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Abstract

Multi-label text categorization (MTC) is
supervised learning, where a documen-
t may be assigned with multiple categories
(labels) simultaneously. The labels in the
MTC are correlated and the correlation re-
sults in some hidden components, which
represent the ”share” variance of correlat-
ed labels. In this paper, we propose a
method with hidden components for MTC.
The proposed method employs PCA to
capture the hidden components, and incor-
porates them into a joint learning frame-
work to improve the performance. Experi-
ments with real-world data sets and evalu-
ation metrics validate the effectiveness of
the proposed method.

1 Introduction

Many real-world text categorization applications
are multi-label text categorization (Srivastava and
Zane-Ulman, 2005; Katakis et al., 2008; Rubin
et al., 2012; Nam et al., 2013), where a docu-
ments is usually assigned with multiple labels si-
multaneously. For example, as figure 1 shows,
a newspaper article concerning global warming
can be classified into two categories, Environmen-
t, and Science simultaneously. Let X = Rd

be the documents corpus, and Y = {0, 1}m be
the label space with m labels. We denote by
{(x1x1x1, y1y1y1), (x2x2x2, y2y2y2), ..., (xnxnxn, ynynyn)} the training set of
n documents. Each document is denoted by a vec-
tor xxxi = [xi,1, xi,2, ..., xi,d] of d dimensions. The
labeling of the i-th document is denoted by vector
yyyi = [yi,1, yi,2, ..., yi,m], where yil is 1 when the
i-th document has the l-th label and 0 otherwise.
The goal is to learn a function fff : X → Y . Gener-
ally, we can assume fff consists of m functions, one
for a label.

fff = [f1, f2, ..., fm]

Figure 1: A newspaper article concerning global
warming can be classified into two categories, En-
vironment, and Science.

The labels in the MLC are correlated. For ex-
ample, a ”politics” document is likely to be an ”e-
conomic” document simultaneously, but likely not
to be a ”literature” document. According to the
latent variable model (Tabachnick et al., 2001),
the labels with correlation result in some hidden
components, which represent the ”share” variance
of correlated labels. Intuitively, if we can capture
and utilize these hidden components in MTC, the
performance will be improved. To implement this
idea, we propose a multi- label text categorization
method with hidden components, which employ
PCA to capture the hidden components, and then
incorporates these hidden components into a joint
learning framework. Experiments with various da-
ta sets and evaluation metrics validate the values
of our method. The research close to our work is
ML-LOC (Multi-Label learning using LOcal Cor-
relation) in (Huang and Zhou, 2012). The differ-
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ences between ours and ML-LOC is that ML-LOC
employs the cluster method to gain the local cor-
relation, but we employ the PCA to obtain the hid-
den code. Meanwhile, ML-LOC uses the linear
programming in learning the local code, but we
employ the gradient descent method since we add
non-linear function to the hidden code.

The rest of this paper is organized as follows.
Section 2 presents the proposed method. We con-
duct experiments to demonstrate the effectiveness
of the proposed method in section 3. Section 4
concludes this paper.

2 Methodology

2.1 Capturing Hidden Component via
Principle Component Analysis

The first step of the proposed method is to capture
hidden components of training instances. Here we
employ Principal component analysis (PCA). This
is because PCA is a well-known statistical tool that
converts a set of observations of possibly correlat-
ed variables into a set of values of linearly uncorre-
lated variables called principle components. These
principle components represent the inner structure
of the correlated variables.

In this paper, we directly employ PCA to con-
vert labels of training instances into their principle
components, and take these principle components
as hidden components of training instances. We
denote by hhhi the hidden components of the i-th in-
stance captured by PCA.

2.2 Joint Learning Framework
We expand the original feature representation of
the instance xxxi by its hidden component code vec-
tor ccci. For simplicity, we use logistic regression as
the motivating example. Let wwwl denote weights in
the l-th function fl, consisting of two parts: 1)wwwx

l

is the part involving the instance features. 2) wwwc
l

is the part involving the hidden component codes.
Hence fl is:

fl(xxx,ccc) =
1

1 + exp(−xxxTwwwx
l − cccTwwwc

l )
(1)

where CCC is the code vectors set of all training in-
stances.

