Language Modeling with Power Low Rank Ensembles

Ankur P. Parikh
School of Computer Science
Carnegie Mellon University

apparikh@cs.cmu.edu

Chris Dyer
School of Computer Science
Carnegie Mellon University
cdyer@dcs.cmu.edu

Abstract

We present power low rank ensembles
(PLRE), a flexible framework for n-gram
language modeling where ensembles of
low rank matrices and tensors are used
to obtain smoothed probability estimates
of words in context. Our method can
be understood as a generalization of n-
gram modeling to non-integer n, and in-
cludes standard techniques such as abso-
lute discounting and Kneser-Ney smooth-
ing as special cases. PLRE training is effi-
cient and our approach outperforms state-
of-the-art modified Kneser Ney baselines
in terms of perplexity on large corpora as
well as on BLEU score in a downstream
machine translation task.

1 Introduction

Language modeling is the task of estimating the
probability of sequences of words in a language
and is an important component in, among other
applications, automatic speech recognition (Ra-
biner and Juang, 1993) and machine translation
(Koehn, 2010). The predominant approach to lan-
guage modeling is the m-gram model, wherein
the probability of a word sequence P (w1, ..., wy)
is decomposed using the chain rule, and then a
Markov assumption is made: P(ws,...,w;) ~
T, P(wilwi=t +1)- While this assumption sub-
stantially reduces the modeling complexity, pa-
rameter estimation remains a major challenge.
Due to the power-law nature of language (Zipf,
1949), the maximum likelihood estimator mas-
sively overestimates the probability of rare events
and assigns zero probability to legitimate word se-
quences that happen not to have been observed in
the training data (Manning and Schiitze, 1999).
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Many smoothing techniques have been pro-
posed to address the estimation challenge. These
reassign probability mass (generally from over-
estimated events) to unseen word sequences,
whose probabilities are estimated by interpolating
with or backing off to lower order n-gram models
(Chen and Goodman, 1999).

Somewhat surprisingly, these widely used
smoothing techniques differ substantially from
techniques for coping with data sparsity in other
domains, such as collaborative filtering (Koren et
al., 2009; Su and Khoshgoftaar, 2009) or matrix
completion (Candes and Recht, 2009; Cai et al.,
2010). In these areas, low rank approaches based
on matrix factorization play a central role (Lee
and Seung, 2001; Salakhutdinov and Mnih, 2008;
Mackey et al., 2011). For example, in recom-
mender systems, a key challenge is dealing with
the sparsity of ratings from a single user, since
typical users will have rated only a few items. By
projecting the low rank representation of a user’s
(sparse) preferences into the original space, an es-
timate of ratings for new items is obtained. These
methods are attractive due to their computational
efficiency and mathematical well-foundedness.

In this paper, we introduce power low rank en-
sembles (PLRE), in which low rank tensors are
used to produce smoothed estimates for n-gram
probabilities. Ideally, we would like the low rank
structures to discover semantic and syntactic relat-
edness among words and n-grams, which are used
to produce smoothed estimates for word sequence
probabilities. In contrast to the few previous low
rank language modeling approaches, PLRE is not
orthogonal to n-gram models, but rather a gen-
eral framework where existing n-gram smoothing
methods such as Kneser-Ney smoothing are spe-
cial cases. A key insight is that PLRE does not
compute low rank approximations of the original
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joint count matrices (in the case of bigrams) or ten-
sors i.e. multi-way arrays (in the case of 3-grams
and above), but instead altered quantities of these
counts based on an element-wise power operation,
similar to how some smoothing methods modify
their lower order distributions.

Moreover, PLRE has two key aspects that lead
to easy scalability for large corpora and vocabu-
laries. First, since it utilizes the original n-grams,
the ranks required for the low rank matrices and
tensors tend to be remain tractable (e.g. around
100 for a vocabulary size V' =~ 1 x 10°) leading
to fast training times. This differentiates our ap-
proach over other methods that leverage an under-
lying latent space such as neural networks (Bengio
et al., 2003; Mnih and Hinton, 2007; Mikolov et
al., 2010) or soft-class models (Saul and Pereira,
1997) where the underlying dimension is required
to be quite large to obtain good performance.
Moreover, at test time, the probability of a se-
quence can be queried in time O(FKpq,) Where
Kmaz 18 the maximum rank of the low rank matri-
ces/tensors used. While this is larger than Kneser
Ney’s virtually constant query time, it is substan-
tially faster than conditional exponential family
models (Chen and Rosenfeld, 2000; Chen, 2009;
Nelakanti et al., 2013) and neural networks which
require O(V') for exact computation of the nor-
malization constant. See Section 7 for a more de-
tailed discussion of related work.

