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Abstract

This paper presents a novel approach to
improve reordering in phrase-based ma-
chine translation by using richer, syntac-
tic representations of units of bilingual
language models (BiLMs). Our method
to include syntactic information is simple
in implementation and requires minimal
changes in the decoding algorithm. The
approach is evaluated in a series of Arabic-
English and Chinese-English translation
experiments. The best models demon-
strate significant improvements in BLEU
and TER over the phrase-based baseline,
as well as over the lexicalized BiLM by
Niehues et al. (2011). Further improve-
ments of up to 0.45 BLEU for Arabic-
English and up to 0.59 BLEU for Chinese-
English are obtained by combining our de-
pendency BiLM with a lexicalized BiLM.
An improvement of 0.98 BLEU is ob-
tained for Chinese-English in the setting of
an increased distortion limit.

1 Introduction

In statistical machine translation (SMT) reorder-
ing (also called distortion) refers to the order in
which source words are translated to generate the
translation in the target language. Word orders
can differ significantly across languages. For in-
stance, Arabic declarative sentences can be verb-
initial, while the corresponding English translation
should realize the verb after the subject, hence re-
quiring a reordering. Determining the correct re-
ordering during decoding is a major challenge for
SMT. This problem has received a lot of attention
in the literature (see, e.g., Tillmann (2004), Zens
and Ney (2003), Al-Onaizan and Papineni (2006)),
as choosing the correct reordering improves read-
ability of the translation and can have a substan-
tial impact on translation quality (Birch, 2011). In

this paper, we only consider those approaches that
include a reordering feature function into the log-
linear interpolation used during decoding.

The simplest reordering model is linear distor-
tion (Koehn et al., 2003) which scores the distance
between phrases translated at steps t and t + 1 of
the derivation. This model ignores any contex-
tual information, as the distance between trans-
lated phrases is its only parameter. Lexical dis-
tortion modeling (Tillmann, 2004) conditions re-
ordering probabilities on the phrase pairs trans-
lated at the current and previous steps. Unlike
linear distortion, it characterizes reordering not in
terms of distance but type: monotone, swap, or
discontinuous.

In this paper, we base our approach to reorder-
ing on bilingual language models (Marino et al.,
2006; Niehues et al., 2011). Instead of directly
characterizing reordering, they model sequences
of elementary translation events as a Markov pro-
cess.1 Originally, Marino et al. (2006) used this
kind of model as the translation model, while more
recently it has been used as an additional model
in PBSMT systems (Niehues et al., 2011). We
adopt and generalize the approach of Niehues et al.
(2011) to investigate several variations of bilingual
language models. Our method consists of labeling
elementary translation events (tokens of bilingual
LMs) with their different contextual properties.

What kind of contextual information should be
incorporated in a reordering model? Lexical in-
formation has been used by Tillmann (2004) but
is known to suffer from data sparsity (Galley and
Manning, 2008). Also previous contributions to
bilingual language modeling (Marino et al., 2006;
Niehues et al., 2011) have mostly used lexical
information, although Crego and Yvon (2010a)
and Crego and Yvon (2010b) label bilingual to-

1Note that the standard PBSMT translation model as-
sumes that events of translating separate phrases in a sentence
are independent.
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kens with a rich set of POS tags. But in gen-
eral, reordering is considered to be a syntactic phe-
nomenon and thus the relevant features are syn-
tactic (Fox, 2002; Cherry, 2008). Syntactic in-
formation is incorporated in tree-based approaches
in SMT, allowing one to provide a more detailed
definition of translation events and to redefine de-
coding as parsing of a source string (Liu et al.,
2006; Huang et al., 2006; Marton and Resnik,
2008), of a target string (Shen et al., 2008), or
both (Chiang, 2007; Chiang, 2010). Reordering
is a result of a given derivation, and CYK-based
decoding used in tree-based approaches is more
syntax-aware than the simple PBSMT decoding
algorithm. Although tree-based approaches poten-
tially offer a more accurate model of translation,
they are also a lot more complex and requiring
more intricate optimization and estimation tech-
niques (Huang and Mi, 2010).

Our idea is to keep the simplicity of PBSMT but
move towards the expressiveness typical of tree-
based models. We incrementally build up the syn-
tactic representation of a translation during decod-
ing by adding precomputed fragments from the
source parse tree. The idea to combine the mer-
its of the two SMT paradigms has been proposed
before, where Huang and Mi (2010) introduce in-
cremental decoding for a tree-based model. On a
very general level, our approach is similar to theirs
in that it keeps track of a sequence of source syn-
tactic subtrees that are being translated at consec-
utive decoding steps. An important difference is
that they keep track of whether the visited subtrees
have been fully translated, while in our approach,
once a syntactic structural unit has been added to
the history, it is not updated anymore.

