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Abstract

We introduce a novel compositional lan-
guage model that works on Predicate-
Argument Structures (PASs). Our model
jointly learns word representations and
their composition functions using bag-
of-words and dependency-based con-
texts. Unlike previous word-sequence-
based models, our PAS-based model com-
poses arguments into predicates by using
the category information from the PAS.
This enables our model to capture long-
range dependencies between words and
to better handle constructs such as verb-
object and subject-verb-object relations.
We verify this experimentally using two
phrase similarity datasets and achieve re-
sults comparable to or higher than the pre-
vious best results. Our system achieves
these results without the need for pre-
trained word vectors and using a much
smaller training corpus; despite this, for
the subject-verb-object dataset our model
improves upon the state of the art by as
much as~10% in relative performance.

Introduction

Recently, the main focus of research on vector
space representation is shifting from word repre-
sentations to phrase representations (Baroni and
Zamparelli, 2010; Grefenstette and Sadrzadeh,
2011; Mitchell and Lapata, 2010; Socher et al.,
2012). Combining the ideas of NNLMs and se-
mantic composition, Tsubaki et al. (2013) intro-
duced a novel NNLM incorporating verb-object
dependencies. More recently, Levy and Goldberg
(2014) presented a NNLM that integrated syntac-
tic dependencies. However, to the best of our
knowledge, there is no previous work on integrat-
ing a variety of syntactic and semantic dependen-
cies into NNLMs in order to learrcomposition
functionsas well as word representations. The fol-
lowing question thus arises naturally:

Can a variety of dependencies be used to
jointly learn both stand-alone word vectors

and their compositions, embedding them in
the same vector space?

In this work, we bridge the gap between
purely context-based (Levy and Goldberg, 2014;
Mikolov et al., 2013b; Mnih and Kavukcuoglu,
2013) and compositional (Tsubaki et al., 2013)
NNLMs by using the flexible set of categories
from Predicate-Argument-Structures (PASS).

Studies on embedding single words in a vectoMore specifically, we propose a Compositional
space have made notable successes in capturihgg-Bilinear Language Model using PASs (PAS-
their syntactic and semantic properties (TurneyCLBLM), an overview of which is shown in
and Pantel, 2010). These embeddings have aldeigure 1. The model is trained by maximizing
been found to be a useful component for Naturathe accuracy of predicting target words from their
Language Processing (NLP) systems; for exambag-of-words and dependency-based context,
ple, Turian et al. (2010) and Collobert et al. (2011)which provides information about selectional
demonstrated how low-dimensional word vectorgreference. As shown in Figure 1 (b), one of the
learned by Neural Network Language Modelsadvantages of the PAS-CLBLM is that the model
(NNLMs) are beneficial for a wide range of NLP can treat not only word vectors but also composed
tasks. vectors as contexts. Since the composed vectors
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Figure 1: An overview of the proposed model: PAS-CLBLM. (a) The PAS-LBLM predicts target words
from their bag-of-words and dependency-based context words. (b) The PAS-CLBLM predicts target
words using not only context words but also composed vector representations derived from another level
of predicate-argument structures. Underlined words are target words and we only depict the bag-of-
words vector for the PAS-CLBLM.

are treated as input to the language model imand Lapata, 2008; Mitchell and Lapata, 2010); al-

the same way as word vectors, these composddrnatively, dependencies between words can be
vectors are expected to become similar to wordused to define contexts (Goyal et al., 2013; Erk

vectors for words with similar meanings. and Pad, 2008; Thater et al., 2010).

Our empirical results demonstrate that the pro- In contrast to distributional representations,
posed model has the ability to learn meaningNNLMs represent words in a low-dimensional
ful representations for adjective-noun, noun-nounyector space (Bengio et al., 2003; Collobert et al.,
and (subject-) verb-object dependencies. On thre2011). Recently, Mikolov et al. (2013b) and Mnih
tasks of measuring the semantic similarity be-and Kavukcuoglu (2013) proposed highly scalable
tween short phrases (adjective-noun, noun-nourinodels to learn high-dimensional word vectors.
and verb-object), the learned composed vectorkevy and Goldberg (2014) extended the model of
achieve scores (Spearman’s rank correlatign Mikolov et al. (2013b) by treating syntactic depen-
comparable to or higher than those of previ-dencies as contexts.
ous models. On a task involving more complex Mitchell and Lapata (2008) investigated a vari-
phrases (subject-verb-object), our learned comety of compositional operators to combine word
posed vectors achieve state-of-the-art performanceectors into phrasal representations. Among these
(p = 0.50) with a training corpus that is an order operators, simple element-wise addition and mul-
of magnitude smaller than that used by previougiplication are now widely used to represent short
work (Tsubaki et al., 2013; Van de Cruys et al.,phrases (Mitchell and Lapata, 2010; Blacoe and
2013). Moreover, the proposed model does notapata, 2012). The obvious limitation with these
require any pre-trained word vectors produced byimple approaches is that information about word
external models, but rather induces word vectororder and syntactic relations is lost.

