
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1769–1773,
October 25-29, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

Cipher Type Detection

Malte Nuhn
Human Language Technology
and Pattern Recognition Group
Computer Science Department

RWTH Aachen University
nuhn@cs.rwth-aachen.de

Kevin Knight
Information Sciences Institute

University of Southern California
knight@isi.edu

Abstract

Manual analysis and decryption of enci-
phered documents is a tedious and error
prone work. Often—even after spend-
ing large amounts of time on a par-
ticular cipher—no decipherment can be
found. Automating the decryption of var-
ious types of ciphers makes it possible
to sift through the large number of en-
crypted messages found in libraries and
archives, and to focus human effort only
on a small but potentially interesting sub-
set of them. In this work, we train a clas-
sifier that is able to predict which enci-
pherment method has been used to gener-
ate a given ciphertext. We are able to dis-
tinguish 50 different cipher types (speci-
fied by the American Cryptogram Associ-
ation) with an accuracy of 58.5%. This is a
11.2% absolute improvement over the best
previously published classifier.

1 Introduction

Libraries and archives contain a large number of
encrypted messages created throughout the cen-
turies using various encryption methods. For the
great majority of the ciphers an analysis has not
yet been conducted, simply because it takes too
much time to analyze each cipher individually, or
because it is too hard to decipher them. Automatic
methods for analyzing and classifying given ci-
phers makes it possible to sift interesting messages
and by that focus the limited amount of human re-
sources to a promising subset of ciphers.

For specific types of ciphers, there exist au-
tomated tools to decipher encrypted messages.
However, the publicly available tools often de-
pend on a more or less educated guess which
type of encipherment has been used. Furthermore,

they often still need human interaction and are
only restricted to analyzing very few types of ci-
phers. In practice however, there are many differ-
ent types of ciphers which we would like to an-
alyze in a fully automatic fashion: Bauer (2010)
gives a good overview over historical methods that
have been used to encipher messages in the past.
Similarly, the American Cryptogram Association
(ACA) specifies a set of 56 different methods for
enciphering a given plaintext:

Each encipherment method Mi can be seen as
a function that transforms a given plaintext into a
ciphertext using a given key, or short:

cipher = Mi(plain, key)

When analyzing an unknown ciphertext, we are
interested in the original plaintext that was used to
generate the ciphertext, i.e. the opposite direction:

plain = M−1
i (cipher, key)

Obtaining the plaintext from an enciphered mes-
sage is a difficult problem. We assume that the
decipherment of a message can be separated into
solving three different subproblems:

1. Find the encipherment method Mi that was
used to create the cipher

cipher → Mi

.
2. Find the key that was used together with the

methodMi to encipher the plaintext to obtain
cipher = Mi(plain, key).

3. Decode the message using Mi and key
cipher → M−1

i (cipher, key)
Thus, an intermediate step to deciphering an un-
known ciphertext is to find out which encryption
method was used. In this paper, we present a clas-
sifier that is able to predict just that: Given an un-
known ciphertext, it can predict what kind of en-
cryption method was most likely used to generate

1769



• Type: CMBIFID
• Plaintext:
WOMEN NSFOO TBALL ISGAI
NINGI NPOPU LARIT YANDT
HETOU RNAME
• Key:
LEFTKEY=’IACERATIONS’
RIGHTKEY=’KNORKOPPING’
PERIOD=3, LROUTE=1
RROUTE=1, USE6X6=0
• Ciphertext:
WTQNG GEEBQ BPNQP VANEN
KDAOD GAHQS PKNVI PTAAP
DGMGR PCSGN

Figure 1: Example “CMBIFID” cipher: Text is
grouped in five character chunks for readability.

it. The results of our classifier are a valuable input
to human decipherers to make a first categoriza-
tion of an unknown ciphertext.

2 Related Work

Central to this work is the list of encryption meth-
ods provided by the American Cipher Associa-
tion1. This list contains detailed descriptions and
examples of each of the cipher types, allowing us
to implement them. Figure 3 lists these methods.

We compare our work to the only previously
published cipher type classifier for classical ci-
phers2. This classifier is trained on 16, 800 cipher-
texts and is implemented in javascript to run in the
web browser: The user can provide the ciphertext
as input to a web page that returns the classifier’s
predictions. The source code of the classifier is
available online. Our work includes a reimple-
mentation of the features used in that classifier.

As examples for work that deals with the auto-
mated decipherment of cipher texts, we point to
(Ravi and Knight, 2011), and (Nuhn et al., 2013).
These publications develop specialized algorithms
for solving simple and homophonic substitution
ciphers, which are just two out of the 56 cipher
types defined by the ACA. We also want to men-
tion (de Souza et al., 2013), which presents a ci-
pher type classifier for the finalist algorithms of
the Advanced Encryption Standard (AES) contest.