In this paper, we focus on source syntactic in-
formation. During decoding we have full access
to the source sentence, which allows us to obtain
a better syntactic analysis (than for a partial sen-
tence) and to precompute the units that the model
operates with. We investigate the following re-
search questions: How well can we capture re-
ordering regularities of a language pair by incor-
porating source syntactic parameters into the units
of a bilingual language model? What kind of
source syntactic parameters are necessary and suf-
ficient?

Our contributions can be summarized as fol-
lows: We argue that the contextual information
used in the original bilingual models (Niehues et

al., 2011) is insufficient and introduce a simple
model that exploits source-side syntax to improve
reordering (Sections 2 and 3). We perform a thor-
ough comparison between different variants of our
general model and compare them to the original
approach. We carry out translation experiments
on multiple test sets, two language pairs (Arabic-
English and Chinese-English), and with respect to
two metrics (BLEU and TER). Finally, we present
a preliminary analysis of the reorderings resulting
from the proposed models (Section 4).

2 Motivation

In this section, we elaborate on our research ques-
tions and provide background for our approach.
We also discuss existing bilingual n-gram mod-
els and argue that they are often not expressive
enough to differentiate between alternative re-
orderings. We should first note that the most com-
monly used n-gram model to distinguish between
reorderings is a target language model, which does
not take translation correspondence into account
and just models target-side fluency. Al-Onaizan
and Papineni (2006) show that target language
models by themselves are not sufficient to cor-
rectly characterize reordering. In what follows we
only discuss bilingual models.

The word-aligned sentence pair in Figure 1.a2

demonstrates a common Arabic-English reorder-
ing. As stated in the introduction, bilingual lan-
guage models capture reordering regularities as a
sequence of elementary translation events3. In the
given example, one could decompose the sequen-
tial process of translation as follows: First trans-
late the first word Alwzyr as the minister, then ArjE
as attributed, then ArtfAE as the increase and so
on. The sequence of elementary translation events
is modeled as an n-gram model (Equation 1, where
ti is a translation event). There are numerous ways
in which ti can be defined. Below we first discuss
how they have been defined within previous ap-
proaches, and then introduce our definition.

p(t1, . . . , tm) =
m∏

i=1

p(ti|ti−n+1 . . . ti−1) (1)

2.1 Lexicalized bilingual LMs
By including both source and target information
into the representation of translation events we ob-

2We used Buckwalter transliteration for Arabic words.
3By an elementary translation event we mean a translation

of some substructure of a sentence.
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the minister attributed the increase of oil prices

w ArjE Alwzyr ArtfAE AsEAr Albtrwl

(a) The original word alignment.

the

Alwzyr

minister

Alwzyr

attributed

ArjE

the

ArtfAE

increase 

ArtfAE

of 

empty

oil

Albtrwl

prices

AsEAr

(b) BiLM tokens extracted from sentence (a).

empty

w

of oil

Albtrwl

prices

AsEAr

the minister

Alwzyr ArjE

the the increase 

ArtfAE

(c) MTU tokens extracted from sentence (a).

Figure 1: Arabic-English parallel sentence, automatically word-aligned. The bilingual token sequences
are produced according to two alternative definitions (BiLM and MTU).

tain a bilingual LM. The richer representation al-
lows for a finer distinction between reorderings.
For example, Arabic has a morphological marker
of definiteness on both nouns and adjectives. If
we first translate a definite adjective and then an
indefinite noun, it will probably not be a likely se-
quence according to the translation model. This
kind of intuition underlies the model of Niehues et
al. (2011), a bilingual LM (BiLM), which defines
elementary translation events t1, ..., tn as follows:

ti = 〈ei, {f |f ∈ A(ei)}〉, (2)

where ei is the i-th target word and A : E →
P(F ) is an alignment function, E and F refer-
ring to target and source sentences, and P(·) is the
powerset function. In other words, the i-th trans-
lation event consists of the i-th target word and all
source words aligned to it. Niehues et al. (2011)
refer to the defined translation events ti as bilin-
gual tokens and we adopt this terminology.

There are alternative definitions of bilingual
language models. Our choice of the above defi-
nition is supported by the fact that it produces an
unambiguous segmentation of a parallel sentence
into tokens. Ambiguous segmentation is unde-
sirable because it increases the token vocabulary,
and thus the model sparsity. Another disadvan-
tage comes from the fact that we want to compare
permutations of the same set of elements. For ex-
ample, the two different segmentations of ba into
[ba] and [b][a] still represent the same permuta-
tion of the sequence ab. In Figure 1 one can pro-
duce a segmentation of (AsEAr Albtrwl, oil prices)
into (Albtrwl, oil) and (AsEAr, prices) or leave
it as is. If we allow for both segmentations, the
learnt probability parameters may be different for
the sum of (Albtrwl, oil) and (AsEAr, prices) and
for the unsegmented phrase.

