A Model of Individual Differences in Gaze Control During Reading
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Abstract

We develop a statistical model of saccadic
eye movements during reading of isolated
sentences. The model is focused on rep-
resenting individual differences between
readers and supports the inference of the
most likely reader for a novel set of eye
movement patterns. We empirically study
the model for biometric reader identifica-
tion using eye-tracking data collected from
20 individuals and observe that the model
distinguishes between 20 readers with an
accuracy of up to 98%.

1 Introduction

During skilled reading, the eyes of a reader do
not move smoothly over a text. Instead, read-
ing proceeds by alternating between brief fixations
on individual words and short ballistic movements
called saccades that move the point of fixation to a
new location. Evidence in psychological research
indicates that patterns of fixations and saccades are
driven partly by low-level visual cues (e.g., word
length), and partly by linguistic and cognitive pro-
cessing of the text (Kliegl et al., 2006; Rayner,
1998).

Eye-movement patterns are frequently studied
in cognitive psychology as they provide a rich
and detailed record of the visual, oculomotor, and
linguistic processes involved in reading. Com-
putational models of eye-movement control de-
veloped in psychology, such as SWIFT (Engbert
et al., 2005; Schad and Engbert, 2012) or E-Z
Reader (Reichle et al., 1998; Reichle et al., 2012),
simulate the generation of eye movements based
on physiological and psychological constraints re-
lated to attention, visual perception, and the ocu-
lomotor system. Recently, the problem of mod-
eling eye movements has also been approached

from a machine-learning perspective. Matties and
Sggaard (2013) and Hara et al. (2012) study con-
ditional random field models to predict which
words in a text are fixated by a reader. Nilsson
and Nivre (2009) use a transition-based log-linear
model to predict a sequence of fixations for a text.

A central observation made by these studies, as
well as by earlier psychological work (Erdmann
and Dodge, 1898; Huey, 1908), is that eye move-
ment patterns vary significantly between individ-
uals. As one example of the strength of indi-
vidual differences in reading eye movements, we
cite Dixon (1951) who compared the reading pro-
cesses of university professors and graduate stu-
dents of physics, education, and history on read-
ing material in their own and the two other fields.
He did not find strong effects of his experimen-
tal variables (i.e., field of research, expertise in re-
search) but “if there is one thing that this study
has shown, it is that individual differences in read-
ing skill existed among the subjects of all depart-
ments. Fast and slow readers were found in every
department, and the overlapping of distributions
from passage to passage was enormous” (p. 173).
Even though it is possible to predict across a large
base of readers with some accuracy whether spe-
cific words will be fixated (Matties and S¢gaard,
2013), a strong variation between readers in at-
tributes such as the fraction of skipped words and
total number of saccades has been observed (Hara
et al., 2012).

Some recent work has studied eye movement
patterns as a biometric feature. Most studies are
based on an artificial visual stimulus, such as a
moving (Kasprowski and Ober, 2004; Komogort-
sev et al., 2010; Rigas et al., 2012b; Zhang and
Juhola, 2012) or fixed (Bednarik et al., 2005) dot
on a computer screen, or a specific image stimu-
lus (Rigas et al., 2012a). In the most common use
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case of biometric user identification, a decision on
whether access should be granted has to be made
after performing some test that requires the user’s
attention and therefore cannot take a long time. By
contrast, our work is motivated by a less intrusive
scenario in which the user is monitored continu-
ously during access to, for instance, a device or
document. When the accumulated evidence sup-
ports the conclusion that the user is not authorized,
access can be terminated or additional credentials
requested. In this use case, identification has to
be based on saccadic eye movements that occur
while a user is reading an arbitrary text—as op-
posed to movements that occur in response to a
fixed, controlled visual stimulus. Holland and Ko-
mogortsev (2012) study reader recognition based
on a set of aggregate features derived from eye
movements, irrespective of the text being read;
their work will serve as reference in our empiri-
cal study.