QOutline: We first review existing n-gram
smoothing methods (§2) and then present the in-
tuition behind the key components of our tech-
nique: rank (§3.1) and power (§3.2). We then
show how these can be interpolated into an ensem-
ble (§4). In the experimental evaluation on English
and Russian corpora (§5), we find that PLRE out-
performs Kneser-Ney smoothing and all its vari-
ants, as well as class-based language models. We
also include a comparison to the log-bilinear neu-
ral language model (Mnih and Hinton, 2007) and
evaluate performance on a downstream machine
translation task (§6) where our method achieves
consistent improvements in BLEU.

2 Discount-based Smoothing

We first provide background on absolute discount-
ing (Ney et al., 1994) and Kneser-Ney smooth-
ing (Kneser and Ney, 1995), two common n-gram
smoothing methods. Both methods can be formu-
lated as back-off or interpolated models; we de-
scribe the latter here since that is the basis of our

low rank approach.

2.1 Notation

Let ¢(w) be the count of word w, and similarly
c(w,w;—1) for the joint count of words w and
wi_1. For shorthand we will define wi to denote
the word sequence {w;, w;41,...,wj—1,w;}. Let
JS(w,) refer to the maximum likelihood estimate
(MLE) of the probability of word w;, and simi-
larly P(w;|w;—1) for the probability conditioned
on a history, or more generally, P(w; lwi=t 41)

Let N_(w;) := {w : c(w;,w) > 0} be
the number of distinct words that appear be-
fore w;. More generally, let N_(w!_, )
Hw @ c(wj_, 1, w) > 0} Similarly, let
Ni(wihy ) = Hw s e(w,wiZ) ) > 0}. V
denotes the vocabulary size.

2.2 Absolute Discounting

Absolute discounting works on the idea of inter-
polating higher order n-gram models with lower-
order n-gram models. However, first some prob-
ability mass must be “subtracted” from the higher
order n-grams so that the leftover probability can
be allocated to the lower order n-grams. More
specifically, define the following discounted con-
ditional probability:

max{c(w;, wf:rllﬂ) — D,0}

=)= 4
C(w;:}z—i-l)

Then absolute discounting Pyps(-) uses the follow-
ing (recursive) equation:

Pabs(wi|w§:7ll+1) = ﬁD(wi|w§:7lz+1)

+ ’Y(w§:1+1)Pabs(wi‘w2:rlL+2)

where y(w!"} 41) is the leftover weight (due to
the discounting) that is chosen so that the con-
ditional distribution sums to one: ~y(w."} 1) =
D
C(wz:711+1
Pabs(wi) = P(wz)

Discontinuity: Note that if c(w;:}qL Jrl) = 0, then
v(w~).1) = 2, in which case y(w!_} ) is set
to 1. We will see that this discontinuity appears in
PLRE as well.

)N+(wfjl 41). For the base case, we set
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Palt(wl |w

2.3 Kneser Ney Smoothing

Ideally, the smoothed probability should preserve
the observed unigram distribution:

ﬁ(wi)z Z Psm(wi‘wg:rlki-l)ﬁ( z n+1) (1)

Wi —ny1

where Py (w;|w! "} +1) is the smoothed condi-
tional probability that a model outputs. Unfortu-
nately, absolute discounting does not satisfy this
property, since it exclusively uses the unaltered
MLE unigram model as its lower order model. In
practice, the lower order distribution is only uti-
lized when we are unsure about the higher order
distribution (i.e., when ~(+) is large). Therefore,
the unigram model should be altered to condition
on this fact.

This is the inspiration behind Kneser-Ney (KN)
smoothing, an elegant algorithm with robust per-
formance in n-gram language modeling. KN
smoothing defines alternate probabilities P (-):

Pp (wl|wZ n+1)

i— n+1)
max{N_(wi_,,;)=D0)

Z“’ZN ( i— n+1)

The base case for unigrams reduces to
P (w;) = % Intuitively P¥(w;) is

proportional to the number of unique words that
precede w;. Thus, words that appear in many dif-
ferent contexts will be given higher weight than
words that consistently appear after only a few
contexts. These alternate distributions are then
used with absolute discounting:

Pkn(wl|wz n+1) Palt(wl‘wz n+1)

+’Y( w;_ n+1)Pkﬂ(wl|wz n+2) (2)

where we set P, (w;) = P¥(w;). By definition,
KN smoothing satisfies the marginal constraint in
Eq. 1 (Kneser and Ney, 1995).

3 Power Low Rank Ensembles

In n-gram smoothing methods, if a bigram count
¢(w;, w;—1) is zero, the unigram probabilities are
used, which is equivalent to assuming that w; and
w;—1 are independent ( and similarly for general
n). However, in this situation, instead of back-
ing off to a 1-gram, we may like to back off to a
“1.5-gram” or more generally an order between 1
and 2 that captures a coarser level of dependence

ifn =n

Jifn' <n

between w; and w;_1 and does not assume full in-
dependence.

