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Abstract

We report on a series of experiments with
convolutional neural networks (CNN)
trained on top of pre-trained word vec-
tors for sentence-level classification tasks.
We show that a simple CNN with lit-
tle hyperparameter tuning and static vec-
tors achieves excellent results on multi-
ple benchmarks. Learning task-specific
vectors through fine-tuning offers further
gains in performance. We additionally
propose a simple modification to the ar-
chitecture to allow for the use of both
task-specific and static vectors. The CNN
models discussed herein improve upon the
state of the art on 4 out of 7 tasks, which
include sentiment analysis and question
classification.

1 Introduction

Deep learning models have achieved remarkable
results in computer vision (Krizhevsky et al.,
2012) and speech recognition (Graves et al., 2013)
in recent years. Within natural language process-
ing, much of the work with deep learning meth-
ods has involved learning word vector representa-
tions through neural language models (Bengio et
al., 2003; Yih et al., 2011; Mikolov et al., 2013)
and performing composition over the learned word
vectors for classification (Collobert et al., 2011).
Word vectors, wherein words are projected from a
sparse, 1-of-V encoding (here V is the vocabulary
size) onto a lower dimensional vector space via a
hidden layer, are essentially feature extractors that
encode semantic features of words in their dimen-
sions. In such dense representations, semantically
close words are likewise close—in euclidean or
cosine distance—in the lower dimensional vector
space.

Convolutional neural networks (CNN) utilize
layers with convolving filters that are applied to

local features (LeCun et al., 1998). Originally
invented for computer vision, CNN models have
subsequently been shown to be effective for NLP
and have achieved excellent results in semantic
parsing (Yih et al., 2014), search query retrieval
(Shen et al., 2014), sentence modeling (Kalch-
brenner et al., 2014), and other traditional NLP
tasks (Collobert et al., 2011).

In the present work, we train a simple CNN with
one layer of convolution on top of word vectors
obtained from an unsupervised neural language
model. These vectors were trained by Mikolov et
al. (2013) on 100 billion words of Google News,
and are publicly available.1 We initially keep the
word vectors static and learn only the other param-
eters of the model. Despite little tuning of hyper-
parameters, this simple model achieves excellent
results on multiple benchmarks, suggesting that
the pre-trained vectors are ‘universal’ feature ex-
tractors that can be utilized for various classifica-
tion tasks. Learning task-specific vectors through
fine-tuning results in further improvements. We
finally describe a simple modification to the archi-
tecture to allow for the use of both pre-trained and
task-specific vectors by having multiple channels.

Our work is philosophically similar to Razavian
et al. (2014) which showed that for image clas-
sification, feature extractors obtained from a pre-
trained deep learning model perform well on a va-
riety of tasks—including tasks that are very dif-
ferent from the original task for which the feature
extractors were trained.

2 Model

The model architecture, shown in figure 1, is a
slight variant of the CNN architecture of Collobert
et al. (2011). Let xi ∈ Rk be the k-dimensional
word vector corresponding to the i-th word in the
sentence. A sentence of length n (padded where

1https://code.google.com/p/word2vec/
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Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 ⊕ x2 ⊕ . . .⊕ xn, (1)

where ⊕ is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w ∈ Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h−1 by

ci = f(w · xi:i+h−1 + b). (2)

Here b ∈ R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn−h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn−h+1], (3)

with c ∈ Rn−h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z ◦ r) + b, (5)

where ◦ is the element-wise multiplication opera-
tor and r ∈ Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.
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Data c l N |V | |Vpre| Test
MR 2 20 10662 18765 16448 CV

SST-1 5 18 11855 17836 16262 2210
SST-2 2 19 9613 16185 14838 1821
Subj 2 23 10000 21323 17913 CV

TREC 6 10 5952 9592 9125 500
CR 2 19 3775 5340 5046 CV

MPQA 2 3 10606 6246 6083 CV

Table 1: Summary statistics for the datasets after tokeniza-
tion. c: Number of target classes. l: Average sentence length.
N : Dataset size. |V |: Vocabulary size. |Vpre|: Number of
words present in the set of pre-trained word vectors. Test:
Test set size (CV means there was no standard train/test split
and thus 10-fold CV was used).

3 Datasets and Experimental Setup

We test our model on various benchmarks. Sum-
mary statistics of the datasets are in table 1.

• MR: Movie reviews with one sentence per re-
view. Classification involves detecting posi-
tive/negative reviews (Pang and Lee, 2005).3

• SST-1: Stanford Sentiment Treebank—an
extension of MR but with train/dev/test splits
provided and fine-grained labels (very pos-
itive, positive, neutral, negative, very nega-
tive), re-labeled by Socher et al. (2013).4

• SST-2: Same as SST-1 but with neutral re-
views removed and binary labels.

• Subj: Subjectivity dataset where the task is
to classify a sentence as being subjective or
objective (Pang and Lee, 2004).