The paper is organized as follows. Section 2 de-
tails the problem setting. Section 3 introduces the
statistical model and discusses parameter estima-
tion and inference. Section 5 presents empirical
results, Section 6 concludes.

2 Problem Setting and Notation

Let R denote a set of readers, and
X ={Xy,....,X,} a set of texts. Each r € R
generates a set of eye movement patterns

Sr) = {SY), . Sq(f)} on the set of texts X, by
S ~ p(S[X.7)

where p(S|X,r) is a reader-specific distribution
over eye movement patterns given a text X. A pat-
tern is a sequence S = ((s1,d1),. .., (sp,dr)) of
fixations, consisting of a fixation position s; (posi-
tion in text that was fixated) and duration d; € R
(Iength of fixation in milliseconds). In our experi-
ments, individual sentences are presented in a sin-
gle line on a screen, thus we only model a hori-
zontal gaze position s; € R.

At test time, we observe novel eye move-
ment patterns S = {S1,...,S,,} on a novel set
of texts X = {Xj, ..., X,,} generated by an un-
known reader » € R. The goal is to infer

r. = argmax p(r|S, X). (1)
reR
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Figure 1: Empirical distributions over amplitudes
and Gamma fits for different saccade types.

3 Statistical Model of Eye Movements

We solve Problem 1 by estimating reader-specific
models p(S|X; 6,) for r € R, and solving for

r|S, X; 0) Hp(silxi;er) p(r) (2)

=1

—~

p

where all 0, are aggregated into a global model ©.
Assuming a uniform prior p(r) over readers, this
reduces to predicting the reader r that maximizes
the likelihood p(S|X; 6,) = [T, p(Si|X;; 0.

We formulate a model p(S|X; @) of a sequence
S of fixations given a text X. The model defines
a dynamic probabilistic process that successively
generates the fixation positions s; and durations d;
in S, reflecting how a reader generates a sequence
of saccades in response to a text stimulus X. The
joint distribution over all fixation positions and du-
rations is assumed to factorize as

p(s1,...,s7,d1,...,dr|X;0)
T-1
= p(s1,d1|X;0) H p(sey1,dig1]se, X;0).
=1

The conditional p(s;+1, di+1]st, X; @) models the
generation of the next fixation position and du-
ration given the current fixation position s;. In
the psychological literature, four different sac-
cadic types are distinguished: a reader can refix-
ate the current word (refixation), fixate the next
word in the text (next word movement), move the
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fixation to a word after the next word (forward
skip), or regress to fixate a word occurring ear-
lier than the currently fixated word in the text (re-
gression) (Heister et al., 2012). We observe em-
pirically, that modeling the amplitude as a mixture
of four Gamma distributions matches the empiri-
cal distribution of amplitudes in our data well—
see Figure 1. Modeling the amplitudes as a sin-
gle distribution, instead of a mixture of four dis-
tributions, results in a substantially lower out-
of-sampling likelihood of the model. Therefore,
at each time ¢, the model first draws a saccadic
type w1 € {1,2,3,4} from a multinomial dis-
tribution and then generates a saccade amplitude
a;+1 and fixation duration d; 1 from type-specific
Gamma distributions. Formally, the generative
process is given by

w1 ~ p(ulm) = Mult(u|r) (3)
Q41 ~ p(a|ut+17 St, X7 77) (4)
div1 ~ p(dugy1; X). &)

Afterwards the model updates the fixation position
according to sy;+1 = S; + ag+1. The joint param-
eter vector 6 concatenates parameters of the indi-
vidual distributions in Equations 3 to 5. Figure 2
shows a slice in the dynamical model.

Given the current fixation position s, the text
X, and the chosen saccadic type u;y1, the am-
plitude is constrained to fall within a specific
interval—for instance, within the characters of the
currently fixated word for refixations. Therefore,
we model the distribution over the saccade ampli-
tude given the saccadic type (Equation 4) as trun-
cated Gamma distributions, given by!