jointly while training. To incorporate syntactic information into com-
position functions, a variety of compositional
2 Related Work models have been proposed. These include recur-

sive neural networks using phrase-structure trees
There is a large body of work on how to represen{Socher et al., 2012; Socher et al., 2013b) and
the meaning of a word in a vector space. Distri-models in which words have a specific form of
butional approaches assume that the meaning @arameters according to their syntactic roles and
a word is determined by the contexts in which itcomposition functions are syntactically dependent
appears (Firth, 1957). The context of a word is of-on the relations of input words (Baroni and Zam-
ten defined as the words appearing in a windowparelli, 2010; Grefenstette and Sadrzadeh, 2011,
of fixed-length (bag-of-words) and a simple ap-Hashimoto et al., 2013; Hermann and Blunsom,
proach is to treat the co-occurrence statistics of 2013; Socher et al., 2013a).
word w as a vector representation for(Mitchell More recently, syntactic dependency-based
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compositional models have been proposed (Pa-Category  predicate argl arg2
perno et al., 2014; Socher et al., 2014; Tsub- adjargl heavy rain

aki et al., 2013). One of the advantages of these nounargl car accident
models is that they are less restricted by word or- verbargl2 cause rain accident
der. Among these, Tsubaki et al. (2013) intro- prepargl2 at eat restaurant

duced a novel compositional NNLM mainly fo-
cusing on verb-object dependencies and achievetble 1: Examples of predicates of different cate-
state-of-the-art performance for the task of meagories from the grammar of the Enju parsargl
suring the semantic similarity between subjectandarg2denote the first and second arguments.
verb-object phrases.

3 PAS-CLBLM: A Compositional amples of predicates of different categorieBor
Log-Bilinear Language Model Using example, a predicate of the categagrb.argl?2
Predicate-Argument Structures expresses a verb with two arguments. A graph can

be constructed by connecting words in predicate-

In some recent studies on representing words asrgument structures in a sentence; in general, these
vectors, word vectors are learned by solving wordyraphs are acyclic.
prediction tasks (Mikolov et al., 2013a; Mnih and  One of the merits of using predicate-argument
Kavukcuoglu, 2013). More specifically, given tar- structures is that they can capture dependencies
get words and their context words, the basic ide@etween more than two words, while standard syn-
is to train classifiers to discriminate between eachactic dependency structures are limited to depen-
target word and artificially induced negative tar-dencies between two words. For example, one of
get words. The feature vector of the classifiers arehe predicates in the phrase “heavy rain caused car
calculated using the context word vectors whoseccidents” is the verb “cause”, and it has two ar-
values are optimized during training. As a result,guments (“rain” and “accident”). Furthermore, ex-
vectors of words in similar contexts become simi-actly the same predicate-argument structure (pred-
lar to each other. icate: cause, first argument: rain, second argu-

Following these studies, we propose a novement: accident) is extracted from the passive form
model to jointly learn representations for wordsof the above phrase: “car accidents were caused
and their compositions by training word predic-by heavy rain”. This is helpful when capturing
tion classifiers using PASs. In this section, wesemantic dependencies between predicates and ar-
first describe the predicate-argument structures aguments, and in extracting facts or relations de-
they serve as the basis of our model. We themcribed in a sentence, such awho did what to
introduce a Log-Bilinear Language Model us-whom
ing Predicate-Argument Structures (PAS-LBLM)
to learn word representations using both bag-of3-2 A Log-Bilinear Language Model Using
words and dependency-based contexts. Finally, ~ Predicate-Argument Structures
we propose integrating compositions of words inta3.2.1 PAS-based Word Prediction

the model. Figure 1 (b) shows the overview of thethe PAS-LBLM predicts a target word given its
proposed model. PAS-based context. We assume that each word
w in the vocabularyV is represented with d-
dimensional vectow(w). When a predicate of
Due to advances in deep parsing technologiesategoryc is extracted from a sentence, the PAS-
syntactic parsers that can produce predicate-BLM computes the predictedrdimensional vec-
argument structures are becoming accurate angr p(w;) for the target wordw; from its context