Inspired by this intuition, our strategy is to con-
struct an ensemble of matrices and tensors that
not only consists of MLE-based count informa-
tion, but also contains quantities that represent lev-
els of dependence in-between the various orders in
the model. We call these combinations power low
rank ensembles (PLRE), and they can be thought
of as n-gram models with non-integer n. Our ap-
proach can be recursively formulated as:

Palt (w2|w

Pplre(wi|w:":7ll+1) i— n—i—l)

i—1
+ ’yo(w;?—n—i-l) (ZD1 (wZ’wZ n_;’_l) 4+ .....
+ 77771(w§i71b+1) (ZDn (w2|wz n+1)

(i) (Pa(ului=dn)) ) ) @)

where Z1, ..., Z,, are conditional probability ma-
trices that represent the intermediate n-gram or-
ders! and D is a discount function (specified in
§4).

This formulation begs answers to a few crit-
ical questions. How to construct matrices that
represent conditional probabilities for intermedi-
ate n? How to transform them in a way that
generalizes the altered lower order distributions
in KN smoothing? How to combine these matri-
ces such that the marginal constraint in Eq. 1 still
holds? The following propose solutions to these
three queries:

1. Rank (Section 3.1): Rank gives us a concrete
measurement of the dependence between w;
and w;—1. By constructing low rank ap-
proximations of the bigram count matrix and
higher-order count tensors, we obtain matri-
ces that represent coarser dependencies, with
a rank one approximation implying that the
variables are independent.

2. Power (Section 3.2): In KN smoothing, the
lower order distributions are not the original
counts but rather altered estimates. We pro-
pose a continuous generalization of this alter-
ation by taking the element-wise power of the
counts.

'with a slight abuse of notation, let Z D; be shorthand
for Z;,p,
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3. Creating the Ensemble (Section 4): Lastly,
PLRE also defines a way to interpolate the
specifically constructed intermediate n-gram
matrices. Unfortunately a constant discount,
as presented in Section 2, will not in general
preserve the lower order marginal constraint
(Eq. 1). We propose a generalized discount-
ing scheme to ensure the constraint holds.

3.1 Rank

We first show how rank can be utilized to construct
quantities between an n-gram and an n — 1-gram.
In general, we think of an n-gram as an n™ or
der tensor i.e. a multi-way array with n indices
{1, .., in}. (A vector is a tensor of order 1, a ma-
trix is a tensor of order 2 etc.) Computing a spe-
cial rank one approximation of slices of this tensor
produces the n — 1-gram. Thus, taking rank x ap-
proximations in this fashion allows us to represent
dependencies between an n-gram and n — 1-gram.

Consider the bigram count matrix B with
N counts which has rank V. Note that
P(wi|wi_1) = % Additionally, B
can be considered a random variable that is the re-
sult of sampling N tuples of (w;,w;_1) and ag-
glomerating them into a count matrix. Assum-
ing w; and w;_; are independent, the expected
value (with respect to the empirical distribution)
E[B] = NP(w;)P(w;—1), which can be rewrit-
ten as being proportional to the outer product of
the unigram probability vector with itself, and is
thus rank one.

This observation extends to higher order
n-grams as well. Let C™ be the n'" order tensor

where C™(wj, ..., Wi—n+1) = (Wi, oy Wi 41)-
Furthermore ~ denote ~ C™(:,w. ) 42:%)  to

be the V x V matrix slice of C™ where
Wi—n+2,---,W;—1 are held fixed to a particular
sequence W;—p42,...,Wi—1. Then if w; is con-
ditionally 1ndependent of w;_p4+1 given w;
then E[C™(:, W} } nt2> )] 1s rank one Vi) 2
However, it is rare that these matrices are ac-
tually rank one, either due to sampling vari-
ance or the fact that w; and w;_; are not in-
dependent. What we would really like to say
is that the best rank one approximation B
(under some norm) of B is o< P(w;)P(wi_1).
While this statement is not true under the /o
norm, it is true under generalized KL diver-
gence (Lee and Seung, 2001): gKL(A||B) =

Ay
> ij <Aij log(g) — Aij + Bij))

—1
z n—+2°

In particular, generalized KL divergence pre-
serves row and column sums: if M (%) is the best
rank  approximation of M under gK L then the
row sums and column sums of M) and M are
equal (Ho and Van Dooren, 2008). Leveraging
this property, it is straightforward to prove the fol-
lowing lemma:

Lemma 1. Ler B") be the best rank k ap-
proximation of B under gKL. Then B
P(w;)P(w;i—1) and Yw; 1 s.t. c(w;—1) # 0:

. B(l)(wi,wzq)
Plwi) = S BO(w, wi_y)

For more general n, let Cn’(ﬁ) Li—n+i2 be the

~i—1 .
z n+2’ -

best rank r approximation of C”(

) ur?dfr gK L. Then similarly, sz‘—n 41 S
C(wzl:nJrl) > 0:
P(wilwi—1, ..., wi—ny2)

n,(l) |
Cz 1,...,01— n+2(w17wi7n+1)

Z Li— n+2(w wz n—l—l)

4

Thus, by selecting 1 < x < V, we obtain count
matrices and tensors between n and n — 1-grams.
The condition that c¢(w;_,, +1) > ( corresponds to
the discontinuity discussed in §2.2.