The natural choice of the code vector ccc is hhh.
However, when testing an instance, the labeling is
unknown (exactly what we try to predict), conse-
quently we can not capture hhh with PCA to replace
the code vector ccc in the prediction function Eq.(1).

Therefore, we assume a linear transformation MMM
from the training instances to their independent
components, and use MMMxxx as the approximate in-
dependent component. For numerical stability, we
add a non-linear function (e.g., the tanh function)
toMMMxxx. This is formulated as follows.

ccc = tanh(MMMxxx) (2)

Aiming to the discrimination fitting and the in-
dependent components encoding, we optimize the
following optimization problem.

min
WWW,C

n∑
i=1

m∑
l=1

`(xxxi, ccci, yil, fl) + λ1Ω(fff)

+λ2Z(CCC) (3)

The first term of Eq.(3) is the loss function. `
is the loss function defined on the training data,
and WWW denotes all weights in the our model, i.e.,
www1, ...,wwwl, ...,wwwm. Since we utilize the logistic re-
gression in our model, the loss function is defined
as follows.

`(xxx,ccc, y, f)
= −ylnf(xxx,ccc)− (1− y)ln(1− f(xxx,ccc)) (4)

The second term of Eq.(3) Ω is to punish the
model complexity, which we use the `2 regular-
ization term.

Ω(fff) =
m∑

l=1

||wwwl||2. (5)

The third term of Eq.(3) Z is to enforce the code
vector close to the independent component vector.
To obtain the goal, we use the least square error
between the code vector and the independent com-
ponent vector as the third regularized term.

Z(C) =
n∑

i=1

||ccci − hhhi||2. (6)

By substituting the Eq.(5) and Eq.(6) into Eq.(3)
and changing ccc to tanh(MMMxxx) (Eq.(2)), we obtain
the following optimization problem.

min
WWW,MMM

n∑
i=1

m∑
l=1

`(xxxi, tanh(MMMxxxi), yil, fff)

+λ1

m∑
l=1

||wwwl||2 + λ2

n∑
i=1

||MMMxxxi − hihihi||2

(7)
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2.3 Alternative Optimization method

We solve the optimization problem in Eq.(7) by
the alternative optimization method, which opti-
mize one group of the two parameters with the
other fixed. When the MMM fixed, the third term of
Eq.(7) is a constant and thus can be ignored, then
Eq.(7) can be rewritten as follows.

min
WWW

n∑
i=1

m∑
l=1

`(xxxi, tanh(MMMxxxi), yil, fl)

+λ1

m∑
l=1

||wwwl||2 (8)

By decomposing Eq.(8) based on the label, the e-
quation Eq.(8) can be simplified to:

min
wwwl

n∑
i=1

`(xxxi, tanh(MMMxxxi), yil, fl) + λ1||wwwl||2 (9)

Eq.(9) is the standard logistic regression, which
has many efficient optimization algorithms.

When WWW fixed, the second term is constan-
t and can be omitted, then Ep.(7) can rewritten
to Eq.(10). We can apply the gradient descen-
t method to optimize this problem.

min
MMM

n∑
i=1

m∑
l=1

`(xxxi, tanh(MMMxxxi), yil, fl)

+λ2

n∑
i=1

||MMMxxxi − hihihi||2

(10)

3 Experiments

3.1 Evaluation Metrics

Compared with the single-label classification, the
multi-label setting introduces the additional de-
grees of freedom, so that various multi-label eval-
uation metrics are requisite. We use three differen-
t multi-label evaluation metrics, include the ham-
ming loss evaluation metric.

The hamming loss is defined as the percentage
of the wrong labels to the total number of labels.

Hammingloss =
1
m
|h(xxx)∆yyy| (11)

where ∆ denotes the symmetric difference of two
sets, equivalent to XOR operator in Boolean logic.
m denotes the label number.