3.1 Predicate-Argument Structures

fast enough to be used for practical applicationswordsw;, wo, . . . , wp:

In this work, we use the probabilistic HPSG

parserEnju (Miyao and Tsuijii, 2008) to obtain the B Ui .
predicate-argument structures of individual sen- (we) = f Zhi ©o(wi) |, (1)

tences. In its grammar, each word in a sentence—; _ ) ) )

. . . . The categories of the predicates in the Enju parser are
is treated as a predicate of a certain category Wit ,,marized ahttp://kmcs. nii.ac.jp/ - yusuke/

zero or more arguments. Table 1 shows some exnju/enju-manual/enju-output-spec.html
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where h¢ € R¥*! are category-specific weight torsv(w), andV is the set of scoring weight vec-

vectors and® denotes element-wise multiplica- torso(w). H is the set of the predicate-category-

tion. f is a non-linearity function; in this work specific weight vectoray.

we definef astanh. Based on the objective in the model of Collobert
As an example following Figure 1 (a), when et al. (2011), the model parameters are learned by

the predicate “cause” is extracted with its firstminimizing the following hinge loss:

and second arguments “rain” and “accident”, the

PAS-LBLM computesp(cause) € R¢ following N
Eq (1) ( ) Zmax(l - S(wt7p(wt)) + S(UJn,p(UJt)), 0)7
n=1
o verb_argl2 . (5)
pleause) = f(hargl © v(rain)+ 2 where the negative samplg, is a randomly sam-
hgfggfarg” ® v(accident)). pled word other thanv;, and N is the number

) ) of negative samples. In our experiments we set
In Eq. (2), _the predicate is treated as the targef; _ | Following Mikolov et al. (2013b), nega-
word, and its arguments are treated as the CORye samples were drawn from the distribution over
text words. In the same way, an argument can bﬁnigrams that we raise to the power5 and then
treated as a target word: normalize to once again attain a probability distri-
bution. We minimize the loss function in Eqg. (5)
(3) using AdaGrad (Duchi et al., 2011). For further
hverb,arg12 o v(accident)). traini d . .

arg2 raining details, see Section 4.5.

p(rain) = f(hY"P"812 ¢ y(cause)+

verb

Relationship to previous work. If we omitthe Relationship to softmax regression models.
the category-specific weight vectot$in Eqg. (1), The model parameters can be learned by maximiz-
our model is similar to the CBOW model in ing the log probability of the target word; based
Mikolov et al. (2013a). CBOW predicts a tar- on the softmax function:

get word given its surrounding bag-of-words con-

text, while our model uses its PAS-based context. p(w,|context) = s}Xp(S(wt’p(wtm . (6)

To incorporate the PAS information in our model ZL:H exp(s(w;, p(wy)))

more efficiently, we use category-specific weight__ . . ) .

vectors. Similarly, the vLBL model of Mnih and This is equivalent to a softmax rggressmn model.
Kavukcuoglu (2013) uses different weight vec—HO\_Never' when the vocqbul_afv 1S Iarg_e, com-
tors depending on the position relative to the tarpufung the softma}x function in Eq. (6) is compu-
get word. As with previous neural network lan- tationally expensive. If we do not need probabil-

guage models (Collobert et al., 2011; Huang et al.'qty d|str_|but|ons over words, we are not necessar
2012), our model and VLBL can use weight ma—'ly restricted to using the probabilistic expressions.

trices rather than weight vectors. However, as diS_RecentIy, several methods have been proposed 1o

cussed by Mnih and Teh (2012), using weight Vec_efficiently learn word representations rather than

tors makes the training significantly faster than us—ﬁf_ﬁulr ate Ian?uzaz%elg)gdfﬂls_t(]Collgbz rt eLal" 2|O 11
ing weight matrices. Despite the simple formula-zc;lgov e(tj al, bi t" fn:| anth avu kcu]?gul,
tion of the element-wise operations, the category- ), and our objective follows the work of Col-

specific weight vectors efficiently propagate PAS-II\(/)lk)(_Ehrt etda|l<. (2?(11)' IMI?(;T; ett ?" (g(ﬁ 3.b) an dd
based context information as explained next. nih and Kavukcuoglu ( ) trained their mod-

els using word-dependent scoring weight vectors
3.2.2 Training Word Vectors which are the arguments of our scoring function
To train the PAS-LBLM, we use a scoring function in Eq. (4). During development we also trained

to evaluate how well the target worg, fits the —our model using the negative sampling technique
given context: of Mikolov et al. (2013b); however, we did not ob-

serve any significant performance difference.