• TREC: TREC question dataset—task in-
volves classifying a question into 6 question
types (whether the question is about person,
location, numeric information, etc.) (Li and
Roth, 2002).5

• CR: Customer reviews of various products
(cameras, MP3s etc.). Task is to predict pos-
itive/negative reviews (Hu and Liu, 2004).6

3https://www.cs.cornell.edu/people/pabo/movie-review-data/
4http://nlp.stanford.edu/sentiment/ Data is actually provided
at the phrase-level and hence we train the model on both
phrases and sentences but only score on sentences at test
time, as in Socher et al. (2013), Kalchbrenner et al. (2014),
and Le and Mikolov (2014). Thus the training set is an order
of magnitude larger than listed in table 1.

5http://cogcomp.cs.illinois.edu/Data/QA/QC/
6http://www.cs.uic.edu/∼liub/FBS/sentiment-analysis.html

• MPQA: Opinion polarity detection subtask
of the MPQA dataset (Wiebe et al., 2005).7

3.1 Hyperparameters and Training

For all datasets we use: rectified linear units, filter
windows (h) of 3, 4, 5 with 100 feature maps each,
dropout rate (p) of 0.5, l2 constraint (s) of 3, and
mini-batch size of 50. These values were chosen
via a grid search on the SST-2 dev set.

We do not otherwise perform any dataset-
specific tuning other than early stopping on dev
sets. For datasets without a standard dev set we
randomly select 10% of the training data as the
dev set. Training is done through stochastic gra-
dient descent over shuffled mini-batches with the
Adadelta update rule (Zeiler, 2012).

3.2 Pre-trained Word Vectors

Initializing word vectors with those obtained from
an unsupervised neural language model is a popu-
lar method to improve performance in the absence
of a large supervised training set (Collobert et al.,
2011; Socher et al., 2011; Iyyer et al., 2014). We
use the publicly available word2vec vectors that
were trained on 100 billion words from Google
News. The vectors have dimensionality of 300 and
were trained using the continuous bag-of-words
architecture (Mikolov et al., 2013). Words not
present in the set of pre-trained words are initial-
ized randomly.

3.3 Model Variations

We experiment with several variants of the model.

• CNN-rand: Our baseline model where all
words are randomly initialized and then mod-
ified during training.

• CNN-static: A model with pre-trained
vectors from word2vec. All words—
including the unknown ones that are ran-
domly initialized—are kept static and only
the other parameters of the model are learned.

• CNN-non-static: Same as above but the pre-
trained vectors are fine-tuned for each task.

• CNN-multichannel: A model with two sets
of word vectors. Each set of vectors is treated
as a ‘channel’ and each filter is applied

7http://www.cs.pitt.edu/mpqa/
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Model MR SST-1 SST-2 Subj TREC CR MPQA
CNN-rand 76.1 45.0 82.7 89.6 91.2 79.8 83.4
CNN-static 81.0 45.5 86.8 93.0 92.8 84.7 89.6
CNN-non-static 81.5 48.0 87.2 93.4 93.6 84.3 89.5
CNN-multichannel 81.1 47.4 88.1 93.2 92.2 85.0 89.4
RAE (Socher et al., 2011) 77.7 43.2 82.4 − − − 86.4
MV-RNN (Socher et al., 2012) 79.0 44.4 82.9 − − − −
RNTN (Socher et al., 2013) − 45.7 85.4 − − − −
DCNN (Kalchbrenner et al., 2014) − 48.5 86.8 − 93.0 − −
Paragraph-Vec (Le and Mikolov, 2014) − 48.7 87.8 − − − −
CCAE (Hermann and Blunsom, 2013) 77.8 − − − − − 87.2
Sent-Parser (Dong et al., 2014) 79.5 − − − − − 86.3
NBSVM (Wang and Manning, 2012) 79.4 − − 93.2 − 81.8 86.3
MNB (Wang and Manning, 2012) 79.0 − − 93.6 − 80.0 86.3
G-Dropout (Wang and Manning, 2013) 79.0 − − 93.4 − 82.1 86.1
F-Dropout (Wang and Manning, 2013) 79.1 − − 93.6 − 81.9 86.3
Tree-CRF (Nakagawa et al., 2010) 77.3 − − − − 81.4 86.1
CRF-PR (Yang and Cardie, 2014) − − − − − 82.7 −
SVMS (Silva et al., 2011) − − − − 95.0 − −

Table 2: Results of our CNN models against other methods. RAE: Recursive Autoencoders with pre-trained word vectors from
Wikipedia (Socher et al., 2011). MV-RNN: Matrix-Vector Recursive Neural Network with parse trees (Socher et al., 2012).
RNTN: Recursive Neural Tensor Network with tensor-based feature function and parse trees (Socher et al., 2013). DCNN:
Dynamic Convolutional Neural Network with k-max pooling (Kalchbrenner et al., 2014). Paragraph-Vec: Logistic regres-
sion on top of paragraph vectors (Le and Mikolov, 2014). CCAE: Combinatorial Category Autoencoders with combinatorial
category grammar operators (Hermann and Blunsom, 2013). Sent-Parser: Sentiment analysis-specific parser (Dong et al.,
2014). NBSVM, MNB: Naive Bayes SVM and Multinomial Naive Bayes with uni-bigrams from Wang and Manning (2012).
G-Dropout, F-Dropout: Gaussian Dropout and Fast Dropout from Wang and Manning (2013). Tree-CRF: Dependency tree
with Conditional Random Fields (Nakagawa et al., 2010). CRF-PR: Conditional Random Fields with Posterior Regularization
(Yang and Cardie, 2014). SVMS : SVM with uni-bi-trigrams, wh word, head word, POS, parser, hypernyms, and 60 hand-coded
rules as features from Silva et al. (2011).

to both channels, but gradients are back-
propagated only through one of the chan-
nels. Hence the model is able to fine-tune
one set of vectors while keeping the other
static. Both channels are initialized with
word2vec.