Durrani et al. (2011) introduce an alternative
method for unambiguous bilingual segmentation
where tokens are defined as minimal phrases,
called minimal translation units (MTUs). Figure 1
compares the BiLM and MTU tokenization for a
specific example. Since Niehues et al. (2011) have
shown their model to work successfully as an addi-
tional feature in combination with commonly used
standard phrase-based features, we use their ap-
proach as the main point of reference and base our
approach on their segmentation method. In the
rest of the text we refer to Niehues et al. (2011)
as the original BiLM.4 At the same time, we do
not see any specific obstacles for combining our
work with MTUs.

2.2 Suitability of lexicalized BiLM to model
reordering

As mentioned in the introduction, lexical informa-
tion is not very well-suited to capture reordering
regularities. Consider Figure 2.a. The extracted
sequence of bilingual tokens is produced by align-
ing source words with respect to target words (so
that they are in the same order), as demonstrated
by the shaded part of the picture. If we substituted
the Arabic translation of Egyptian for the Arabic
translation of Israeli, the reordering should remain
the same. What matters for reordering is the syn-
tactic role or context of a word. By using unneces-
sarily fine-grained categories we risk running into
sparsity issues.

Niehues et al. (2011) also described an alterna-
tive variant of the original BiLM, where words are
substituted by their POS tags (Figure 2.a, shaded
part). Also, however, POS information by itself
may be insufficiently expressive to separate cor-

4Although, strictly speaking, it is not the original ap-
proach (see the references in Section 1).
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Egyptian exports to

trAjEt SAdrAt mSr l Aldwl AlErbyp
VBD NNS NNP IN DTNN DTJJ

JJ NNS TO
Arabic countries declined …

…

JJ NNS VBD

trAjEtSAdrAtmSr l AldwlAlErbyp
NNSNNP IN DTJJ

…

DTNN VBD

(a)

trAjEt SAdrAt mSr l Aldwl AlErbyp
VBD NNS NNP IN DTNN DTJJ

Arabic
JJ

AlErbyp
DTJJ

countries
NNS

Aldwl
DTNN

declined
VBD

trAjEt
VBD

Egyptian exports to
JJ NNS TO

SAdrAtmSr l
NNSNNP IN

(b)

Figure 2: Arabic-English parallel sentence, automatically parsed and word-aligned, with corresponding
sequences of bilingual tokens (in the shaded part). Comparison between translations produced via correct
(a) and incorrect (b) reorderings.

JJ NNS TO JJ NNS VBD

NNS!NNP VBD!NNS NNS!IN DTNN!DTJJ IN!DTNN ROOT!VBD

(a)

JJ NNS TOJJ NNS VBD

NNS!NNP VBD!NNS NNS!INDTNN!DTJJ IN!DTNN ROOT!VBD

(b)

Figure 3: Sequences of bilingual tokens with
source words substituted with their and their par-
ents’ POS tags: correct (a) and incorrect (b) re-
orderings.

rect and incorrect reorderings, see Figure 2.b. Al-
though the corresponding sequence of POS-tag-
substituted bilingual tokens is different from the
correct sequence (Figure 2.b, shaded part), it still
is a likely sequence. Indeed, the log-probabilities
of the two sequences with respect to a 4-gram
BiLM model5 result in a higher probability of
−10.25 for the incorrect reordering than for the
correct one (−10.39).

Since fully lexicalized bilingual tokens suffer
from data sparsity and POS-based bilingual tokens
are insufficiently expressive, the question is which
level of syntactic information strikes the right bal-
ance between expressiveness and generality.

5Section 4 contains details about data and software setup.

2.3 BiLM with dependency information

Dependency grammar is commonly used in NLP
to formalize role-based relations between words.
The intuitive notion of syntactic modification is
captured by the primitive binary relation of depen-
dence. Dependency relations do not change with
the linear order of words (Figure 2) and therefore
can provide a characterization of a word’s syntac-
tic class that invariant under reordering.

If we incorporate dependency relations into the
representation of bilingual tokens, the incorrect re-
ordering in Figure 2.b will produce a highly un-
likely sequence. For example, we can substitute
each source word with its POS tag and its par-
ent’s POS tag (Figure 3). Again, we computed
4-gram log-probabilities for the corresponding se-
quences: the correct reordering results in a sub-
stantially higher probability of−10.58 than the in-
correct one (−13.48). We may consider situations
where more fine-grained distinctions are required.
In the next section, we explore different represen-
tations based on source dependency trees.