3.2 Power

Since KN smoothing alters the lower order distri-
butions instead of simply using the MLE, vary-
ing the rank is not sufficient in order to generalize
this suite of techniques. Thus, PLRE computes
low rank approximations of altered count matri-
ces. Consider taking the elementwise power p of
the bigram count matrix, which is denoted by B.
For example, the observed bigram count matrix
and associated row sum:

10 20 10 o /40
Bl=| o 50 o v 5.0
20 0 0 2.0

As expected the row sum is equal to the uni-
gram counts (which we denote as u). Now con-
sider B9-:

1.0 14 1.0 3.4
B-0.5 — 0 2.9 0 rovgum 9.9
1.4 0 0 1.4

Note how the row sum vector has been altered.
In particular since w; (corresponding to the first
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row) has a more diverse history than ws, it has
a higher row sum (compared to in u where ws
has the higher row sum). Lastly, consider the case
when p = 0:

10 10 1.0\ o /30
BY = 0 10 0 v 1.0
1.0 0 0 1.0

The row sum is now the number of unique words
that precede w; (since B is binary) and is thus
equal to the (unnormalized) Kneser Ney unigram.
This idea also generalizes to higher order n-grams
and leads us to the following lemma:

Lemma 2. Let B\*5) be the best rank r ap-
proximation of B'? under gKL. Then Yw;_1 s.t.

c(wi—1) # 0:

BOY (w;, w;_q)

Palt w;) =
) = S B (w,w)
For more general n, let C;L_’(ﬁf?i_n_ﬂ be the best

rank k approximation of C™)(:, w;’:}m, 1) un-

der gK L. Similarly, vw;jwl s.t. c(wg:rlH_l) > 0:

P (wil w1, ooy Wi t2)

n,(0,1) |
Ci—l,...,i—n+2 (wi, wi—n—i—l)

- n,(0,1) —1
Zw Ci—l,.‘.,i—n+2 (w7 w;—n—&—l)

(&)

4 Creating the Ensemble

Recall our overall formulation in Eq. 3; a naive
solution would be to set Z1,..., Z;, to low rank
approximations of the count matrices/tensors un-
der varying powers, and then interpolate through
constant absolute discounting. Unfortunately, the
marginal constraint in Eq. 1 will generally not hold
if this strategy is used. Therefore, we propose a
generalized discounting scheme where each non-
zero m-gram count is associated with a different
discount D (w;, wz:}l, +1)- The low rank approxi-
mations are then computed on the discounted ma-
trices, leaving the marginal constraint intact.

For clarity of exposition, we focus on the spe-
cial case where n = 2 with only one low rank
matrix before stating our general algorithm:

Priee(wi|wi—1) = Ppy (wilw;_1)

+ vo(wi-1) (ZD1 (wi|lwi—1) + '71(wi—1)Pah(wi)>

(6)

Our goal is to compute Dy, Dy and Z; so
that the following lower order marginal constraint
holds:

P(w;) = Z Pplre(wz’\wi—ﬂﬁ(wi—l) (N

Wi—1

Our solution can be thought of as a two-
step procedure where we compute the discounts
Dy,D; (and the ~(w;—1) weights as a by-
product), followed by the low rank quantity Z;.
First, we construct the following intermediate en-
semble of powered, but full rank terms. Let
Y?i be the matrix such that Y (w;, w;—1) :=
c(w;, wi—1)P7. Then define

Ppwr(wi |wl-,1) = Yél;[):l)

+ vo(wi—1) (Yg)ll) (wi|wi—1)

(wilwi-1)

+ ’y1(wz—1)Y(p2:0) (wi!wi—1)> (8)

where with a little abuse of notation:

. c(wi wi71)pj —D»'(wi ’wi71)
YP] w; |lw. — ) J }
D (wilwi-1) o, (Wi, w1 )7

Note that P¥(w;) has been replaced with
Y (P2=0) (y;|w;_1), based on Lemma 2, and will
equal P (w;) once the low rank approximation is
taken as discussed in § 4.2).