G(z|a,B)

G(z|[l,7]; , B) = { i 9@EleB)dz ifz € l,7]
0 otherwise

1 ol ==

= B

where  Glrle B = Gapry ¢

is the Gamma distribution with shape parameter
« and scale parameter (3, and I' is the Gamma
function. For = ~ G(x|a,B) it holds that
G(z|[l,r]; «, ) is the conditional distribution of
x given that x € [[,r]. The distribution over a sac-

!The definition is straightforwardly generalized to open
truncation intervals.

X e

Figure 2: Graphical model notation of a slice in
the dynamic model. Parameters are omitted to
avoid notational clutter.

cade amplitude given the saccade type is given by

plalugr = 1,5, X5m) =

1G(al[0,7]; a1, 1) ifa >0
(1 — w)G(—al[0,1];a1,31) otherwise
(6)

where the parameter p reflects the probability for
a forward saccade within a refixation, and

p(a|ut+1 = 27 St, X7 TI) - g((l|[l+,7”+]; 042,/62)

plalurr = 3,5, X5m) = G(a|(r™, 00); a3, B3)

p(a‘ut-i-l = 47 St, X7 T’) = g(—a\(—l, 00)7 a47ﬂ4)'
(7)

Here, the truncation intervals reflect the con-
straints on the amplitude a;41 given usy1, S; and
X. Let w; (w,) denote the position of the left-
most (right-most) character of the currently fix-
ated word, and let wl+, w,;" denote these positions
for the word following the currently fixated word.
Then I =w; — s, ¥ = wy — 8¢, 1T =w — s,
and r™ = w;” — s;. The parameter vector 7
contains the parameters u, a, ﬂ_l and «;, 3; for
i€{2,3,4}.

The distribution over fixation durations given
saccade type is modeled by a Gamma distribution

p(d|ut+1; )‘) = g(dhum-l? 5uz+1)

with type-specific parameters ~y,, d, for
u e {1,2,3,4} that are concatenated into a
parameter vector .

It remains to specify the distribution over initial
fixation positions and durations p(si,d1|X;8),
which is given by additional Gamma distributions

51 ~ G(d|ao, Bo) d1 ~ G(d|o,d0)
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Figure 3: Reader identification accuracy as a function of the number of training sentences (left) and test
sentences (right) read for different model variants. Error bars indicate the standard error.

where the parameters ag, 59, Y0, 0o are aggregated
into the joint parameter vector 6.

4 Parameter Estimation and Inference

Given a set S(") of eye movement observations for
reader » € R on texts X', the MAP estimate of the
parameters is

0, = arg mgxp(G\S(’"), X)

n
_ (Mx ..
= arg max (i];[lp(si X5 9)) p(0). (8)
A Dirichlet distribution (add-one smoothing) is a
natural, conjugate prior for the multinomial distri-
bution; we use uninformative priors for all other
distributions. The structure of the model implies
that the posterior can be maximized by fitting the
parameters 7 to the observed saccadic types un-
der the Dirichlet prior, and independently fitting
the distributions p(a;|u, X, s¢;m) and p(dg|ug; A)
by maximum likelihood to the saccade amplitudes
and durations observed for each saccade type.
The resulting maximum likelihood problems are
slightly non-standard in that we have to fit Gamma
distributions that are truncated differently for each
data point, depending on the textual content at
the position where the saccade occurs (see Equa-
tions 6 and 7). We solve the resulting optimization
problems using a Quasi-Newton method. To avoid
overfitting, we use a backoff-smoothing technique
for p(ai|us, X, s¢;m) and p(de|ug; X): we replace
reader-specific parameter estimates by estimates
obtained from the corresponding data of all read-
ers if the number of data points from which the dis-
tributions are estimated falls below a cutoff value.