3 Dependency-based BiLM

In this section, we introduce our model which
combines the BiLM from Niehues et al. (2011)
with source dependency information. We fur-
ther give details on how the proposed models are
trained and integrated into a phrase-based decoder.
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3.1 The general framework
In the previous section we outlined our framework
as composed of two steps: First, a parallel sen-
tence is tokenized according to the BiLM model
(Niehues et al., 2011). Next, words in the bilingual
tokens are substituted with their contextual prop-
erties. It is thus convenient to use the following
generalized definition for a token sequence t1...tn
in our framework:

ti = 〈ContE (ei), {ContF (f)|f ∈ A(ei)}〉, (3)

where ei is the i-th target word, A : E → P(F )
is an alignment function, F and E are source and
target sentences, and ContE and ContF are tar-
get and source contextual functions, respectively.
A contextual function returns a word’s contextual
property, based on its sentential context (source or
target). See Figure 4 for an example of a sequence
of BiLM tokens with a ContF defined as return-
ing the POS tag of the source word combined with
the POS tags of its parent, grandparent and sib-
lings, and ContE defined as an identity function
(see Section 3.2 for a detailed explanation of the
functions and notation).

In this work we focus on source contextual
functions (ContF ). We also exploit some very
simple target contextual functions, but do not go
into an in-depth exploration.

3.2 Dependency-based contextual functions
In NLP approaches exploiting dependency struc-
ture, two kinds of relations are of special impor-
tance: the parent-child relation and the sibling re-
lation. Shen et al. (2008) work with two well-
formed dependency structures, both of which are
defined in such a way that there is one common
parent and a set of siblings. Li et al. (2012) charac-
terize rules in hierarchical SMT by labeling them
with the POS tags of the parents of the words in-
side the rule. Lerner and Petrov (2013) model re-
ordering as a sequence of classification steps based
on a dependency parse of a sentence. Their model
first decides how a word is reordered with respect
to its parent and then how it is reordered with re-
spect to its siblings.

Based on these previous approaches, we pro-
pose to characterize contextual syntactic roles of
a word in terms of POS tags of the words them-
selves and their relatives in a dependency tree. It
is straightforward to incorporate parent informa-
tion since each node has a unique parent. As for

siblings information, we incorporate POS tags of
the closest sibling to the left and the closest to the
right. We do not include all of the siblings to avoid
overfitting. In addition to these basic syntactic re-
lations, we consider the grandparent relation.

The following list is a summary of the source
contextual functions that we use. We describe
a function with respect to the kind of contextual
property of a word it returns: (i) the word itself
(Lex); (ii) POS label of the word (Pos); (iii) POS
label of the word’s parent; (iv) POS of the word’s
closest sibling to the left, concatenated with the
POS tag of the closest sibling to the right; (v)
the POS label of the word’s grandparent. We use
target-side contextual functions returning: (i) an
empty string, (ii) POS of the word, (iii) the word
itself.

Notation. We do not use the above functions
separately to define individual BiLM models, but
use combinations of these functions. We use the
following notation for function combinations: “•”
horizontally connects source (on the left) and tar-
get (on the right) contextual functions for a given
model. For example, Lex•Lex refers to the original
(lexicalized) BiLM. We use arrows (→) to des-
ignate parental information (the arrow goes from
parent to child). Pos→Pos refers to a combination
of a function returning the POS of a word and the
POS of its parent (as in Figure 3). Pos→Pos→Pos

is a combination of the previous with the func-
tion returning the grandparent’s POS. Finally, we
use +sibl to indicate the use of the sibling func-
tion described above: For example, Pos→Pos+sibl

is a source function that returns the word’s POS,
its parent’s POS and the POS labels of the closest
siblings to left and right.6 Pos+sibl→Pos is a source
function returning the word’s own POS, the POS
of a word’s parent, and the POS tags of the par-
ent’s siblings (left- and right-adjacent).

Figure 4 represents the sentence from Figure 2
during decoding in a system with an integrated
Pos→Pos→Pos+sibl•Lex feature. It shows the se-
quence of produced bilingual tokens and corre-
sponding labels in the introduced notation.