In order to disentangle the effect of the above
variations versus other random factors, we elim-
inate other sources of randomness—CV-fold as-
signment, initialization of unknown word vec-
tors, initialization of CNN parameters—by keep-
ing them uniform within each dataset.

4 Results and Discussion

Results of our models against other methods are
listed in table 2. Our baseline model with all ran-
domly initialized words (CNN-rand) does not per-
form well on its own. While we had expected per-
formance gains through the use of pre-trained vec-
tors, we were surprised at the magnitude of the
gains. Even a simple model with static vectors
(CNN-static) performs remarkably well, giving

competitive results against the more sophisticated
deep learning models that utilize complex pool-
ing schemes (Kalchbrenner et al., 2014) or require
parse trees to be computed beforehand (Socher
et al., 2013). These results suggest that the pre-
trained vectors are good, ‘universal’ feature ex-
tractors and can be utilized across datasets. Fine-
tuning the pre-trained vectors for each task gives
still further improvements (CNN-non-static).

4.1 Multichannel vs. Single Channel Models

We had initially hoped that the multichannel ar-
chitecture would prevent overfitting (by ensuring
that the learned vectors do not deviate too far
from the original values) and thus work better than
the single channel model, especially on smaller
datasets. The results, however, are mixed, and fur-
ther work on regularizing the fine-tuning process
is warranted. For instance, instead of using an
additional channel for the non-static portion, one
could maintain a single channel but employ extra
dimensions that are allowed to be modified during
training.
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Most Similar Words for
Static Channel Non-static Channel

bad

good terrible
terrible horrible
horrible lousy

lousy stupid

good

great nice
bad decent

terrific solid
decent terrific

n’t

os not
ca never

ireland nothing
wo neither

!

2,500 2,500
entire lush

jez beautiful
changer terrific

,

decasia but
abysmally dragon

demise a
valiant and

Table 3: Top 4 neighboring words—based on cosine
similarity—for vectors in the static channel (left) and fine-
tuned vectors in the non-static channel (right) from the mul-
tichannel model on the SST-2 dataset after training.

4.2 Static vs. Non-static Representations

As is the case with the single channel non-static
model, the multichannel model is able to fine-tune
the non-static channel to make it more specific to
the task-at-hand. For example, good is most sim-
ilar to bad in word2vec, presumably because
they are (almost) syntactically equivalent. But for
vectors in the non-static channel that were fine-
tuned on the SST-2 dataset, this is no longer the
case (table 3). Similarly, good is arguably closer
to nice than it is to great for expressing sentiment,
and this is indeed reflected in the learned vectors.

For (randomly initialized) tokens not in the set
of pre-trained vectors, fine-tuning allows them to
learn more meaningful representations: the net-
work learns that exclamation marks are associ-
ated with effusive expressions and that commas
are conjunctive (table 3).

4.3 Further Observations

We report on some further experiments and obser-
vations:

• Kalchbrenner et al. (2014) report much
worse results with a CNN that has essentially

the same architecture as our single channel
model. For example, their Max-TDNN (Time
Delay Neural Network) with randomly ini-
tialized words obtains 37.4% on the SST-1
dataset, compared to 45.0% for our model.
We attribute such discrepancy to our CNN
having much more capacity (multiple filter
widths and feature maps).

• Dropout proved to be such a good regularizer
that it was fine to use a larger than necessary
network and simply let dropout regularize it.
Dropout consistently added 2%–4% relative
performance.

• When randomly initializing words not in
word2vec, we obtained slight improve-
ments by sampling each dimension from
U [−a, a] where a was chosen such that the
randomly initialized vectors have the same
variance as the pre-trained ones. It would be
interesting to see if employing more sophis-
ticated methods to mirror the distribution of
pre-trained vectors in the initialization pro-
cess gives further improvements.

• We briefly experimented with another set of
publicly available word vectors trained by
Collobert et al. (2011) on Wikipedia,8 and
found that word2vec gave far superior per-
formance. It is not clear whether this is due
to Mikolov et al. (2013)’s architecture or the
100 billion word Google News dataset.

• Adadelta (Zeiler, 2012) gave similar results
to Adagrad (Duchi et al., 2011) but required
fewer epochs.

5 Conclusion

In the present work we have described a series of
experiments with convolutional neural networks
built on top of word2vec. Despite little tuning
of hyperparameters, a simple CNN with one layer
of convolution performs remarkably well. Our re-
sults add to the well-established evidence that un-
supervised pre-training of word vectors is an im-
portant ingredient in deep learning for NLP.
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