment experiments

We conducted word alignment experiments
on 2 language pairs: Chinese-English and
Arabic-English. For Chinese-English, we used
9.5M+12.3M words of parallel text from the
NIST 2009 constrained task1 and evaluated
on 39.6k+50.9k words of hand-aligned data
(LDC2010E63, LDC2010E37). For Arabic-
English, we used 4.2M+5.4M words of parallel
text from the NIST 2009 constrained task2

and evaluated on 10.7k+15.1k words of hand-
aligned data (LDC2006E86). To demonstrate
performance under resource-limited settings,
we additionally experimented on only the first
eighth of the full data, specifically, 1.2M+1.6M
words for Chinese-English and 1.0M+1.4M
words for Arabic-English. We trained word
similarity models on the Xinhua portions of
English Gigaword (LDC2007T07), Chinese
Gigaword (LDC2007T38), and Arabic Gigaword
(LDC2011T1), which are 402M, 323M, and
125M words, respectively. The vocabulary V was
the 30,000 most frequent words from each corpus

1Catalog numbers: LDC2003E07, LDC2003E14,
LDC2005E83, LDC2005T06, LDC2006E24, LDC2006E34,
LDC2006E85, LDC2006E86, LDC2006E92, and
LDC2006E93.

2Excluding: United Nations proceedings (LDC2004E13),
ISI Automatically Extracted Parallel Text (LDC2007E08),
and Ummah newswire text (LDC2004T18)
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Figure 3: F1 scores for words binned by fre-
quency. Our model gives the largest improvements
for the lowest-frequency words.

and the k = 10 most similar words were used.
We modified GIZA++ (Och and Ney, 2003) to

incorporate word similarity. For all experiments,
we used the default configuration of GIZA++: 5
iterations each of IBM Model 1, 2, HMM, 3 and
4. We aligned the parallel texts in both forward
and backward directions and symmetrized them
using grow-diag-final-and (Koehn et al., 2005).
We evaluated alignment quality using precision,
recall, and F1.

The results in Table 3 suggest that our modeling
approach produces better word alignments. We
found that our models not only learned smoother
translation models for low frequency words but
also ranked the conditional probabilities more ac-
curately with respect to the correct translations.
To illustrate this, we categorized the alignment
links from the Chinese-English low-resource ex-
periment into bins with respect to the English
source word frequency and individually evaluated
them. As shown in Figure 3, the gain for low fre-
quency words is particularly large.

4.2 Translation experiments

We also ran end-to-end translation experiments.
For both languages, we used subsets of the NIST
2004 and 2006 test sets as development data. We
used two different data sets as test data: different
subsets of the NIST 2004 and 2006 test sets (called
Test 1) and the NIST 2008 test sets (called Test 2).
We trained a 5-gram language model on the Xin-
hua portion of English Gigaword (LDC2007T07).
We used the Moses toolkit (Koehn et al., 2007) to
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Model Precision Recall F1
BLEU METEOR

Test 1 Test 2 Test 1 Test 2

Chinese-English
Baseline 65.2 76.9 70.6 29.4 26.7 29.7 28.5
Our model 71.4 79.7 75.3 29.9 27.0 30.0 28.8

Baseline (resource-limited) 56.1 68.1 61.5 23.6 20.3 26.0 24.4
Our model (resource-limited) 66.5 74.4 70.2 24.7 21.6 26.8 25.6

Arabic-English
Baseline 56.1 79.0 65.6 37.7 36.2 31.1 30.9
Our model 60.0 82.4 69.5 38.2 36.8 31.6 31.4

Baseline (resource-limited) 56.7 76.1 65.0 34.1 33.0 27.9 27.7
Our model (resource-limited) 59.4 80.7 68.4 35.0 33.8 28.7 28.6

Table 3: Experimental results. Our model improves alignments and translations on both language pairs.

build a hierarchical phrase-based translation sys-
tem (Chiang, 2007) trained using MIRA (Chiang,
2012). Then, we evaluated the translation qual-
ity using BLEU (Papineni et al., 2002) and ME-
TEOR (Denkowski and Lavie, 2014), and per-
formed significance testing using bootstrap resam-
pling (Koehn, 2004) with 1,000 samples.

Under the resource-limited settings, our meth-
ods consistently show 1.1–1.3 BLEU (0.8–1.2
METEOR) improvements on Chinese-English and
0.8–0.9 BLEU (0.8–0.9 METEOR) improvements
on Arabic-English, as shown in Table 3. These im-
provements are statistically significant (p < 0.01).
On the full data, our method improves Chinese-
English translation by 0.3–0.5 BLEU (0.3 ME-
TEOR), which is unfortunately not statistically
significant, and Arabic-English translation by 0.5–
0.6 BLEU (0.5 METEOR), which is statistically
significant (p < 0.01).

5 Related work

Most previous work on word alignment problems
uses morphosyntactic-semantic features, for ex-
ample, word stems, content words, orthography
(De Gispert et al., 2006; Hermjakob, 2009). A
variety of log-linear models have been proposed to
incorporate these features (Dyer et al., 2011; Berg-
Kirkpatrick et al., 2010). These approaches usu-
ally require numerical optimization for discrimi-
native training as well as language-specific engi-
neering and may limit their applications to mor-
phologically rich languages.

A more semantic approach resorts to training
word alignments on semantic word classes (Ma
et al., 2011). However, the resulting alignments
are only used to supplement the word alignments
learned on lexical words. To our knowledge, our

work, which directly incorporates semantic rela-
tionships in word alignment models, is novel.

6 Conclusion

We have presented methods to extract word simi-
larity from monolingual data and apply it to word
alignment models. Our method can learn simi-
lar words and word similarity probabilities, which
can be used inside any probability model and in
many natural language processing tasks. We have
demonstrated its effectiveness in statistical ma-
chine translation. The enhanced models can sig-
nificantly improve alignment quality as well as
translation quality.
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Senécal, Fréderic Morin, and Jean-Luc Gauvain.
2006. Neural probabilistic language models. In
Innovations in Machine Learning, pages 137–186.
Springer.

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté,
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