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Abstract

We propose a model for jointly predicting
multiple emotions in natural language sen-
tences. Our model is based on a low-rank
coregionalisation approach, which com-
bines a vector-valued Gaussian Process
with a rich parameterisation scheme. We
show that our approach is able to learn
correlations and anti-correlations between
emotions on a news headlines dataset. The
proposed model outperforms both single-
task baselines and other multi-task ap-
proaches.

1 Introduction

Multi-task learning (Caruana, 1997) has been
widely used in Natural Language Processing.
Most of these learning methods are aimed for Do-
main Adaptation (Daumé III, 2007; Finkel and
Manning, 2009), where we hypothesize that we
can learn from multiple domains by assuming sim-
ilarities between them. A more recent use of
multi-task learning is to model annotator bias and
noise for datasets labelled by multiple annotators
(Cohn and Specia, 2013).

The settings mentioned above have one aspect
in common: they assume some degree of posi-
tive correlation between tasks. In Domain Adap-
tation, we assume that some “general”’, domain-
independent knowledge exists in the data. For an-
notator noise modelling, we assume that a “ground
truth” exists and that annotations are some noisy
deviations from this truth. However, for some set-
tings these assumptions do not necessarily hold
and often tasks can be anti-correlated. For these
cases, we need to employ multi-task methods that
are able to learn these relations from data and
correctly employ them when making predictions,
avoiding negative knowledge transfer.

An example of a problem that shows this be-
haviour is Emotion Analysis, where the goal is to

automatically detect emotions in a text (Strappa-
rava and Mihalcea, 2008; Mihalcea and Strappa-
rava, 2012). This problem is closely related to
Opinion Mining (Pang and Lee, 2008), with sim-
ilar applications, but it is usually done at a more
fine-grained level and involves the prediction of a
set of labels (one for each emotion) instead of a
single label. While we expect some emotions to
have some degree of correlation, this is usually not
the case for all possible emotions. For instance, we
expect sadness and joy to be anti-correlated.

We propose a multi-task setting for Emotion
Analysis based on a vector-valued Gaussian Pro-
cess (GP) approach known as coregionalisation
(Alvarez etal., 2012). The idea is to combine a GP
with a low-rank matrix which encodes task corre-
lations. Our motivation to employ this model is
three-fold:

e Datasets for this task are scarce and small
so we hypothesize that a multi-task approach
will results in better models by allowing a
task to borrow statistical strength from other
tasks;

o The annotation scheme is subjective and very
fine-grained, and is therefore heavily prone to
bias and noise, both which can be modelled
easily using GPs;

e Finally, we also have the goal to learn a
model that shows sound and interpretable
correlations between emotions.

2 Multi-task Gaussian Process
Regression

Gaussian Processes (GPs) (Rasmussen and
Williams, 2006) are a Bayesian kernelised
framework considered the state-of-the-art for
regression. They have been recently used success-
fully for translation quality prediction (Cohn and
Specia, 2013; Beck et al., 2013; Shah et al., 2013)
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and modelling text periodicities (Preotiuc-Pietro
and Cohn, 2013). In the following we give a
brief description on how GPs are applied in a
regression setting.

Given an input x, the GP regression assumes
that its output y is a noise corrupted version of a
latent function evaluation, y = f(x) + 7, where
n ~ N(0,02) is the added white noise and the
function f is drawn from a GP prior:

f(x) ~ GP(u(x), k(x,x")), (1)

where 1i(x) is the mean function, which is usually
the O constant, and k(x,x’) is the kernel or co-
variance function, which describes the covariance
between values of f at locations x and x’.

To predict the value for an unseen input x,, we
compute the Bayesian posterior, which can be cal-
culated analytically, resulting in a Gaussian distri-
bution over the output 7,:!

Yo ~ N (ko (K + 0, 1) "ty )
k(x., %) — kI(K + 0,1) " 'k,),

where K is the Gram matrix corre-
sponding to the covariance kernel evalu-
ated at every pair of training inputs and
ke = [(X1,X4), (X2,X4), ..., (Xp, Xy)] is the
vector of kernel evaluations between the test input
and each training input.