The multi-label 0/1 loss, also known as subset
accuracy, is the exact match measure as it requires
any predicted set of labels h(xxx) to match the true
set of labels S exactly. The 0/1 loss is defined as
follows:

0/1loss = I(h(xxx) 6= yyy) (12)

Let aj and rj denote the precision and recall for
the j-th label. The macro-averaged F is a harmon-
ic mean between precision and recall, defined as
follows:

F =
1
m

m∑
i=j

2 ∗ aj ∗ rj
aj + rj

(13)

3.2 Datasets

We perform experiments on three MTC data sets:
1) the first data set is slashdot (Read et al., 2011).
The slashdot data set is concerned about science
and technology news categorization, which pre-
dicts multiply labels given article titles and partial
blurbs mined from Slashdot.org. 2) the second da-
ta set is medical (Pestian et al., 2007). This data set
involves the assignment of ICD-9-CM codes to ra-
diology reports. 3) the third data set is tmc2007 (S-
rivastava and Zane-Ulman, 2005). It is concerned
about safety report categorization, which is to la-
bel aviation safety reports with respect to what
types of problems they describe. The characteris-
tics of them are shown in Table 1, where n denotes
the size of the data set, d denotes the dimension of
the document instance, and m denotes the number
of labels.

dataset n d m Lcard
slashdot 3782 1079 22 1.18
medical 978 1449 45 1.245
tmc2007 28596 500 22 2.16

Table 1: Multi-label data sets and associated statis-
tics

The measure label cardinality Lcard, which
is one of the standard measures of ”multi-label-
ness”, defined as follows, introduced in (T-
soumakas and Katakis, 2007).

Lcard(D) =

∑n
i=1

∑m
j=1 y

i
j

n

where D denotes the data set, lij denotes the j-th
label of the i-th instance in the data set.
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3.3 Compared to Baselines
To examine the values of the joint learning frame-
work, we compare our method to two baselines.
The baseline 1 eliminates the PCA, which just
adds an extra set of non-linear features. To im-
plement this baseline, we only need to set λ2 = 0.
The baseline 2 eliminates the joint learning frame-
work. This baseline captures the hidden compo-
nent codes with PCA, trains a linear regression
model to fit the hidden component codes, and u-
tilizes the outputs of the linear regression model
as features.

For the proposed method, we set λ1 = 0.001
and λ2 = 0.1. For the baseline 2, we employ l-
ogistic regression with 0.001 `2 regularization as
the base classifier. Evaluations are done in ten-
fold cross validation. Note that all of them pro-
duce real-valued predictions. A threshold t needs
to be used to determine the final multi-label set yyy
such that lj ∈ yyy where pj ≥ t. We select threshold
t, which makes the Lcard measure of predictions
for the training set is closest to the Lcard mea-
sure of the training set (Read et al., 2011). The
threshold t is determined as follows, where Dt is
the training set and a multi-label model Ht pre-
dicts for the training set under threshold t.

t = argmin
t∈[0,1]

|Lcard(Dt)− Lcard(Ht(Dt))| (14)

Table 2 reports our method wins over the base-
lines in terms of different evaluation metrics,
which shows the values of PCA and our join-
t learning framework. The hidden component code
only fits the hidden component in the baseline
method. The hidden component code obtains bal-
ance of fitting hidden component and fitting the
training data in the joint learning framework.

3.4 Compared to Other Methods
We compare the proposed method to BR, C-
C (Read et al., 2011), RAKEL (Tsoumakas and
Vlahavas, 2007) and ML-KNN (Zhang and Zhou,
2007). entropy. ML-kNN is an adaption of kNN
algorithm for multilabel classification. methods.
Binary Revelance (BR) is a simple but effective
method that trains binary classifiers for each label
independently. BR has a low time complexity but
makes an arbitrary assumption that the labels are
independent from each other. CC organizes the
classifiers along a chain and take predictions pro-
duced by the former classifiers as features of the

latter classifiers. ML-kNN uses kNN algorithms
independently for each label with considering pri-
or probabilities. The Label Powerset (LP) method
models independencies among labels by treating
each label combination as a new class. LP con-
sumes too much time, since there are 2m label
combinations with m labels. RAndom K labEL
(RAKEL) is an ensemble method of LP. RAKEL
learns several LP models with random subsets of
size k from all labels, and then uses a vote process
to determine the final predictions.