T
S(we, plwe)) = v(w wt ), 4
(w, p(wr)) = (we) " plwr) ) Intuition behind the PAS-LBLM. Here we

whered(w;) € R?! is the scoring weight vector briefly explain how each class of the model pa-
for w;. Thus, the model parameters in the PAS+ameters of the PAS-LBLM contributes to learning
LBLM are (V,V,H). V is the set of word vec- word representations at each stochastic gradient
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decent step. The category-specific weight vector8.4 Bag-of-Words Sensitive PAS-CLBLM

providﬁ_thhe PAS inf(IJran_stion florcontext yvord VEC- Both the PAS-LBLM and PAS-CLBLM can take
tors which we would like to leam. During train- meaningful relationships between words into ac-

ing, context word vectors having the same IDAS'count. However, at times, the number of context

based syntactic roleg are updated similarly. Th%vords can be limited and the ability of other mod-
word-dependent scoring weight vectors propagatgs  take ten or more words from a fixed con-

the information on which words should, or should . i 5 bag-of-words (BoW) fashion could com-

not, 'be preqllcted. In' effgct, context word Ye_Ctorspensate for this sparseness. Huang et al. (2012)
making similar contributions to word predictions

e _ ) combined local and global contexts in their neural
are updated similarly. The non-linear functigh

- - ) network language models, and motivated by their
provides context wo_rds with information on the work, we integrate bag-of-words vectors into our
other context words in the same PAS. In this way,oodels. Concretely, we add an additional input
word vectors are expected to be learned eﬁicientl¥erm to Eq. (L):

by the PAS-LBLM.

3.3 Learning Composition Functions p(we) = f (Z hi ® v(w;) + hgow © v(BoW) |,

=1

As explained in Section 3.1, predicate-argument (8)
structures inherently form graphs whose nodes arghereh§ w € R4*! are additional weight vec-

words in a sentence. Using the graphs, we can inors, andv(BoW) € R%*! is the average of the

tegrate relationships between multiple predicateword vectors in the same sentence. To construct

argument structures into our model. the v(BoW) for each sentence, we average the
When the context word; in Eq. (1), excluding word vectors of nouns and verbs in the same sen-

predicate words, has another predicate-argumeimgénce, excluding the target and context words.

of categoryc’ as a dependency, we replaggy;)

with the vector produced by the composition func-4 Experimental Settings

tion for the predicate category. For example,

as shown in Figure 1 (b), when the first argumen

“rain” of the predicate “cause” is also the argu-We used the British National Corpus (BNC) as our

ment of the predicate “heavy”, we first computetraining corpus, extracted 6 million sentences from

thed-dimensional composed vector representatioithe original BNC files, and parsed them using the

for “heavy” and “rain”: Enju parser described in Section 3.1.

fl.l Training Corpus

g (v(heavy), v(rain)), @) 4.2 Word Sense Disambiguation Using
Part-of-Speech Tags

wherec’ is the categorpadj_argl, andg. is afunc-  In general, words can have multiple syntactic us-
tion to combine input vectors for the predicate-ages. For example, the worchusecan be a
categoryc’. We can use any composition func- noun or a verb depending on its context. Most
tion that produces a representation of the samef the previous work on learning word vectors
dimensionality as its inputs, such as elementignores this ambiguity since word sense disam-
wise addition/multiplication (Mitchell and Lap- biguation could potentially be performed after the
ata, 2008) or neural networks (Socher et al.word vectors have been trained (Huang et al.,
2012). We then replace(rain) in Eq. (2) with 2012; Kartsaklis and Sadrzadeh, 2013). Some re-
g (v(heavy), v(rain)). When the second argu- cent work explicitly assigns an independent vec-
ment “accident” in Eq. (2) is also the argumenttor for each word usage according to its part-of-
of the predicate “car”,u(accident) is replaced speech (POS) tag (Hashimoto et al., 2013; Kart-
with g.r(v(car),v(accident)). ¢’ is the predi- saklis and Sadrzadeh, 2013). Alternatively, Baroni
cate categoryounargl. These multiple relation- and Zamparelli (2010) assigned different forms of
ships of predicate-argument structures should prgparameters to adjectives and nouns.

vide richer context information. We refer to the In our experiments, we combined each word
PAS-LBLM with composition functions as PAS- with its corresponding POS tags. We used the
CLBLM. base-forms provided by the Enju parser rather than
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Model | Composition Function
Add] v(wl) + U('wg)
Add,; | tanh(v(wy) + v(ws))

second

(eee) (see)(9e0) (vee) (ee0) (seW Wadd | m¢ . ® v(wy) +mé,q © v(ws)
world war eat food expensive restaurant ad] argl
Wadd,| tanh(mg; ©v(w1) 4+ mg ©v(ws))