2.1 The Intrinsic Coregionalisation Model

By extending the GP regression framework to
vector-valued outputs we obtain the so-called
coregionalisation models. Specifically, we employ
a separable vector-valued kernel known as Intrin-
sic Coregionalisation Model (1ICM) (Alvarez etal.,
2012). Considering a set of D tasks, we define the
corresponding vector-valued kernel as:

k((X, d)7 (Xla dl)) - kdata(x7 X/) X Bd,d’: (3)

where kg, 1 a kernel on the input points (here
a Radial Basis Function, RBF), d and d’ are task
or metadata information for each input and B €
RP*P is the coregionalisation matrix, which en-
codes task covariances and is symmetric and posi-
tive semi-definite.

A key advantage of GP-based modelling is its
ability to learn hyperparameters directly from data

"We refer the reader to Rasmussen and Williams (2006,
Chap. 2) for an in-depth explanation of GP regression.

by maximising the marginal likelihood:
pvIX.0) = [ pyIX.0.pls) @

This process is usually performed to learn the
noise variance and kernel hyperparameters, in-
cluding the coregionalisation matrix. In order to
do this, we need to consider how B is parame-
terised.

Cohn and Specia (2013) treat the diagonal val-
ues of B as hyperparameters, and as a conse-
quence are able to leverage the inter-task trans-
fer between each independent task and the global
“pooled” task. They however fix non-diagonal val-
ues to 1, which in practice is equivalent to assum-
ing equal correlation across tasks. This can be lim-
iting, in that this formulation cannot model anti-
correlations between tasks.

In this work we lift this restriction by adopting
a different parameterisation of B that allows the
learning of all task correlations. A straightforward
way to do that would be to consider every corre-
lation as an hyperparameter, but this can result in
a matrix which is not positive semi-definite (and
therefore, not a valid covariance matrix). To en-
sure this property, we follow the method proposed
by Bonilla et al. (2008), which decomposes B us-
ing Probabilistic Principal Component Analysis:

B = UAU” + diag(a), (5)

where U is an D x R matrix containing the R
principal eigenvectors and A is a R x R diago-
nal matrix containing the corresponding eigenval-
ues. The choice of R defines the rank of UAU7,
which can be understood as the capacity of the
manifold with which we model the D tasks. The
vector o allows for each task to behave more or
less independently with respect to the global task.
The final rank of B depends on both terms in
Equation 5.

For numerical stability, we use the incomplete-
Cholesky decomposition over the matrix UAUT,
resulting in the following parameterisation for B:

B = LL” + diag(a), (6)

where L is a D x R matrix. In this setting, we
treat all elements of L as hyperparameters. Set-
ting a larger rank allows more flexibility in mod-
elling task correlations. However, a higher number
of hyperparameters may lead to overfitting prob-
lems or otherwise cause issues in optimisation due
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to additional non-convexities in the log likelihood
objective. In our experiments we evaluate this be-
haviour empirically by testing a range of ranks for
each setting.

The low-rank model can subsume the ones pro-
posed by Cohn and Specia (2013) by fixing and
tying some of the hyperparameters:

Independent: fixing L=0and o = 1;
Pooled: fixing L=1landa = 0;

Combined: fixing L = 1and tying all compo-
nents of a;

Combined+: fixing L = 1.

These formulations allow us to easily replicate
their modelling approach, which we evaluate as
competitive baselines in our experiments.

3 Experimental Setup

To address the feasibility of our approach, we pro-
pose a set of experiments with three goals in mind:

e To find our whether the ICM is able to learn
sensible emotion correlations;

e To check if these correlations are able to im-
prove predictions for unseen texts;

e To investigate the behaviour of the ICM
model as we increase the training set size.

Dataset We use the dataset provided by the “Af-
fective Text” shared task in SemEval-2007 (Strap-
parava and Mihalcea, 2007), which is composed
of 1000 news headlines annotated in terms of six
emotions: Anger, Disgust, Fear, Joy, Sadness and
Surprise. For each emotion, a score between 0 and
100 is given, O meaning total lack of emotion and
100 maximum emotional load. We use 100 sen-
tences for training and the remaining 900 for test-
ing.