3.3 Training

Training of dependency-based BiLMs consists of
a sequence of extraction steps: After having pro-
duced word-alignments for a bitext (Section 4),

6In case there is no sibling on one of the sides, ε (empty
word) is returned.
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Egyptian exports

trAjEt SAdrAt mSr l Aldwl AlErbyp

VBD NNS NNP IN DTNN DTJJ

JJ NNS TO

to

Egyptian

VBD NNS NNP IN

to

VBD NNS NNP IN

exports

VBD NNS

…

Figure 4: Sequence of bilingual tokens pro-
duced by a Pos→Pos→Pos+sibl•Lex after
translating three words of the source sentence:
VBD→NNS→ε+NNS+IN•Egyptian, ROOT→VBD→
ε+NNS+ε•exports, VBD→NNS→NNP+IN+ε•to (if there
is no sibling on either of the sides, ε is returned).

sentences are segmented according to Equation 3.
We produce a dependency parse of a source sen-
tence and a POS-tag labeling of a target sen-
tence. For Chinese, we use the Stanford depen-
dency parser (Chang et al., 2009). For Arabic a
dependency parser is not available for public use,
so we produce a constituency parse with the Stan-
ford parser (Green and Manning, 2010) and ex-
tract dependencies based on the rules in Collins
(1999). For English POS-tagging, we use the
Stanford POS-tagger (Toutanova et al., 2003). Af-
ter having produced a labeled sequence of tokens,
we learn a 5-gram model using SRILM (Stolcke
et al., 2011). Kneyser-Ney smoothing is used
for all model variations except for Pos•Pos where
Witten-Bell smoothing is used due to zero count-
of-counts.

3.4 Decoder integration

Dependency-based BiLMs are integrated into our
phrase-based SMT decoder as follows: Before
translating a sentence, we produce its dependency
parse. Phrase-internal word-alignments, needed
to segment the translation hypothesis into tokens,
are stored in the phrase table, based on the most
frequent internal alignment observed during train-
ing. Likewise, we store the most likely target-side
POS-labeling for each phrase pair.

The decoding algorithm is augmented with one
additional feature function and one additional, cor-
responding feature weight. At each step of the
derivation, as a new phrase pair is added to the

Training set N. of lines N. of tokens
Source side of Ar-En set 4,376,320 148M
Target side of Ar-En set 4,376,320 146M
Source side of Ch-En set 2,104,652 20M
Target side of Ch-En set 2,104,652 28M

Table 1: Training data for Arabic-English and
Chinese-English experiments.

partial translation hypothesis, this function seg-
ments the new phrase into bilingual tokens (given
the internal alignment information) and substitutes
the words in the phrase pair with syntactic labels
(given the source parse and the target POS labeling
associated with the phrase). The new syntactified
bilingual tokens are added to the stack of preced-
ing n−1 tokens, and the feature function computes
the weighted updated model probability. During
decoding, the probabilities of the BiLMs are com-
puted in a stream-based fashion, with bilingual
tokens as string tokens, and not in a class-based
fashion, with syntactic source-side representations
emitting the corresponding target words (Bisazza
and Monz, 2014).

4 Experiments

4.1 Setup
We conduct translation experiments with a base-
line PBSMT system with additionally one of the
dependency-based BiLM feature functions speci-
fied in Section 3. We compare the translation per-
formance to a baseline PBSMT system and to a
baseline augmented with the original BiLMs from
(Niehues et al., 2011).

Word-alignment is produced with GIZA++
(Och and Ney, 2003). We use an in-house imple-
mentation of a PBSMT system similar to Moses
(Koehn et al., 2007). Our baseline contains
all standard PBSMT features including language
model, lexical weighting, and lexicalized reorder-
ing. The distortion limit is set to 5. A 5-gram LM
is trained on the English Gigaword corpus (1.6B
tokens) using SRILM with modified Kneyser-Ney
smoothing and interpolation. The BiLMs were
trained as described in Section 3.3. Informa-
tion about the parallel data used for training the
Arabic-English7 and Chinese-English systems8 is

7The following Arabic-English parallel corpora were
used: LDC2006E25, LDC2004T18, several gale corpora,
LDC2004T17, LDC2005E46, LDC2007T08, LDC2004E13.

8The following Chinese-English parallel corpora
were used: LDC2002E18, LDC2002L27, LDC2003E07,
LDC2003E14, LDC2005T06, LDC2005T10, LDC2005T34,
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Configuration MT08 MT09 MT08+MT09
BLEU TER BLEU TER BLEU TER

a PBSMT baseline 45.12 47.94 48.16 44.30 46.57 46.21
b Lex•Lex 45.27 47.79 48.85N 43.96M 46.98N 45.96M

Pos•Pos 44.80 47.84 48.22 44.14M,− 46.44 46.07
c Pos→Pos•Pos 45.66N,M 47.17N,N 49.00N,− 43.45N,N 47.25N,M 45.40N,N

d Pos→Pos−sibl•Pos 45.46M,− 47.45N,M 48.69N,− 43.64N,M 47.00N,− 45.64N,−

e Pos→Pos→Pos•Pos 45.68N,M 47.42N,M 49.09N,− 43.59N,N 47.30N,M 45.60N,N

f Lex•Lex + Pos→Pos→Pos•Pos 45.63N,M 47.48N,M 49.30N,N 43.60N,M 47.38N,N 45.63N,N

Table 2: BLEU and TER scores for Arabic-English experiments. Statistically significant improvements
over the baseline (a) are marked N at the p < .01 level and M at the p < .05 level. Additionally, ·,N and
·,M indicate significant improvements with respect to BiLM Lex•Lex (b). Since TER is an error rate, lower
scores are better.