Figure 2: Two PAS-CLBLM training samples.  Taple 2: Composition functions used in this work.
The examples are shown as dfjective-nourde-
pendency betweemn; ="heavy” andw, ="“rain”.

the surface-forms, and used the first two charac-
ters of the POS tags. For exampB, VBP,
VBZ VBG, VBD, VBN were all mapped to/B.
This resulted in two kinds afause causeNNand  As described in Section 3.3, we are free to se-
causeVB and we used the 100,000 most frequentect any composition functions in Eq. (7). To
lowercased word-POS pairs in the BNC. maintain the fast training speed of the PAS-
LBLM, we avoid dense matrix-vector multiplica-
tion in our composition functions. In Table 2,
4.3 Selection of Training Samples Based on  we list the composition functions used for the
Categories of Predicates PAS-CLBLM. Add; is element-wise addition and
Add,; is element-wise addition with the non-
To train the PAS-LBLM and PAS-CLBLM, we linear functiontanh. The subscript$ andnl de-
could use all predicate categories. However, ounote the worddinear andnon-linear. Similarly,
preliminary experiments showed that these cateWadd; is element-wise weighted addition and
gories covered many training samples which ardVadd,,; is element-wise weighted addition with
not directly relevant to our experimental setting,the non-linear functiortanh. The weight vec-
such as determiner-noun dependencies. We thusrsm¢ € R%*! in Table 2 are predicate-category-
manually selected the categories used in our exspecific parameters which are learned during train-
periments. The selected predicates are listed iing. We investigate the effects of the non-linear
Table 1: adj.argl, nounargl, prep.argl2 and function tanh for these composition functions.
verbargl2 These categories should provideln the formulations of the backpropagation algo-
meaningful information on selectional preferencerithm, non-linear functions allow the input vectors
For example, th@repargl2denotes prepositions to weakly interact with each other.
with two arguments, such as “eat at restaurant”
which means that the verb “eat” is related to the4.5 Initialization and Optimization of Model
noun “restaurant” by the preposition “at”. Prepo- Parameters

sitions are one of the predicate_s'whose qrgumenwe assigned a 50-dimensional vector for each
can be verbs, and thus prepositions are importan,r4.pOs pair described in Section 4.2 and ini-
|ntra|n|r_19 the composm'on functlons_for (s_ubject-) tialized the vectors and the scoring weight vec-
verb-object dependencies as described in the next o using small random values. In part inspired
paragraph. by the initialization method of the weight matrices
Another point we had to consider was howin Socher et al. (2013a), we initialized all values
to construct the training samples for the PAS-in the compositional weight vectors of the Wadd
CLBLM. We constructed compositional training and Wadg, as1.0. The context weight vectors
samples as explained in Section 3.3 whémwas were initialized using small random values.
adj.argl, nounargl, or verbargl2 Figure 2 We minimized the loss function in Eq. (5) us-
shows two examples in addition to the examplang mini-batch SGD and AdaGrad (Duchi et al.,
in Figure 1 (b). Using such training samples, the2011). Using AdaGrad, the SGD’s learning rate
PAS-CLBLM could, for example, recognize from is adapted independently for each model parame-
the two predicate-argument structures, “eat foodter. This is helpful in training the PAS-LBLM and
and “eat at restaurant”, that eating foods is an acPAS-CLBLM, as they have conditionally depen-
tion that occurs at restaurants. dent model parameters with varying frequencies.

4.4 Selection of Composition Functions
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The mini-batch size wa32 and the learning rate ~ Model | AN | NN | VO
was(0.05 for each experiment, and no regulariza- PAS-CLBLM (Add,) 0.52| 0.44| 0.35
tion was used. To verify the semantics captured by PAS-CLBLM (Add,;) | 0.52| 0.46 | 0.45
the proposed models during training and to tune PAS-CLBLM (Wadd) | 0.48| 0.39| 0.34
the hyperparameters, we used iWerdSim-353 PAS-CLBLM (Wadd,) | 0.48| 0.40| 0.39

word similarity data set (Finkelstein et al., 2001). PAS-LBLM 0.41)| 0.44 0.39
word2vec 0.52| 0.48| 0.42

5 Evaluation on Phrase Similarity Tasks BL w/ BNC 0.48| 0.50| 0.35
_ _ HB w/ BNC 0.41| 0.44| 0.34

5.1 Evaluation Settings KS w/ ukWaC n/a | n/a | 0.45
The learned models were evaluated on four tasks K w/ BNC n/a | nfa | 0.41
of measuring the semantic similarity between Human agreement [ 0.52]0.49] 0.55

short phrases. We performed evaluation using the

three tasks (AN, NN, and VO) in the databpto- Table 3: Spearman’s rank correlation scosder
vided by Mitchell and Lapata (2010), and the Svothe three tasks: AN, NN, and VO.

task in the dataséfprovided by Grefenstette and

Sadrzadeh (2011).