Model For all experiments, we use a Radial Ba-
sis Function (RBF) data kernel over a bag-of-
words feature representation. Words were down-
cased and lemmatized using the WordNet lemma-
tizer in the NLTK? toolkit (Bird et al., 2009). We
then use the GPy toolkit? to combine this kernel
with a coregionalisation model over the six emo-
tions, comparing a number of low-rank approxi-
mations.

http://www.nltk.org
*http://github.com/SheffieldML/GPy

Baselines and Evaluation We compare predic-
tion results with a set of single-task baselines: a
Support Vector Machine (SVM) using an RBF
kernel with hyperparameters optimised via cross-
validation and a single-task GP, optimised via like-
lihood maximisation. The SVM models were
trained using the Scikit-learn toolkit* (Pedregosa
et al., 2011). We also compare our results against
the ones obtained by employing the “Combined”
and “Combined+” models proposed by Cohn and
Specia (2013). Following previous work in this
area, we use Pearson’s correlation coefficient as
evaluation metric.

4 Results and Discussion

4.1 Learned Task Correlations

Figure 1 shows the learned coregionalisation ma-
trix setting the initial rank as 1, reordering the
emotions to emphasize the learned structure. We
can see that the matrix follows a block structure,
clustering some of the emotions. This picture
shows two interesting behaviours:

o Sadness and fear are highly correlated. Anger
and disgust also correlate with them, al-
though to a lesser extent, and could be con-
sidered as belonging to the same cluster. We
can also see correlation between surprise and
joy. These are intuitively sound clusters
based on the polarity of these emotions.

e In addition to correlations, the model
learns anti-correlations, especially between
joy/surprise and the other emotions. We also
note that joy has the highest diagonal value,
meaning that it gives preference to indepen-
dent modelling (instead of pooling over the
remaining tasks).

Inspecting the eigenvalues of the learned ma-
trix allows us to empirically determine its result-
ing rank. In this case we find that the model has
learned a matrix of rank 3, which indicates that
our initial assumption of a rank 1 coregionalisa-
tion matrix may be too small in terms of modelling
capacity’. This suggests that a higher rank is
justified, although care must be taken due to the
local optima and overfitting issues cited in §2.1.

*http://scikit-learn.org
>The eigenvalues were 592, 62, 86,4, 3 X 1072 and 9 x
1075,
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Anger | Disgust | Fear Joy Sadness | Surprise All
SVM 0.3084 | 0.2135 | 0.3525 | 0.0905 | 0.3330 | 0.1148 || 0.2603
Single GP 0.1683 | 0.0035 | 0.3462 | 0.2035 | 0.3011 | 0.1599 || 0.3659
ICM GP (Combined) 0.2301 | 0.1230 | 0.2913 | 0.2202 | 0.2303 | 0.1744 | 0.3295
ICM GP (Combined+) || 0.1539 | 0.1240 | 0.3438 | 0.2466 | 0.2850 | 0.2027 | 0.3723
ICM GP (Rank 1) 0.2133 | 0.1075 | 0.3623 | 0.2810 | 0.3137 | 0.2415 || 0.3988
ICM GP (Rank 5) 0.2542 | 0.1799 | 0.3727 | 0.2711 | 0.3157 | 0.2446 || 0.3957

Table 1: Prediction results in terms of Pearson’s correlation coefficient (higher is better). Boldface values
show the best performing model for each emotion. The scores for the “All” column were calculated over
the predictions for all emotions concatenated (instead of just averaging over the scores for each emotion).
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Figure 1: Heatmap showing a learned coregional-
isation matrix over the emotions.

4.2 Prediction Results

Table 1 shows the Pearson’s scores obtained in
our experiments. The low-rank models outper-
formed the baselines for the full task (predicting
all emotions) and for fear, joy and surprise sub-
tasks. The rank 5 models were also able to out-
perform all GP baselines for the remaining emo-
tions, but could not beat the SVM baseline. As
expected, the “Combined” and “Combined+" per-
formed worse than the low-rank models, probably
due to their inability to model anti-correlations.

4.3 Error analysis

To check why SVM performs better than GPs for
some emotions, we analysed their gold-standard
score distributions. Figure 2 shows the smoothed
distributions for disgust and fear, comparing the
gold-standard scores to predictions from the SVM
and GP models. The distributions for the training
set follow similar shapes.