Configuration MT08 MT09 MT08+MT09
BLEU TER BLEU TER BLEU TER

Pos→Pos• ε 45.66N,M 47.44N,M 48.78N,− 43.94N,− 47.15N,− 45.77N,M

Pos→Pos•Pos 45.66N,M 47.17N,N 49.00N,− 43.45N,N 47.25N,M 45.40N,N

Pos→Pos•Lex 45.48M,− 47.34N,N 48.90N,− 43.87N,M 47.12N,− 45.69N,N

Table 3: Different combinations of a target contextual function with the Pos→Pos source contextual
function for Arabic-English. See Table 2 for the notation regarding statistical significance.

shown in Table 1.
The feature weights were tuned by using pair-

wise ranking optimization (Hopkins and May,
2011) on the MT04 benchmark (for both language
pairs). During tuning, 14 PRO parameter estima-
tion runs are performed in parallel on different
samples of the n-best list after each decoder itera-
tion. The weights of the individual PRO runs are
then averaged and passed on to the next decoding
iteration. Performing weight estimation indepen-
dently for a number of samples corrects for some
of the instability that can be caused by individual
samples. For testing, we used MT08 and MT09 for
Arabic, and MT06 and MT08 for Chinese. We use
approximate randomization (Noreen, 1989; Rie-
zler and Maxwell, 2005) to test for statistically sig-
nificant differences.

In the next two subsections we discuss the gen-
eral results for Arabic and Chinese, where we use
case-insensitive BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006) as evaluation metrics.
This is followed by a preliminary analysis of ob-
served reorderings where we compare 4-gram pre-
cision results and conduct experiments with an in-
creased distortion limit.

4.2 Arabic-English translation experiments

We are interested in how a translation system
with an integrated dependency-based BiLM fea-

and several gale corpora.

ture performs as compared to the standard PB-
SMT baseline and, more importantly, to the orig-
inal BiLM model. We consider two variants of
BiLM discussed by Niehues et al. (2011): the stan-
dard one, Lex•Lex, and the simplest syntactic one,
Pos•Pos. Results for the experiments can be found
in Table 2. In the discussion below we mostly fo-
cus on the experimental results for the large, com-
bined test set MT08+MT09.

Table 2.a–b compares the performance of the
baseline and original BiLM systems. Lex•Lex

yields strongly significant improvements over the
baseline for BLEU and weakly significant im-
provements for TER. Therefore, for the rest of the
experiments we are interested in obtaining further
improvements over Lex•Lex.

Pos→Pos•Pos (Table 2.c) demonstrates the effect
of adding minimal dependency information to a
BiLM.9 It results in strongly significant improve-
ments over the baseline and weak improvements
over Lex•Lex in terms of BLEU. We additionally
ran experiments with the different target functions
(Table 3). •Pos shows the highest results, and •ε the
lowest ones: this implies that a rather expressive
source syntactic representation alone still benefits
from target-side syntactic information. Below, our
dependency-based systems only use •Pos.

Next, we tested the effect of adding more source
9Additional significance testing, which is not shown in

Table 2, shows a strongly significant improvement over the
original syntactic BiLM Pos•Pos.
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Configuration MT06 MT08 MT06+MT08
BLEU TER BLEU TER BLEU TER

a PBSMT baseline 31.89 57.79 25.53 60.71 28.99 59.14
b Lex•Lex 32.84N 57.40N 25.91M 60.23N 29.69N 58.72N

Pos•Pos 32.31N 57.89 25.66 60.79 29.28 59.24
c Pos→Pos•Pos 32.86N,− 57.05N,M 26.09N,− 59.87N,M 29.78N,− 58.36N,N

d Pos→Pos−sibl•Pos 32.27M,− 56.63N,M 25.75 59.47N,N 29.30M,− 57.95N,N

e Pos→Pos→Pos•Pos 33.09N,− 57.54 26.35N,M 59.70N,N 30.05N,N 58.54N,−

f Lex•Lex + Pos→Pos→Pos•Pos 33.43N,N 57.00N,N 26.50N,N 59.79N,N 30.28N,N 58.30N,N

Table 4: BLEU and TER scores for Chinese-English PBSMT baseline and BiLM pipelines. See Table 2
for the notation regarding statistical significance.