The datasets include pairs of short phrases e%huie??sﬁssetievizfé df?Jnizgz p:rzzs\i/hvgisvfsm_
tracted from the BNC. AN, NN, and VO con- . ’ )
trained the PAS-LBLM, we used the element-wise

tain 108 phrase pairs of adjective-noun, rloun]addition function. To compute the composed vec
noun, and verb-object. SVO contains 200 pairs o : ) . )
) P rs using the Waddand Wadg, functions, we

subject-verb-object phrases. Each phrase pair hég ) . .
multiple human-ratings: the higher the rating is.,used the categories of the predicatj.argl,

the more semantically similar the phrases. For extounargl andverbgrnghsted.ln Tablg =
As a strong baseline, we trained t8&ip-gram

ample, the subject-verb-object phrase pair of “stu- . )
dent write name” and “student spell name” has g"n°del of Mikolov et alé. (2013b) using the pub-
high rating. The pair “people try door” and “peo- licly available word2vec software. We fed the

ple judge door” has a low rating. POS-tagged BNC into word2vec since our models

For evaluation we used the Spearman’s ranl%'““ze POS tags and trained 50-dimensional word

correlation between the human-ratings and thevectors using word2vec. For each phrase we then

cosine similarity between the composed Vecto}:omputed the representation using vector addition.
pai_rs. We mainly_ usemon-averagedhgman- 5.2 AN, NN, and VO Tasks
ratings for each pair, and as described in Section
5.3, we also usedveragechuman-ratings for the Table 3 shows the correlation scoyefor the AN,
SVO task. Each phrase pair in the datasets was aflN, and VO tasksHuman agreemerdenotes the
notated by more than two annotators. In the cas#ter-annotator agreement. The word2vec baseline
of averaged human ratings, we averaged multipl@chieves unexpectedly high scores for these three
human-ratings for each phrase pair, and in the cag@sks. Previously these kinds of models (Mikolov
of non-averaged human-ratings, we treated eact al., 2013b; Mnih and Kavukcuoglu, 2013) have
human-rating as a separate annotation. mainly been evaluated for word analogy tasks and,
With the PAS-CLBLM, we represented eachto date, there has been no work using these word
phrase using the composition functions listed invectors for the task of measuring the semantic sim-
Table 2. When there was no composition presentlarity between phrases. However, this experimen-
we represented the phrase using element-wise atfl result suggests that word2vec can serve as a
dition. For example, when we trained the PAS-Strong baseline for these kinds of tasks, in addi-

CLBLM with the composition function Wadg,  tion to word analogy tasks.
In Table 3,BL, HB, KS, andK denote the work

2 . H H ~

http://www.cs.technion.ac.il/ gabr/ of Blacoe and Lapata (2012), Hermann and Blun-
resources/data/wordsim353/ .

3http://homepages.inf.ed.ac.uk/ som (2013), Kartsaklis and Sadrzadeh (2013), and
s0453356/share Kartsaklis et al. (2013) respectively. Among these,

“http://www.cs.ox.ac.uk/activities/ -
compdistmeaning/GS2011data.txt Shttps://code.google.com/p/word2vec/
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Averaged Non-averaged
Model Corpus | SVO-SVO | SVO-V || SVO-SVO | SVO-V
PAS-CLBLM (Add) 0.29 0.34 0.24 0.28
PAS-CLBLM (Add,;) 0.27 0.32 0.24 0.28
PAS-CLBLM (Wadd) BNC 0.25 0.26 0.21 0.23
PAS-CLBLM (Wadd,) 0.42 0.50 0.34 0.41
PAS-LBLM 0.21 0.06 0.18 0.08
word2vec BNC 0.12 0.32 0.12 0.28
Grefenstette and Sadrzadeh (201 BNC n/a n/a 0.21 n/a
Tsubaki et al. (2013) ukWaC n/a 0.47 n/a n/a
Van de Cruys et al. (2013) ukwacC n/a n/a 0.32 0.37
Human agreement \ \ 0.75 0.62

Table 4. Spearman’s rank correlation scopder the SVO task.Averageddenotes the calculated by
averaged human ratings, aNdn-averagedienotes the calculated by non-averaged human ratings.

