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Abstract
In this paper, we present two improve-
ments to the beam search approach for
solving homophonic substitution ciphers
presented in Nuhn et al. (2013): An im-
proved rest cost estimation together with
an optimized strategy for obtaining the or-
der in which the symbols of the cipher are
deciphered reduces the beam size needed
to successfully decipher the Zodiac-408
cipher from several million down to less
than one hundred: The search effort is re-
duced from several hours of computation
time to just a few seconds on a single CPU.
These improvements allow us to success-
fully decipher the second part of the fa-
mous Beale cipher (see (Ward et al., 1885)
and e.g. (King, 1993)): Having 182 differ-
ent cipher symbols while having a length
of just 762 symbols, the decipherment is
way more challenging than the decipher-
ment of the previously deciphered Zodiac-
408 cipher (length 408, 54 different sym-
bols). To the best of our knowledge, this
cipher has not been deciphered automati-
cally before.

1 Introduction

State-of-the-art statistical machine translation sys-
tems use large amounts of parallel data to estimate
translation models. However, parallel corpora are
expensive and not available for every domain.

Decipherment uses only monolingual data to
train a translation model: Improving the core deci-
pherment algorithms is an important step for mak-
ing decipherment techniques useful for training
practical machine translation systems.

In this paper we present improvements to the
beam search algorithm for deciphering homo-
phonic substitution ciphers as presented in Nuhn

et al. (2013). We show significant improvements
in computation time on the Zodiac-408 cipher and
show the first decipherment of part two of the
Beale ciphers.

2 Related Work

Regarding the decipherment of 1:1 substitution ci-
phers, various works have been published: Most
older papers do not use a statistical approach and
instead define some heuristic measures for scoring
candidate decipherments. Approaches like Hart
(1994) and Olson (2007) use a dictionary to check
if a decipherment is useful. Clark (1998) defines
other suitability measures based on n-gram counts
and presents a variety of optimization techniques
like simulated annealing, genetic algorithms and
tabu search. On the other hand, statistical ap-
proaches for 1:1 substitution ciphers are published
in the natural language processing community:
Ravi and Knight (2008) solve 1:1 substitution ci-
phers optimally by formulating the decipherment
problem as an integer linear program (ILP) while
Corlett and Penn (2010) solve the problem using
A∗ search. Ravi and Knight (2011) report the
first automatic decipherment of the Zodiac-408 ci-
pher. They use a combination of a 3-gram lan-
guage model and a word dictionary. As stated in
the previous section, this work can be seen as an
extension of Nuhn et al. (2013). We will there-
fore make heavy use of their definitions and ap-
proaches, which we will summarize in Section 3.

3 General Framework

In this Section we recap the beam search frame-
work introduced in Nuhn et al. (2013).

3.1 Notation

We denote the ciphertext with fN
1 =

f1 . . . fj . . . fN which consists of cipher
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tokens fj ∈ Vf . We denote the plain-
text with eN1 = e1 . . . ei . . . eN (and its
vocabulary Ve respectively). We define
e0 = f0 = eN+1 = fN+1 = $ with “$”
being a special sentence boundary token. Homo-
phonic substitutions are formalized with a general
function φ : Vf → Ve. Following (Corlett and
Penn, 2010), cipher functions φ, for which not all
φ(f)’s are fixed, are called partial cipher func-
tions. Further, φ′ is said to extend φ, if for all
f ∈ Vf that are fixed in φ, it holds that f is also
fixed in φ′ with φ′(f) = φ(f). The cardinality
of φ counts the number of fixed f ’s in φ. When
talking about partial cipher functions we use the
notation for relations, in which φ ⊆ Vf × Ve.

3.2 Beam Search

The main idea of (Nuhn et al., 2013) is to struc-
ture all partial φ’s into a search tree: If a cipher
containsN unique symbols, then the search tree is
of height N . At each level a decision about the n-
th symbol is made. The leaves of the tree form full
hypotheses. Instead of traversing the whole search
tree, beam search descents the tree top to bottom
and only keeps the most promising candidates at
each level. Practically, this is done by keeping
track of all partial hypotheses in two arraysHs and
Ht. During search all allowed extensions of the
partial hypotheses in Hs are generated, scored and
put into Ht. Here, the function EXT ORDER (see
Section 5) chooses which cipher symbol is used
next for extension, EXT LIMITS decides which ex-
tensions are allowed, and SCORE (see Section 4)
scores the new partial hypotheses. PRUNE then
selects a subset of these hypotheses. Afterwards
the array Ht is copied to Hs and the search pro-
cess continues with the updated arrayHs. Figure 1
shows the general algorithm.

4 Score Estimation

The score estimation function is crucial to the
search procedure: It predicts how good or bad a
partial cipher function φmight become, and there-
fore, whether it’s worth to keep it or not.

To illustrate how we can calculate these scores,
we will use the following example with vocabular-
ies Vf = {A,B,C,D}, Ve = {a, b, c, d}, exten-
sion order (B,C,A,D), and cipher text1

φ(fN
1 ) = $ ABDD CABC DADC ABDC $

1We include blanks only for clarity reasons.