The cutoff value is tuned by cross-validation on
the training data.

At test time, we have to infer likelihoods
p(S;|X; 0,) (Equation 2). This is done by evalu-
ating the multinomial and (truncated) Gamma dis-
tributions in the model for the corresponding ob-
servations and model parameters.

5 Empirical Study

We empirically study the proposed model and sev-
eral baselines using eye-movement records of 20
individuals (Heister et al., 2012). For each indi-
vidual, eye movements are recorded while read-
ing each of the 144 sentences in the Potsdam Sen-
tence Corpus (Kliegl et al., 2006). The data set
contains fixation positions and durations that have
been obtained from raw eye movement data by
appropriate preprocessing. Eye movements were
recorded with an EyeLink II system with a 500-
Hz sampling rate (SR Research, Osgoode, On-
tario, Canada). All recordings and calibration
were binocular. We randomly sample disjoint
sets of n training sentences and m test sentences
from the set of 144 sentences. Models are esti-
mated on the eye movement records of individu-
als on the training sentences (Equation 8). The
eye-movement records of one individual on all test
sentences constitute a test example; the model in-
fers the most likely individual to have generated
these test observations (Equation 2). Identifica-
tion accuracy is the fraction of times an individ-
ual is correctly inferred; random guessing yields
an accuracy of 0.05. Results are averaged over 20
training and test sets.

We study the model introduced in Section 3
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Figure 4: Identification accuracy as a function of the number of training and test sentences read for
full model (left). Identification accuracy as a function of the number of individuals that have to be
distinguished for different model variants (right). Error bars indicate the standard error.

(full model), a model variant in which the variable
di+1 and corresponding distribution is removed
(saccade type + amplitude), and a simple model
that only fits a multinomial distribution to saccade
types (saccade type only). Additionally, we com-
pare against the feature-based reader identification
approach by Holland & Komogortsev (2012). Six
of the 14 features used by Holland & Komogort-
sev depend on saccade velocities and vertical fix-
ation positions. As this information was not avail-
able in the preprocessed data set that we used, we
implemented the remaining features. There is ex-
tensive empirical evidence that saccade velocity
scales with saccade amplitude. Specifically, the
relationship between logarithmic peak saccade ve-
locity and logarithmic saccade amplitude is lin-
ear over a wide range of amplitudes and veloci-
ties; this is known as the main sequence relation-
ship (Bahill et al., 1975). Therefore, we do not ex-
pect that adding saccade velocities would dramat-
ically affect performance of this baseline. Holland
& Komogortsev employ a weighted combination
of features; we report results for the method with
and without feature weighting.

Figure 3 shows identification accuracy as a
function of the number n of training sentences
used to estimate model parameters (left) and as
a function of the number m of test sentences on
which inference of the most likely reader is based
(right, cf. Equation 2). The full model achieves
up to 98.25% accuracy, significantly outperform-
ing the Holland & Komogortsev (2012) baseline
(91.25%, without feature weighting) and simpler
model variants. All methods perform much better

than random guessing. Figure 4 (left) shows iden-
tification accuracy as a function of both training
size n and test size m for the full model.

We finally study how identification accuracy
changes with the number of individuals that have
to be distinguished. To this end, we perform the
same study as above, but with randomly sampled
subsets of the overall set of 20 individuals. In these
experiments, we average over 50 random train-test
splits. Figure 4 (right) shows identification ac-
curacy as a function of the number of individu-
als. We observe that identification accuracy drops
with the number of individuals for all methods;
our model consistently outperforms the baselines.

6 Conclusions

We have developed a model of individual differ-
ences in eye movements during reading, and stud-
ied its application in a biometric task. At test time,
individuals are identified based on eye movements
on novel text. Our approach thus provides poten-
tially unobtrusive biometric identification without
requiring users to react to a specific stimulus. Em-
pirical results show clear advantages over an exist-
ing approach for reader identification.
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