1
http://cryptogram.org/cipher_types.html

2See http://bionsgadgets.appspot.com/gadget_forms/

refscore_extended.html and https://sites.google.com/site/

bionspot/cipher-id-tests

plaintext key

encipher

ciphertext

classifier training

type

Figure 2: Overview over the data generation and
training of the classifier presented in this work.

3 General Approach

Given a ciphertext, the task is to find the right en-
cryption method. Our test set covers 50 out of 56
cipher types specified by ACA, as listed in Fig-
ure 3. We are going to take a machine learning ap-
proach which is based on the observation that we
can generate an infinite amount of training data.

3.1 Data Flow

The training procedure is depicted in Figure 2:
Based upon a large English corpus, we first choose
possible plaintext messages. Then, for each enci-
pherment method, we choose a random key and
encipher each of the plaintext messages using the
encipherment method and key. By doing this, we
can obtain (a theoretically infinite) amount of la-
beled data of the form (type, ciphertext). We can
then train a classifier on this data and evaluate it
on some held out data.

Figure 1 shows that in general the key can con-
sist of more than just a codeword: In this case,
the method uses two codewords, a period length,
two different permutation parameters, and a gen-
eral decision whether to use a special “6×6” vari-
ant of the cipher or not. If not defined otherwise,
we choose random settings for these parameters.
If the parameters are integers, we choose random
values from a uniform distribution (in a sensible
range). In case of codewords, we choose the 450k
most frequent words from an English dictionary.
We train on cipher texts of random length.

3.2 Classifiers

The previous state-of-the-art classifier by BION

uses a random forest classifier (Breiman, 2001).
The version that is available online, uses 50 ran-

1770



• 6x6bifid
• 6x6playfair
• amsco
• bazeries
• beaufort
• bifid6
• bifid7
• (cadenus)
• cmbifid
• columnar
• digrafid
• dbl chckrbrd

• four square
• fracmorse
• grandpre
• (grille)
• gromark
• gronsfeld
• homophonic
• mnmedinome
• morbit
• myszkowski
• nicodemus
• nihilistsub

• (nihilisttransp)
• patristocrat
• period 7 vig.
• periodic gro-

mark
• phillips
• plaintext
• playfair
• pollux
• porta
• portax
• progkey beau-

fort
• progressivekey
• quagmire2
• quagmire3
• quagmire4
• ragbaby
• randomdigit
• randomtext
• redefence
• (route transp)
• runningkey
• seriatedpfair

• swagman
• tridigital
• trifid
• trisquare
• trisquare hr
• two square
• two sq. spiral
• vigautokey
• (vigenere)
• (vigslidefair)

Figure 3: Cipher types specified by ACA. Our classifier is able to recognize 50 out of these 56 ciphers.
The braced cipher types are not covered in this work.

dom decision trees. The features used by this clas-
sifier are described in Section 4.

Further, we train a support vector machine using
the libSVM toolkit (Chang and Lin, 2011). This
is feasible for up to 100k training examples. Be-
yond this point, training times become too large.
We perform multi class classification using ν-SVC
and a polynomial kernel. Multi class classification
is performed using one-against-one binary classifi-
cation. We select the SVM’s free parameters using
a small development set of 1k training examples.

We also use Vowpal Wabbit (Langford et al.,
2007) to train a linear classifier using stochastic
gradient descent. Compared to training SVMs,
Vowpal Wabbit is extremely fast and allows using
a lot of training examples. We use a squared loss
function, adaptive learning rates and don’t employ
any regularization. We train our classifier with up
to 1M training examples. The best performing set-
tings use one-against-all classification, 20 passes
over the training data and the default learning rate.
Quadratic features resulted in much slower train-
ing, while not providing any gains in accuracy.

4 Features

We reimplemented all of the features used in the
BION classifier, and add three newly developed
sets of features, resulting in a total of 58 features.

In order to further structure these features, we
group these features as follows: We call the set
of features that relate to the length of the cipher
LEN. This set contains binary features firing when
the cipher length is a multiple of 2, 3, 5, 25, any
of 4-15, and any of 4-30. We call the set of fea-
tures that are based on the fact that the cipher-
text contains a specific symbol HAS. This set con-
tains binary features firing when the cipher con-

tains a digit, a letter (A-Z), the “#” symbol, the
letter “j”, the digit “0”. We also introduce an-
other set of features called DGT that contains two
features, firing when the cipher is starting or end-
ing with a digit. The set VIG contains 5 features:
The feature score is based on the best possible bi-
gram LM perplexity of a decipherment compatible
with the decipherment process of the cipher types
Autokey, Beaufort, Porta, Slidefair and Vigenere.
Further, we also include the features IC, MIC,
MKA, DIC, EDI, LR, ROD and LDI, DBL, NOMOR,
RDI, PTX, NIC, PHIC, BDI, CDD, SSTD, MPIC,
SERP, which were introduced in the BION classi-
fier3. Thus, the first 22 data points in Figure 4 are
based on previously known features by BION. We
further present the following additional features.