Since we have only combined terms of differ-
ent power (but all full rank), it is natural choose
the discounts so that the result remains unchanged
i.e., Pywr(wi|lwi—1) = P(w;|w;—1), since the low
rank approximation (not the power) will imple-
ment smoothing. Enforcing this constraint gives
rise to a set of linear equations that can be solved
(in closed form) to obtain the discounts as we now
show below.

4.1 Step 1: Computing the Discounts

To ensure the constraint that Py (w;|wi—1) =
P(w;|w;_1), it is sufficient to enforce the follow-
ing two local constraints:

Y ) (w;wi—q) = Yé)éj)(wi’wi—l)

+ yj(wi,l)Y(pf“)(wﬂwi,l) for j =0,1
)]

This allows each D; to be solved for indepen-
dently of the other {Dj/};i+;. Let ¢;;—1 =

c(wi, wi-1), Cg,i—l = c(w;, w;—1)P?, and d{ﬂ._l =
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Dj(wi, wi_1>.
Vws, wi—1:

Expanding Eq. 9 yields that

=1

Zzzzl

1
Cg,i—l zz 1 + (Zz 10— 1) Cgi—l (10)
i+1
Zi Cg,ifl Ez CZ,zfl Zz C’Z’L 1
which can be rewritten as:
cj“l
—dl. |+ <Zd 1) Welo—0 (1)
— J+1
b e ZZCZ’L 1

Note that Eq. 11 decouples across w;_1 since the
only d" _, terms that are dependent are the ones
that share the preceding context w;_1.

It is stralghtforward to see that setting &

3,5—1
proportional to 07 _, satisfies Eq. 11. Furthermore
it can be shown that all solutions are of this form
(i.e., the linear system has a null space of exactly
one). Moreover, we are interested in a particular
subset of solutions where a single parameter d.,
(independent of w;_1) controls the scaling as in-
dicated by the following lemma:

Lemma 3. Assume that p; > pjy1. Choose any
0<d <1 Setd,, = d.l Vij. The

2,0—1 4,0—1
resulting discounts satisfy Eq. 11 as well as the

inequality constraints 0 < d] 1 < 0271_1 Fur-
thermore, the leftover weight ’y] takes the form:

Zz i,0—1 d*Z'LCZjll
Ei Czy',ifl Zz Cz,zfl

Proof. Clearly this choice of d{,i—l
Eq. 11.

vj(wi—1) =

satisfies
The largest possible value of dfi_l is
AT pi > pjy, implies ¢/, > ¢! Thus

1,0—1° 4,0—1 4,0—1"
the inequality constraints are met. It is then easy

to verify that  takes the above form. 0

The above lemma generalizes to longer contexts
(i.e. n > 2) as shown in Algorithm 1. Note that if
pj = pj+1 then Algorithm 1 is equivalent to scal-
ing the counts e.g. deleted-interpolation/Jelinek
Mercer smoothing (Jelinek and Mercer, 1980). On
the other hand, when p;11 = 0, Algorithm 1
is equal to the absolute discounting that is used
in Kneser-Ney. Thus, depending on p;;q, our
method generalizes different types of interpola-
tion schemes to construct an ensemble so that the
marginal constraint is satisfied.

Algorithm 1 Compute D

In: Count tensor C", powers p;, pj+1 such that
pj = pj+1, and parameter d.

Out: Discount D; for powered counts C™(rs)
and associated leftover weight v,

1: Set D (w;, w;_ 111+1) = d*c(wi,wf:iﬂ)pﬂl.
2:
1 .
i—1 d Z (wl’ n—‘,—l)pﬂ+1

Ewi C(wla wz;nJrl)pj

Algorithm 2 Compute Z

In: Count tensor C", power p, discounts D, rank
K

Out: Discounted low rank conditional probability
table Z 6" (w; |wi~

i +1) (represented implicitly)

1: Compute powered counts C™ (7).
2: Compute denominators Z (wi,ngl )
i—1
vwi—n—i—l s.t. C( 7, n+1) > 0

3: Compute dlscounted powered  counts
Cg(ﬂ) — Cn,(-p) _
4: For each slice M i1 = Cn’(’p)(:
1 n+2 D
LWL} L5, 1) compute
M® = min M i1 — Allxr
A>0:rank(A)=k i—n+2
(stored implicitly as M ®) = LR)
Set ZB (@=L, ) = M)
5: Note that

Z(g’n) (wi,w; 711+1)

Zwi C(U)Z', wz n+1)p

ZE (wilwi=}, ) =

4.2 Step 2: Computing Low Rank Quantities

The next step is to compute low rank approxi-
mations of Yl()’; 5) to obtain Z D, such that the inter-
mediate marginal constraint in Eq. 7 is preserved.
This constraint trivially holds for the intermediate
ensemble Py, (w;|w;—1) due to how the discounts
were derived in § 4.1. For our running bigram ex-