only Kartsaklis and Sadrzadeh (2013) used thelear from our experimental results that they fall
ukWacC corpus (Baroni et al., 2009) which is an or-short for more complex structures such as those
der of magnitude larger than the BNC. As we carninvolved in the SVO task.

see in Table 3, the PAS-CLBLM (Adg achieves Our PAS-CLBLM (Wadd,) model outperforms
scores comparable to and higher than those of thge previous state-of-the-art scores for the SVO
baseline and the previous state-of-the-art resultsask as reported by Tsubaki et al. (2013) and
In relation to these results, the Wagohd Wadg,  Van de Cruys et al. (2013). As such, there are three
variants of the PAS-CLBLM do not achieve greatkey points that we would like to emphasize:
improvements in performance. This indicates that

simple word vector addition can be sufficient to (1) the difference of the training corpus size,
compose representations for phrases consisting of

word pairs. (2) the necessity of the pre-trained word vectors,

5.3 SVO Task (3) the modularity of deep learning models.
Table 4 shows the correlation scopefr the SVO
task. The scorep for this task are reported for ~ Tsubaki et al. (2013) and Van de Cruys et al.
both averagedand non-averagechuman ratings. (2013) used the ukWaC corpus. This means our
This is due to a disagreement in previous workmodel works better, despite using a considerably
regarding which metric to use when reporting re-smaller corpora. It should also be noted that, like
sults. Hence, we report the scores for both settingds, Grefenstette and Sadrzadeh (2011) used the
in Table 4. Another point we should consider isBNC corpus.
that some previous work reported scores based on The model of Tsubaki et al. (2013) is based on
the similarity between composed representationseural network language models which use syn-
(Grefenstette and Sadrzadeh, 2011; Van de Cruytactic dependencies between verbs and their ob-
et al., 2013), and others reported scores based gects. While their novel model, which incorpo-
the similarity between composed representationgates the idea ofo-compositionalityworks well
and word representations of landmark verbs fronwith pre-trained word vectors produced by exter-
the dataset (Tsubaki et al., 2013; Van de Cruys etal models, it is not clear whether the pre-trained
al., 2013). For completeness, we report the scoregectors are required to achieve high scores. In
for both settingsSVO-SVGndSVO-Vin Table 4.  contrast, we have achieved state-of-the-art results
The results show that the weighted additionwithout the use of pre-trained word vectors.
model with the non-linear functiotanh (PAS- Despite our model's scalability, we trained 50-
CLBLM (Wadd,))) is effective for the more com- dimensional vector representations for words and
plex phrase task. While simple vector addition istheir composition functions and achieved high
sufficient for phrases consisting of word pairs, itisscores using this low dimensional vector space.
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model | 4| AN |NN | VO | SVO model | Bow || AN | NN | VO | SVO

Add 50| 0.52]0.44| 0.35| 0.24 Add w/ || 0.52| 0.44| 0.35| 0.24
1000 0.51| 0.51| 0.43| 0.31 w/o || 0.48| 0.46| 0.38| 0.23
Addy 50| 0.52| 0.46| 0.45| 0.24 Addy w/ || 0.52| 0.46| 0.45| 0.24
1000 0.51| 0.50| 0.45| 0.31 w/o || 0.50| 0.47| 0.41| 0.15
Wadd 50| 0.48| 0.39| 0.34| 0.21 Wadd w/ || 0.48| 0.39| 0.34| 0.21
1000| 0.50| 0.49| 0.43| 0.32 w/o || 0.47| 0.39| 0.38| 0.21
Wadd, 50| 0.48| 0.40| 0.39| 0.34 Wadd, w/ || 0.48| 0.40| 0.39| 0.34
1000 || 0.51| 0.48 | 0.48| 0.34 w/o || 0.52| 0.42| 0.33| 0.26

Table 5: Comparison of the PAS-CLBLM betweenTable 6: Scores of the PAS-CLBLM with and
d = 50 andd = 1000. without BoW contexts.