For our proposed method, we employ the set-
up in subsection 3.3. We utilize logistic regression
with 0.001 `2 regularization as the base classifier
for BR, CC and RAKEL. For RAKEL, the num-
ber of ensemble is set to the number of label and
the size of the label subset is set to 3. For MLKN-
N, the number of neighbors used in the k-nearest
neighbor algorithm is set to 10 and the smooth pa-
rameter is set to 1. Evaluations are done in ten-
fold cross validation. We employ the threshold-
selection strategy introduced in subsection 3.3

Table 2 also reports the detailed results in terms
of different evaluation metrics. The mean metric
value and the standard deviation of each method
are listed for each data set. We see our proposed
method shows majorities of wining over the other
state-of-the-art methods nearly at all data sets un-
der hamming loss, 0/1 loss and macro f score. E-
specially, under the macro f score, the advantages
of our proposed method over the other methods are
very clear.

4 CONCLUSION

Many real-world text categorization applications
are multi-label text categorization (MTC), where a
documents is usually assigned with multiple labels
simultaneously. The key challenge of MTC is the
label correlations among labels. In this paper, we
propose a MTC method via hidden components
to capture the label correlations. The proposed
method obtains hidden components via PCA and
incorporates them into a joint learning framework.
Experiments with various data sets and evaluation
metrics validate the effectiveness of the proposed
method.
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hamming↓. Lower is better.
Dataset slashdot medical tmc2007

Proposed 0.044± 0.004 0.010± 0.002 0.056± 0.002
Baseline1 0.046± 0.003• 0.010± 0.002 0.056± 0.001
Baseline2 0.047± 0.003• 0.011± 0.001 0.059± 0.001•

BR 0.058± 0.003• 0.010± 0.001 0.060± 0.001•
CC 0.049± 0.003• 0.010± 0.001 0.058± 0.001•

RAKEL 0.039± 0.002◦ 0.011± 0.002 0.057± 0.001
MLKNN 0.067± 0.003• 0.016± 0.003• 0.070± 0.002•

0/1 loss↓. Lower is better.
Dataset slashdot medical tmc2007

Proposed 0.600± 0.042 0.316± 0.071 0.672± 0.010
Baseline1 0.615± 0.034• 0.324± 0.058• 0.672± 0.008
Baseline2 0.669± 0.039• 0.354± 0.062• 0.698± 0.007•

BR 0.803± 0.018• 0.337± 0.063• 0.701± 0.008•
CC 0.657± 0.025• 0.337± 0.064• 0.687± 0.010•

RAKEL 0.686± 0.024• 0.363± 0.064• 0.682± 0.009•
MLKNN 0.776± 0.020• 0.491± 0.083• 0.746± 0.003•

F score↑. Larger is better.
Dataset slashdot medical tmc2007

Proposed 0.429± 0.026 0.575± 0.067 0.587± 0.010
Baseline1 0.413± 0.032• 0.547± 0.056• 0.577± 0.011
Baseline2 0.398± 0.032• 0.561± 0.052• 0.506± 0.011•

BR 0.204± 0.011• 0.501± 0.058• 0.453± 0.011•
CC 0.303± 0.022• 0.510± 0.052• 0.505± 0.011•

RAKEL 0.349± 0.023• 0.589± 0.063◦ 0.555± 0.011•
MLKNN 0.297± 0.031• 0.410± 0.064• 0.431± 0.014•

Table 2: Performance (mean±std.) of our method and baseline in terms of different evaluation metrics.
•/◦ indicates whether the proposed method is statistically superior/inferior to baseline (pairwise t-test at
5% significance level).
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