(PJ K5)

ample, define Zp, to be the best rank ; ap-

proximation to Y(p 7783

according to g K L and let
Pjikj . .
Z0" (wilwi—q) = Zp, (wi, wi1)
D >, (Wi, wi—1)Ps

Note that Zp3"™ (w;|w;—1) is a valid (discounted)
conditional probablhty since gK L preserves
row/column sums so the denominator remains un-
changed under the low rank approximation. Then
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using the fact that ZOV (w;|w;_1)
(Lemma 2) we can embellish Eq. 6 as

= P"(w)

Ppire(wi|wi—1) = Ppy(w;|wi—1)+

Yo(wi-1) <Z§§i’“1)(wilw¢1) + '}’l(wil)Palt(wi)>

Leveraging the form of the discounts and
row/column sum preserving property of giK L, we
then have the following lemma (the proof is in the
supplementary material):

Lemma 4. Let P,y (w;|w;—1) indicate the PLRE
smoothed conditional probability as computed by
Eq. 6 and Algorithms 1 and 2. Then, the marginal
constraint in Eq. 7 holds.

4.3 More general algorithm

In general, the principles outlined in the previ-
ous sections hold for higher order n-grams. As-
sume that the discounts are computed according
to Algorithm 1 with parameter d, and Z, 02 J’M)

computed according to Algorithm 2. Note that as

shown in Algorithm 2, for higher order n-grams,

the Z, (07:53) are created by taking low rank approx-
1mat10n]s of slices of the (powered) count tensors
(see Lemma 2 for intuition). Eq. 3 can now be
embellished:

Palt (wl ’U)

Pplre(wi‘wf:vlwl) i n—‘,—l)

i—1 (p1,k
zl'—n+1)(ZDi v
_1 b _1
wizhon) (2877 il )

+ (W) (Pplre(wi!wi‘i +2)) ) ) (12)

+ vo(w (wl|wl n+1)—|— .....

+ ’Yn—l(

Lemma 4 also applies in this case and is given in
Theorem 1 in the supplementary material.

4.4 Links with KN Smoothing

In this section, we explicitly show the relation-
ship between PLRE and KN smoothing. Rewrit-
ing Eq. 12 in the following form:

Potre(wilw]—p 1) = Pyt (wilwi 1)

+70:n(wi—n+1)Pplre(wi|wi—n+2) (13)

where P;?rr;m(wi]wf_}l 41) contains the terms in

i—1
i— n—l—l) =
Hh 07h( i n—i—l) we can leverage the form of

Eq. 12 except the last, and 7., (w;

the discount, and using the fact that p, ;1 = 02

d 77+1N+( w;_ n+1)
C(wifn+1)

With this form of (-), Eq. 13 is remarkably sim-

ilar to KN smoothing (Eq. 2) if KN’s discount pa-

rameter D is chosen to equal (d,)"".

The difference is that P(-) has been replaced
with the alternate estimate P;frrém(wzml " +1)
which have been enriched via the low rank struc-
ture. Since these alternate estimates were con-
structed via our ensemble strategy they contain
both very fine-grained dependencies (the origi-
nal n-grams) as well as coarser dependencies (the
lower rank n-grams) and is thus fundamentally
different than simply taking a single matrix/tensor
decomposition of the trigram/bigram matrices.

Moreover, it provides a natural way of setting
d, based on the Good-Turing (GT) estimates em-
ployed by KN smoothing. In particular, we can set
d, to be the (1) + 1)™ root of the KN discount D
that can be estimated via the GT estimates.

i—1
1—n—1

Yo:n ('LU

4.5 Computational Considerations

PLRE scales well even as the order n increases.
To compute a low rank bigram, one low rank ap-
proximation of a V' x V matrix is required. For
the low rank trigram, we need to compute a low
rank approximation of each slice Cg('p (1,
) Va;—1. While this may seem daunting at first, in
practice the size of each slice (number of non-zero
rows/columns) is usually much, much smaller than
V', keeping the computation tractable.

Similarly, PLRE also evaluates conditional
probabilities at evaluation time efficiently. As
shown in Algorithm 2, the normalizer can be pre-
computed on the sparse powered matrix/tensor. As
a result our test complexity is O(> 74 x;) where
Nwtal 1S the total number of matrices/tensors in
the ensemble. While this is larger than Kneser
Ney’s practically constant complexity of O(n),
it is much faster than other recent methods for
language modeling such as neural networks and
conditional exponential family models where ex-
act computation of the normalizing constant costs
o(V).