This maintains the possibility to incorporate re-noun phrase are noun phrases, and (subject-) verb-
cently developed deep learning composition funcobject phrases can be regarded as complete sen-
tions into our models, such as recursive neuralences. Therefore, different kinds of context infor-
tensor networks (Socher et al., 2013b) and comation might be required for both groups.
compositional neural networks (Tsubaki et al., o _
2013). While such complex composition functions® ~ Qualitative Analysis on Composed
slow down the training of compositional models, ~ Vectors
richer information could be captured during train- o, open question that remains is to what ex-
Ing. tent composition affects the representations pro-
duced by our PAS-CLBLM model. To evalu-
ate this we assigned a vector for each composed
To see how the dimensionality of the word vectorsrepresentation. For example, the adjective-noun
affects the scores, we trained the PAS-CLBLM fordependency “hea\/y rain” would be assigned an
each setting using 1,000-dimensional word vectorfndependent vector. We added the most fre-
and set the learning rate 01. Table 5 shows quent 100,000 adjective-noun, noun-noun, and
the scores for all four tasks. Note that we only re-(subject-) verb-object tuples to the vocabulary and
port the scores for the settimpn-averaged SVO- the resulting vocabulary contained 400,000 to-
SVOhere. As shown in Table 5, the scores consiskens (100,000+8100,000). A similar method
tently improved with a few exceptions. The scoresior treating frequent neighboring words as single
p = 0.51 for the NN task an¢» = 0.48 for the  words was introduced by Mikolov et al. (2013b).
VO task are the best results to date. However, thejowever, some dependencies, such as (subject-)
scorep = 0.34 for the SVO task did not improve verb-object phrases, are not always captured when
by increasing the dimensionality. This means thatonsidering only neighboring words.
simply increasing the dimensionality of the word Taple 7 (No compositiopshows some examples
vectors does not necessarily lead to better resultsf predicate-argument dependencies with their
for complex phrases. closest neighbors in the vector space according
to the cosine similarity. The table shows that the
5.5 Effects of Bag-of-Words Contexts learned vectors of multiple words capture seman-
Lastly, we trained the PAS-CLBLM without the tic similarity. For example, the vector of “heavy
bag-of-words contexts described in Section 3.4ain” is close to the vectors of words which ex-
and used 50-dimensional word vectors. As can beress the phenometeavily raining The vector
seen in Table 6, large score improvements weref “new york” captures the concept ofiaajor city.
observed only for the VO and SVO tasks by in-The vectors of (subject-) verb-object dependencies
cluding the bag-of-words contexts and the non-also capture the semantic similarity, which is the
linearity function. It is likely that the results de- main difference to previous approaches, such as
pend on how the bag-of-words contexts are conthat of Mikolov et al. (2013b), which only consider
structed. However, we leave this line of analysisneighboring words. These results suggest that the
as future work. Both adjective-noun and noun-PAS-CLBLM can learn meaningful composition

5.4 Effects of the Dimensionality
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Query | No composition | Composition not always be sufficient. This can be observed in
(AN) thunderstorm onshine Table 3 and Table 4, which demonstrates that verb-
heavy | downpour storm related tasks are more difficult than noun-phrase
rain inzzr?rd _ d;]i_z”zle tasks.
gneuncer;?manager gx'ecutive While No compositioncaptures the seman-
(AN) vice president director tic similarity well using independent parameters,
chief | executive director representative there is the issue of data sparseness. As the size of
executive prOject manager officer .
managing director administrator the vocabulary increases, the number of tuples of
second war war word dependencies increases rapidly. In this ex-
\(I\’I\IO’\I’% Fi'éit”e crash ‘r";%’("ad periment, we used only the 300,000 most frequent
war last war holocaust tpples. Irl contrast to this, Fhe; Iegrned cqmposi-
great war warfare tion functions can capture similar information us-
oslo york ing only word vectors and a small set of predicate
(NN) paris toronto .
new birmingham paris categories.
york moSscow edinburgh .
madrid glasgow 7 Conclusion and Future Work
make order make
(VCf() Carrxt/ survey g”OW J We have presented a compositional log-bilinear
?;yrﬁem Bg ax preon;ﬁge language model using predicate-argument struc-
impose tax bring tures that incorporates both bag-of-words and
VO) grc,g'e(\e’e ngeCt'Ve Zﬁ(‘e\"?ate dependency-based contexts. In our experiments
1 VI .
solve imp;qovg qﬂamy overcome the learned composed vectors achieve state-of-the-
problem | deliver information resolve art scores for the task of measuring the semantic
ﬁg%orﬂggﬁndevebpmerttC:kC:m"e”t similarity between short phrases. For the subject-
(SVO) | event take p?ace get verb-object phrase task, the result is achieved
meeting | end season win without any pre-trained word vectors using a cor-
take | discussion take place | put pus an order of magnitude smaller than that of the
place do work gain

previous state of the art. For future work, we will

Table 7: Nearest neighbor vectors for multipleinvestigate how our models and the resulting vec-

words. POS-tags are not shown for simplicity.

category | predicate| argl| arg2

tor representations can be helpful for other unsu-
pervised and/or supervised tasks.
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