1: function BEAM SEARCH(EXT ORDER)
2: init sets Hs, Ht

3: CARDINALITY = 0
4: Hs.ADD((∅, 0))
5: while CARDINALITY < |Vf | do
6: f = EXT ORDER[CARDINALITY]
7: for all φ ∈ Hs do
8: for all e ∈ Ve do
9: φ′ := φ ∪ {(e, f)}

10: if EXT LIMITS(φ′) then
11: Ht.ADD(φ′,SCORE (φ′))
12: end if
13: end for
14: end for
15: PRUNE(Ht)
16: CARDINALITY = CARDINALITY + 1
17: Hs = Ht

18: Ht.CLEAR()
19: end while
20: return best scoring cipher function in Hs

21: end function

Figure 1: The general structure of the beam search
algorithm for decipherment of substitution ciphers
as presented in Nuhn et al. (2013). This paper im-
proves the functions SCORE and EXT ORDER.

and partial hypothesis φ = {(A, a), (B, b)}. This
yields the following partial decipherment

φ(fN
1 ) = $ ab.. .ab. .a.. ab.. $

The score estimation function can only use this
partial decipherment to calculate the hypothesis’
score, since there are not yet any decisions made
about the other positions.

4.1 Baseline

Nuhn et al. (2013) present a very simple rest
cost estimator, which calculates the hypothesis’
score based only on fully deciphered n-grams, i.e.
those parts of the partial decipherment that form a
contiguous chunk of n deciphered symbols. For
all other n-grams containing not yet deciphered
symbols, a trivial estimate of probability 1 is as-
sumed, making it an admissible heuristic. For the
above example, this baseline yields the probability
p(a|$) · p(b|a) · 14 · p(b|a) · 16 · p(b|a) · 12. The
more symbols are fixed, the more contiguous n-
grams become available. While being easy and ef-
ficient to compute, it can be seen that for example
the single ”a” is not involved in the computation of

1765



the score at all. In practical decipherment, like e.g.
the Zodiac-408 cipher, this forms a real problem:
While making the first decisions—i.e. traversing
the first levels of the search tree—only very few
terms actually contribute to the score estimation,
and thus only give a very coarse score. This makes
the beam search ”blind” when not many symbols
are deciphered yet. This is the reason, why Nuhn
et al. (2013) need a large beam size of several mil-
lion hypotheses in order to not lose the right hy-
pothesis during the first steps of the search.

4.2 Improved Rest Cost Estimation

The rest cost estimator we present in this paper
solves the problem mentioned in the previous sec-
tion by also including lower order n-grams: In the
example mentioned before, we would also include
unigram scores into the rest cost estimate, yielding
a score of p(a|$)·p(b|a)·13·p(a)·p(b|a)·12·p(a)12·
p(a) · p(b|a) · 12. Note that this is not a simple lin-
ear interpolation of different n-gram trivial scores:
Each symbol is scored only using the maximum
amount of context available. This heuristic is non-
admissible, since an increased amount of context
can always lower the probabilty of some symbols.
However, experiments show that this score estima-
tion function works great.

5 Extension Order

Besides having a generally good scoring function,
also the order in which decisions about the cipher
symbols are made is important for obtaining reli-
able cost estimates. Generally speaking we want
an extension order that produces partial decipher-
ments that contain useful information to decide
whether a hypothesis is worth being kept or not
as early as possible.

It is also clear that the choice of a good ex-
tension order is dependent on the score estima-
tion function SCORE. After presenting the previ-
ous state of the art, we introduce a new extension
order optimized to work together with our previ-
ously introduced rest cost estimator.

5.1 Baseline

In (Nuhn et al., 2013), two strategies are pre-
sented: One which at each step chooses the most
frequent remaining cipher symbol, and another,
which greedily chooses the next symbol to max-
imize the number of contiguously fixed n-grams
in the ciphertext.

LM order
Perplexity

Zodiac-408 Beale Pt. 2

1 19.49 18.35
2 14.09 13.96
3 12.62 11.81
4 11.38 10.76
5 11.19 9.33
6 10.13 8.49
7 10.15 8.27
8 9.98 8.27

Table 1: Perplexities of the correct decipherment
of Zodiac-408 and part two of the Beale ciphers
using the character based language model used in
beam search. The language model was trained on
the English Gigaword corpus.

5.2 Improved Extension Order
Each partial mapping φ defines a partial decipher-
ment. We want to choose an extension order such
that all possible partial decipherments following
this extension order are as informative as possible:
Due to that, we can only use information about
which symbols will be deciphered, not their actual
decipherment. Since our heuristic is based on n-
grams of different orders, it seems natural to evalu-
ate an extension order by counting how many con-
tiguously deciphered n-grams are available: Our
new strategy tries to find an extension order op-
timizing the weighted sum of contiguously deci-
phered n-gram counts2

N∑
n=1

wn ·#n.

Here n is the n-gram order, wn the weight for or-
der n, and #n the number of positions whose max-
imum context is of size n.