S Experiments

To evaluate PLRE, we compared its performance
on English and Russian corpora with several vari-

*for derivation see proof of Lemma 4 in the supplemen-
tary material
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ants of KN smoothing, class-based models, and
the log-bilinear neural language model (Mnih and
Hinton, 2007). We evaluated with perplexity in
most of our experiments, but also provide results
evaluated with BLEU (Papineni et al., 2002) on a
downstream machine translation (MT) task. We
have made the code for our approach publicly
available 3.

To build the hard class-based LMs, we utilized
mkcls?, a tool to train word classes that uses
the maximum likelihood criterion (Och, 1995) for
classing. We subsequently trained trigram class
language models on these classes (correspond-
ing to 2_order HMMs) using SRILM (Stolcke,
2002), with KN-smoothing for the class transition
probabilities. SRILM was also used for the base-
line KN-smoothed models.

For our MT evaluation, we built a hierarchi-
cal phrase translation (Chiang, 2007) system us-
ing cdec (Dyer et al., 2010). The KN-smoothed
models in the MT experiments were compiled us-
ing KenLM (Heafield, 2011).

5.1 Datasets

For the perplexity experiments, we evaluated our
proposed approach on 4 datasets, 2 in English and
2 in Russian. In all cases, the singletons were re-
placed with “<unk>" tokens in the training cor-
pus, and any word not in the vocabulary was re-
placed with this token during evaluation. There is
a general dearth of evaluation on large-scale cor-
pora in morphologically rich languages such as
Russian, and thus we have made the processed

Large-Russian corpus available for comparison 3.

e Small-English: APNews corpus (Bengio et al.,
2003): Train - 14 million words, Dev - 963,000,
Test - 963,000. Vocabulary- 18,000 types.

e Small-Russian: Subset of Russian news com-
mentary data from 2013 WMT translation task’:
Train- 3.5 million words, Dev - 400,000 Test -
400,000. Vocabulary - 77,000 types.

e Large-English: English Gigaword, Training -
837 million words, Dev - 8.7 million, Test - 8.7
million. Vocabulary- 836,980 types.

e Large-Russian: Monolingual data from WMT
2013 task. Training - 521 million words, Vali-
dation - 50,000, Test - 50,000. Vocabulary- 1.3
million types.

3http://www.cs.cmu.edu/~apparikh/plre.html

*http://code.google.com/p/giza-pp/

Shttp://www.statmt.org/wmt 1 3/training-monolingual-
nc-v8.tgz

For the MT evaluation, we used the parallel data
from the WMT 2013 shared task, excluding the
Common Crawl corpus data. The newstest2012
and newstest2013 evaluation sets were used as the
development and test sets respectively.

5.2 Small Corpora

For the class-based baseline LMs, the
number of classes was selected from
{32,64,128,256,512,1024} (Small-English)
and {512,1024} (Small-Russian). We could not
go higher due to the computationally laborious
process of hard clustering. For Kneser-Ney, we
explore four different variants: back-off (BO-KN)
interpolated (int-KN), modified back-off (BO-
MKN), and modified interpolated (int-MKN).
Good-Turing estimates were used for discounts.
All models trained on the small corpora are of
order 3 (trigrams).

For PLRE, we used one low rank bigram and
one low rank trigram in addition to the MLE n-
gram estimates. The powers of the intermediate
matrices/tensors were fixed to be 0.5 and the dis-
counts were set to be square roots of the Good Tur-
ing estimates (as explained in § 4.4). The ranks
were tuned on the development set. For Small-
English, the ranges were {le — 3,5¢ — 3} (as a
fraction of the vocabulary size) for both the low
rank bigram and low rank trigram models. For
Small-Russian the ranges were {5e — 4, le — 3}
for both the low rank bigram and the low rank tri-
gram models.

The results are shown in Table 1. The best class-
based LM is reported, but is not competitive with
the KN baselines. PLRE outperforms all of the
baselines comfortably. Moreover, PLRE’s perfor-
mance over the baselines is highlighted in Russian.
With larger vocabulary sizes, the low rank ap-
proach is more effective as it can capture linguistic
similarities between rare and common words.