We can see that GP obtains better matching
score distributions in the case when the gold-

Disgust

= Gold
== SVM
ICM GP (Rank 5)|]

30 40 50
Fear

30 40 50

Figure 2: Test score distributions for disgust and
fear. For clarity, only scores between 0 and 50 are
shown. SVM performs better on disgust, while GP
performs better on fear.

standard scores are more spread over the full sup-
port of response values, i.e., [0, 100]. Since our GP
model employs a Gaussian likelihood, it is effec-
tively minimising a squared-error loss. The SVM
model, on the other hand, uses hinge loss, which
is linear beyond the margin envelope constraints.
This affects the treatment of outlier points, which
attract quadratic cf. linear penalties for the GP
and SVM respectively.  Therefore, when train-
ing scores are more uniformly distributed (which
is the case for fear), the GP model has to take the
high scores into account, resulting in broader cov-
erage of the full support. For disgust, the scores
are much more peaked near zero, favouring the
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more narrow coverage of the SVM.

More importantly, Figure 2 also shows that both
SVM and GP predictions tend to exhibit a Gaus-
sian shape, while the true scores show an expo-
nential behaviour. This suggests that both mod-
els are making wrong prior assumptions about the
underlying score distribution. For SVMs, this is
a non-trivial issue to address, although it is much
easier for GPs, where we can use a different like-
lihood distribution, e.g., a Beta distribution to re-
flect that the outputs are only valid over a bounded
range. Note that non-Gaussian likelihoods mean
that exact inference is no longer tractable, due to
the lack of conjugacy between the prior and likeli-
hood. However a number of approximate infer-
ence methods are appropriate which are already
widely used in the GP literature for use with non-
Gaussian likelihoods, including expectation prop-
agation (Jylédnki et al., 2011), the Laplace approx-
imation (Williams and Barber, 1998) and Markov
Chain Monte Carlo sampling (Adams et al., 2009).

4.4 Training Set Influence

We expect multi-task models to perform better for
smaller datasets, when compared to single-task
models. This stems from the fact that with small
datasets often there is more uncertainty associated
with each task, a problem which can be alleviated
using statistics from the other tasks. To measure
this behaviour, we performed an additional exper-
iment varying the size of the training sets, while
using 100 sentences for testing.

Figure 3 shows the scores obtained. As ex-
pected, for smaller datasets the single-task mod-
els are outperformed by ICM, but their perfor-
mance become equivalent as the training set size
increases. SVM performance tends to be slightly
worse for most sizes. To study why we obtained
an outlier for the single-task model with 200 sen-
tences, we inspected the prediction values. We
found that, in this case, predictions for joy, sur-
prise and disgust were all around the same value.®
For larger datasets, this effect disappears and the
single-task models yield good predictions.

5 Conclusions and Future Work

This paper proposed an multi-task approach for
Emotion Analysis that is able to learn correlations

®Looking at the predictions for smaller datasets, we found
the same behaviour, but because the values found were near
the mean they did not hurt the Pearson’s score as much.

0.40f
0.35f
= ® Single-task GP
0.30f - ¢ o |[CM GP (Rank 5) |1
+» + SVM
0.25

.\90 .\-c)Q 7—00 ,Lc)Q ,5(30 3‘)0 &“0 D“)Q ‘JQQ ‘D‘)Q 600

Figure 3: Pearson’s correlation score according to
training set size (in number of sentences).

and anti-correlations between emotions. Our for-
mulation is based on a combination of a Gaussian
Process and a low-rank coregionalisation model,
using a richer parameterisation that allows the
learning of fine-grained task similarities. The pro-
posed model outperformed strong baselines when
applied to a news headline dataset.

As it was discussed in Section 4.3, we plan
to further explore the possibility of using non-
Gaussian likelihoods with the GP models. An-
other research avenue we intend to explore is to
employ multiple layers of metadata, similar to the
model proposed by Cohn and Specia (2013). An
example is to incorporate the dataset provided by
Snow et al. (2008), which provides multiple non-
expert emotion annotations for each sentence, ob-
tained via crowdsourcing. Finally, another possi-
ble extension comes from more advanced vector-
valued GP models, such as the linear model of
coregionalisation (Alvarez et al., 2012) or hierar-
chical kernels (Hensman et al., 2013). These mod-
els can be specially useful when we want to em-
ploy multiple kernels to explain the relation be-
tween the input data and the labels.
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