Configuration MT06 MT08 MT06+MT08
BLEU TER BLEU TER BLEU TER

Pos→Pos• ε 32.43N,− 57.42N,− 25.84 60.51 29.43N,− 58.86N,−

Pos→Pos•Pos 32.86N,− 57.05N,M 26.09N,− 59.87N,M 29.78N,− 58.36N,N

Pos→Pos•Lex 32.69N,− 57.03N,M 25.72 60.17N,− 29.52N,− 58.49N,M

Table 5: Different combinations of a target contextual function with the Pos→Pos source contextual func-
tion for Chinese-English. See Table 2 for the notation regarding statistical significance.

dependency information. Pos→Pos+sibl•Pos (Ta-
ble 2.d) only improves over the PBSMT baseline
(but also shows weak improvements over Lex•Lex

for TER). It significantly degrades the perfor-
mance with respect to the Pos→Pos•Pos system (Ta-
ble 2.c). Pos→Pos→Pos•Pos (Table 2.e) shows the
best results overall for BLEU, although it must be
pointed out that the difference with Pos→Pos•Pos is
very small. With respect to TER, Pos→Pos•Pos out-
performs the grandparent variant.

So far, we can conclude that source par-
ent information helps improve translation perfor-
mance. Increased specificity of a parent (par-
ent specified by a grandparent) tends to further
improve performance. Up to now, we have
only used syntactic information and obtained con-
siderable improvements over Pos•Pos, surpass-
ing the improvement provided by Lex•Lex. Can
we gain further improvements by also adding
lexical information? To this end, we con-
duct experiments combining the best performing
dependency-based BiLM (Pos→Pos→Pos•Pos) and
the lexicalized BiLM (Lex•Lex). We hypothesize
that the two models improve different aspects of
translation: Lex•Lex is biased towards improving
lexical choice and Pos→Pos→Pos•Pos towards im-
proving reordering. Combining these two models,
we may improve both aspects. The metric results
for the combined set indeed support this hypothe-
sis (Table 2.f).

4.3 Chinese-English translation experiments

The results of the Chinese-English experiments
are shown in Table 4. In the discussion below
we mostly focus on the experimental results for
the large, combined test set MT06+MT08. We
observe the same general pattern for the Pos→Pos

source function (Table 4.c) as for Arabic-English:
the system with the •Pos target function has the
highest scores (Table 5). All of the Pos→Pos• con-
figurations show statistically significant improve-
ments over the PBSMT baseline. For TER, two
of the three Pos→Pos• variants significantly out-
perform Lex•Lex. The system with sibling in-
formation (Table 4.d) obtains quite low BLEU
results, just as in the Arabic experiments. On
the other hand, its TER results are the highest
overall. The system with the Pos→Pos→Pos•Pos

function (Table 4.e) achieves the best results
among dependency-based BiLMs for BLEU. Fi-
nally, combining Pos→Pos→Pos•Pos and Lex•Lex re-
sults in the largest and significant improvements
over all competing systems for BLEU.

4.4 Preliminary analysis of reordering in
translation experiments

In general, the experimental results show that us-
ing source dependency information yields consis-
tent improvements for translating from Arabic and
Chinese into English. On the other hand, we have
pointed out some discrepancies between the two
metrics employed, suggesting that different sys-
tem configurations may improve different aspects
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Configuration Ar-En Ch-En
MT08 MT09 MT08+MT09 MT06 MT08 MT06+MT08

a PBSMT baseline 26.14 29.81 27.88 14.48 10.96 12.89
b Lex•Lex 26.33 30.55 28.32 15.43 11.45 13.65

Pos•Pos 25.95 30.06 27.89 14.76 11.01 13.07
c Pos→Pos•Pos 26.91 31.08 28.87 15.29 11.52 13.60
e Pos→Pos−sibl•Pos 26.71 30.73 28.60 15.27 11.67 13.66
d Pos→Pos→Pos•Pos 26.78 31.09 28.80 15.42 11.70 13.77
f Lex•Lex + Pos→Pos→Pos•Pos 26.80 31.27 28.90 15.87 11.85 14.07

Table 6: 4-gram precision scores for Arabic-English and Chinese-English baseline and BiLM systems.