We perform a beam search over all possible
enumerations of the cipher vocabulary: We start
with fixing only the first symbol to decipher. We
then continue with the second symbol and evalu-
ate all resulting extension orders of length 2. In
our experiments, we prune these candidates to the
100 best ones and continue with length 3, and so
on.

Suitable values for the weights wn have to be
chosen. We try different weights for the different

2If two partial extension orders have the same score after
fixing n symbols, we fall back to comparing the scores of
the partial extension orders after fixing only the first n − 1
symbols.
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i02 h08 a03 v01 e05 d09 e07 p03 o07 s10 i11 t03 e14 d03 i03 n05 t06 h01 e13 c04 o10 u01 n01 t04 y01

o12 f 04 b04 e15 d09 f 03 o04 r06 d04 a07 b07 o09 u03 t13 f 01 o01 u08 r05 m03 i08 l09 e14 s06 f 01 r05

o07 m04 b06 u02 f 04 o10 r07 d01 s11 i03 n02 a06 n03 e05 x01 c03 a01 v01 a03 t10 i13 o03 n05 o08 r06

v01 a08 u03 l01 t11 s12 i04 x01 f 01 e01 e03 t02 b06 e07 l02 o11 w06 t08 h08 e15 s06 u04 r06 f 04 a10

...
p04 a14 p01 e07 r05 n02 u02 m02 b01 e14 r05 o03 n05 e15 d10 e01 s01 c01 r01 i03 b05 e06 s08 t01 h08

c04 e10 x01 a14 c07 t02 l09 o12 c02 a04 l09 i13 t02 y01 o02 f 03 t07 h02 e11 v01 a10 r07 l07 t11 s09

o04 t01 h03 a06 t04 n03 o06 d05 i13 f 02 f 03 i03 c04 u07 l09 t02 y01 w04 i12 l01 l02 b03 e01 h02 a09

d10 i07 n06 f 01 i13 n01 d10 i03 n05 g04 i03 t05

Table 2: Beginning and end of part two of the Beale cipher. Here we show a relabeled version of the ci-
pher, which encodes knowledge of the gold decipherment to assign reasonable names to all homophones.
The original cipher just consists of numbers.

orders on the Zodiac-408 cipher with just a beam
size of 26. With such a small beam size, the exten-
sion order plays a crucial role for a successful de-
cipherment: Depending on the choice of the differ-
ent weights wn we can observe decipherment runs
with 3 out of 54 correct mappings, up to 52 out
of 54 mappings correct. Even though the choice
of weights is somewhat arbitrary, we can see that
generally giving higher weights to higher n-gram
orders yields better results.

We use the weights w8
1 =

(0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0) for the
following experiments. It is interesting to com-
pare these weights to the perplexities of the
correct decipherment measured using different
n-gram orders (Table 5). However, at this point
we do not see any obvious connection between
perplexities and weights wn, and leave this as a
further research direction.

6 Experimental Evaluation

6.1 Zodiac Cipher

Using our new algorithm we are able to decipher
the Zodiac-408 with just a beam size of 26 and a
language model order of size 8. By keeping track
of the gold hypothesis while performing the beam
search, we can see that the gold decipherment in-
deed always remains within the top 26 scoring hy-
potheses. Our new algorithm is able to decipher
the Zodiac-408 cipher in less than 10s on a sin-
gle CPU, as compared to 48h of CPU time using
the previously published heuristic, which required
a beam size of several million. Solving a cipher
with such a small beam size can be seen as “read-
ing off the solution”.

6.2 Beale Cipher

We apply our algorithm to the second part of the
Beale ciphers with a 8-gram language model.

Compared to the Zodiac-408, which has length
408 while having 54 different symbols (7.55 ob-
servations per symbol), part two of the Beale ci-
phers has length 762 while having 182 different
symbols (4.18 observations per symbol). Com-
pared to the Zodiac-408, this is both, in terms of
redundancy, as well as in size of search space, a
way more difficult cipher to break.

Here we run our algorithm with a beam size of
10M and achieve a decipherment accuracy of 157
out of 185 symbols correct yielding a symbol error
rate of less than 5.4%. The gold decipherment is
pruned out of the beam after 35 symbols have been
fixed.

We also ran our algorithm on the other parts
of the Beale ciphers: The first part has a length
520 and contains 299 different cipher symbols
(1.74 observations per symbol), while part three
has length 618 and has 264 symbols which is
2.34 observations per mapping. However, our al-
gorithm does not yield any reasonable decipher-
ments. Since length and number of symbols indi-
cate that deciphering these ciphers is again more
difficult than for part two, it is not clear whether
the other parts are not a homophonic substitution
cipher at all, or whether our algorithm is still not
good enough to find the correct decipherment.

7 Conclusion

We presented two extensions to the beam search
method presented in (Nuhn et al., 2012), that re-
duce the search effort to decipher the Zodiac-408
enormously. These improvements allow us to au-
tomatically decipher part two of the Beale ciphers.
To the best of our knowledge, this has not been
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done before. This algorithm might prove useful
when applied to word substitution ciphers and to
learning translations from monolingual data.
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