4.1 Repetition Feature (REP)

This set of features is based on how often the ci-
phertext contains symbols that are repeated ex-
actly n times in a row: For example the cipher-
text shown in Figure 1 contains two positions with
repetitions of length n = 2, because the cipher-
text contains EE, as well as AA. Beyond length
2, there are no repeats. These numbers are then
normalized by dividing them by the total number
of repeats of length 2 ≤ n ≤ 5.

4.2 Amsco Feature (AMSC)

The idea of the AMSCO cipher is to fill consec-
utive chunks of one and two plaintext characters
into n columns of a grid (see Table 1). Then a
permutation of the columns is performed, and the
resulting permuted plaintext is read of line by line
and forms the final ciphertext. This feature reads
the ciphertext into a similar grid of up to 5 columns

3See http://home.comcast.net/˜acabion/acarefstats.html

1771



Plaintext w om e ns f
oo t ba l li

Permutation 3 5 1 4 2

Table 1: Example grid used for AMSCO ciphers.

and then tries all possible permutations to retain
the original plaintext. The result of this opera-
tion is then scored with a bigram language model.
Depending on whether the difference in perplexity
between ciphertext and deciphered text exceeds a
given threshold, this binary feature fires.

4.3 Variant Feature (VAR)
In the variant cipher, the plaintext is written into
a block under a key word. All letters in the first
column are enciphered by shifting them using the
first key letter of the key word, the second column
uses the second key letter, etc. For different pe-
riods (i.e. lengths of key words), the ciphertext
is structured into n columns and unigram statis-
tics for each column are calculated. The frequency
profile of each column is compared to the unigram
frequency profile using a perplexity measure. This
binary feature fires when the resulting perplexities
are lower than a specific threshold.

5 Results

Figure 4 shows the classification accuracy for the
BION baseline, as well as our SVM and VW based
classifiers for a test set of 305 ciphers that have
been published in the ACA. The classifiers shown
in this figure are trained on cipher texts of ran-

dom length. We show the contribution of all the
features we used in the classifier on the x-axis.
Furthermore we also vary the amount of training
data we use to train the classifiers from 10k to 1M
training examples. It can be seen that when using
the same features as BION, our prediction accu-
racy is compatible with the BION classifier. The
main improvement of our classifier stems from the
REP, AMSC and VAR features. Our best classi-
fier is more than 11% more accurate than previous
state-of-the-art BION classifier.

We identified the best classifier on a held-out
set of 1000 ciphers, i.e. 20 ciphers for each ci-
pher type. Here the three new features improve the
VW-1M classifier from 50.9% accuracy to 56.0%
accuracy, and the VW-100k classifier from 48.9%
to 54.6%. Note that this held-out set is based on
the exact same generator that we used to create the
training data with. However, we also report the
results of our method on the completely indepen-
dently created ACA test set in Figure 4.

6 Conclusion

We presented a state-of-the art classifier for cipher
type detection. The approach we present is easily
extensible to cover more cipher types and allows
incorporating new features.

Acknowledgements

We thank Taylor Berg-Kirkpatrick, Shu Cai, Bill
Mason, Beáta Megyesi, Julian Schamper, and
Megha Srivastava for their support and ideas. This
work was supported by ARL/ARO (W911NF-10-
1-0533) and DARPA (HR0011-12-C-0014).

10

20

30

40

50

60

HAS
LEN

VIG IC
M

IC
M

KA
DIC EDI

LR
ROD

LDI
DBL

NM
OR

RDI
PTX

NIC
PHIC BDI

CDD
SSTD

M
PIC

SERP
REP

AM
SC

VAR

Features

A
cc

ur
ac

y
(%

)

BION

SVM 10k
SVM100k
VW 100k
VW 1M

Figure 4: Classifier accuracy vs. training data and set of features used. From left to right more and
more features are used, the x-axis shows which features are added. The feature names are described in
Section 4. The features right of the vertical line are presented in this paper. The horizontal line shows
the previous state-of-the art accuracy (BION) of 47.3%, we achieve 58.49%.

1772



References
F.L. Bauer. 2010. Decrypted Secrets: Methods and

Maxims of Cryptology. Springer.

Leo Breiman. 2001. Random forests. Machine Learn-
ing, 45(1):5–32, October.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technol-
ogy, 2:27:1–27:27. Software available at http://
www.csie.ntu.edu.tw/˜cjlin/libsvm.

William AR de Souza, Allan Tomlinson, and Luiz MS
de Figueiredo. 2013. Cipher identification with a
neural network.

John Langford, Lihong Li, and Alex Strehl. 2007.
Vowpal Wabbit. https://github.com/
JohnLangford/vowpal_wabbit/wiki.

Malte Nuhn, Julian Schamper, and Hermann Ney.
2013. Beam search for solving substitution ciphers.
In ACL (1), pages 1568–1576.

Sujith Ravi and Kevin Knight. 2011. Bayesian Infer-
ence for Zodiac and Other Homophonic Ciphers. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
239–247, Stroudsburg, PA, USA, June. Association
for Computational Linguistics.

1773