Configuration MT08 MT09 MT08+MT09
BLEU TER 4gram BLEU TER 4gram BLEU TER 4gram

Lex•Lex 45.19 47.06 26.41 48.39 44.11 30.23 46.72 45.97 28.21
Pos→Pos→Pos•Pos 45.49 47.31M 26.66 48.90N 43.57N 30.92 47.12N 45.52N 28.66

Table 7: BLEU, TER and 4-gram precision scores for Arabic-English Lex•Lex and Pos→Pos→Pos•Pos
with a distortion limit of 10.

Configuration MT06 MT08 MT06+MT08
BLEU TER 4gram BLEU TER 4gram BLEU TER 4gram

Lex•Lex 33.26 56.81 16.06 25.67 60.19 11.42 29.79 58.38 13.96
Pos→Pos→Pos•Pos 33.92N 56.29N 16.26 27.00N 59.58N 12.26 30.77N 57.82N 14.46

Table 8: BLEU, TER and 4-gram precision scores for Chinese-English Lex•Lex and
Pos→Pos→Pos•Pos with a distortion limit of 10.

of translation. To this end, we conducted some ad-
ditional evaluations to understand how reordering
is affected by the proposed features.

We use 4-gram precision as a metric of how
much of the reference set word order is preserved.
Table 6 shows the corresponding results for both
languages. Just as in the previous two sections,
configurations with parental information produce
the best results. For Arabic, all of the depen-
dency configurations outperform Lex•Lex. But the
system with two feature functions, one of which
is Lex•Lex, still obtains the best results, which
may suggest that the lexicalized BiLM also helps
to differentiate between word orders. For Chi-
nese, Pos→Pos→Pos•Pos and the system combining
the latter and Lex•Lex also obtain the best results.
However, other dependency-based configurations
do not outperform Lex•Lex.

All the experiments so far were run with a dis-
tortion limit of 5. But both of the languages, es-
pecially Chinese, often require reorderings over a
longer distance. We performed additional experi-
ments with a distortion limit of 10 for the Lex•Lex

and Pos→Pos→Pos•Pos systems (Tables 7 and 8). It
is more difficult to translate with a higher distor-
tion limit (Green et al., 2010) as the set of permu-
tations grows larger thereby making it more diffi-
cult to differentiate between correct and incorrect

continuations of the current hypothesis. It has also
been noted that higher distortion limits are more
likely to result in improvements for Chinese rather
than Arabic to English translation (Chiang, 2007;
Green et al., 2010).

We compared performance of fixed BiLM mod-
els at distortion lengths of 5 and 10. Arabic-
English results did not reveal statistically signif-
icant differences between the two distortion lim-
its for Pos→Pos→Pos•Pos. On the other hand, for
Lex•Lex BLEU decreases when using a distor-
tion limit of 10 compared to a limit of 5. This
implies that the dependency BiLM is more ro-
bust in the more challenging reordering setting
than the lexicalized BiLM. Chinese-English re-
sults for Pos→Pos→Pos•Pos do show significant im-
provements over the distortion limit of 5 (up to
0.49 BLEU higher than the best result in Table 4).
This indicates that the dependency-based BiLM is
better capable to take advantage of the increased
distortion limit and discriminate between correct
and incorrect reordering choices.

Comparing the results for Pos→Pos→Pos•Pos and
Lex•Lex at a distortion limit of 10, we obtain
strongly significant improvements for all metrics.
For Chinese, a larger distortion limit helps for both
configurations, but more so for our dependency
BiLM, yielding an improvement of 0.98 BLEU
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over the original, lexicalized BiLM (Table 8).

5 Conclusions

In this paper, we have introduced a simple, yet ef-
fective way to include syntactic information into
phrase-based SMT. Our method consists of en-
riching the representation of units of a bilingual
language model (BiLM). We argued that the very
limited contextual information used in the original
bilingual models (Niehues et al., 2011) can capture
reorderings only to a limited degree and proposed
a method to incorporate information from a source
dependency tree in bilingual units. In a series
of translation experiments we performed a thor-
ough comparison between various syntactically-
enriched BiLMs and competing models. The re-
sults demonstrated that adding syntactic informa-
tion from a source dependency tree to the repre-
sentations of bilingual tokens in an n-gram model
can yield statistically significant improvements
over the competing systems.

A number of additional evaluations provided an
indication for better modeling of reordering phe-
nomena. The proposed dependency-based BiLMs
resulted in an increase in 4-gram precision and
provided further significant improvements over
all considered metrics in experiments with an in-
creased distortion limit.

In this paper, we have focused on rather elemen-
tary dependency relations, which we are planning
to expand on in future work. Our current approach
is still strictly tied to the number of target tokens.
In particular, we are interested in exploring ways
to better capture the notion of syntactic cohesion
in translation (Fox, 2002; Cherry, 2008) within our
framework.
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