Next we discuss how the maximum n-gram or-
der affects performance. Figure 1 shows the rela-
tive percentage improvement of our approach over
int-MKN as the order is increased from 2 to 4 for
both methods. The Small-English dataset has a
rather small vocabulary compared to the number
of tokens, leading to lower data sparsity in the bi-
gram. Thus the PLRE improvement is small for
order = 2, but more substantial for order = 3. On
the other hand, for the Small-Russian dataset, the
vocabulary size is much larger and consequently
the bigram counts are sparser. This leads to sim-
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Dataset class-1024(3) | BO-KN(3) | int-KN(3) | BO-MKN(3) | int-MKN(3) | PLRE(3)
Small-English Dev 115.64 99.20 99.73 99.95 95.63 91.18
Small-English Test 119.70 103.86 104.56 104.55 100.07 95.15
Small-Russian Dev 286.38 281.29 265.71 287.19 263.25 241.66
Small-Russian Test 284.09 277.74 262.02 283.70 260.19 238.96
Table 1: Perplexity results on small corpora for all methods.
Relative improvementas function Dataset int-MKN(4) PLRE(4)
f n-gram order Large-English Dev 73.21 71.21
S 10 orn-g Large-English Test | 77.90 £ 0.203 | 75.66 & 0.189
* / Small-Russian Large-Russian Dev 326.9 297.11
E > 8 - - - - . Large-Russian Test | 289.63 4+ 6.82 | 264.59 + 5.839
Q
£ X .
g¢ 6 Table 2: Mean perplexity results on large corpora,
09 . ..
_g- E 4 with standard deviation.
,3 - 2 Small-English Dataset PLRE Training Time
B Small-English | 3.96 min ( order 3) / 8.3 min (order 4)
& 0 Small-Russian | 4.0 min (order 3) / 4.75 min (order 4)
> 3 a Large-English 3.2 hrs (order 4)
Large-Russian 8.3 hrs (order 4)
max n-gram order
Table 3: PLRE training times for a fixed parameter
Figure 1: Relative percentage improvement of setting6. 8 Intel Xeon CPUs were used.

PLRE over int-MKN as the maximum n-gram or-
der for both methods is increased.

ilar improvements for all orders (which are larger
than that for Small-English).

On both these datasets, we also experimented
with tuning the discounts for int-MKN to see if
the baseline could be improved with more careful
choices of discounts. However, this achieved only
marginal gains (reducing the perplexity to 98.94
on the Small-English test set and 259.0 on the
Small-Russian test set).

Comparison to LBL (Mnih and Hinton,
2007): Mnih and Hinton (2007) evaluate on the
Small-English dataset (but remove end markers
and concatenate the sentences). They obtain per-
plexities 117.0 and 107.8 using contexts of size 5
and 10 respectively. With this preprocessing, a 4-
gram (context 3) PLRE achieves 108.4 perplexity.

5.3 Large Corpora

Results on the larger corpora for the top 2 per-
forming methods “PLRE” and “int-MKN” are pre-
sented in Table 2. Due to the larger training size,
we use 4-gram models in these experiments. How-
ever, including the low rank 4-gram tensor pro-
vided little gain and therefore, the 4-gram PLRE
only has additional low rank bigram and low rank
trigram matrices/tensors. As above, ranks were
tuned on the development set. For Large-English,
the ranges were {le — 4, 5e —4, le — 3} (as a frac-
tion of the vocabulary size) for both the low rank

Method BLEU
int-MKN@4) | 17.63 £0.11

PLRE(4) 17.79 £ 0.07
Smallest Diff | PLRE+0.05
Largest Diff PLRE+0.29

Table 4: Results on English-Russian translation
task (mean = stdev). See text for details.

bigram and low rank trigram models. For Small-
Russian the ranges were {le—5, 5e—5, le—4} for
both the low rank bigram and the low rank trigram
models. For statistical validity, 10 test sets of size
equal to the original test set were generated by ran-
domly sampling sentences with replacement from
the original test set. Our method outperforms “int-
MKN” with gains similar to that on the smaller
datasets. As shown in Table 3, our method obtains
fast training times even for large datasets.

6 Machine Translation Task

Table 4 presents results for the MT task, trans-
lating from English to Russian’. We used
MIRA (Chiang et al., 2008) to learn the feature
weights. To control for the randomness in MIRA,
we avoid retuning when switching LMs - the set
of feature weights obtained using int-MKN is the
same, only the language model changes. The

% As described earlier, only the ranks need to be tuned, so
only 2-3 low rank bigrams and 2-3 low rank trigrams need to
be computed (and combined depending on the setting).

"the best score at WMT 2013 was 19.9 (Bojar et al.,
2013)
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procedure is repeated 10 times to control for op-
timizer instability (Clark et al., 2011). Unlike
other recent approaches where an additional fea-
ture weight is tuned for the proposed model and
used in conjunction with KN smoothing (Vaswani
et al., 2013), our aim is to show the improvements
that PLRE provides as a substitute for KN. On av-
erage, PLRE outperforms the KN baseline by 0.16
BLEU, and this improvement is consistent in that
PLRE never gets a worse BLEU score.

7 Related Work

Recent attempts to revisit the language model-
ing problem have largely come from two direc-
tions: Bayesian nonparametrics and neural net-
works. Teh (2006) and Goldwater et al. (2006)
discovered the connection between interpolated
Kneser Ney and the hierarchical Pitman-Yor pro-
cess. These have led to generalizations that ac-
count for domain effects (Wood and Teh, 2009)
and unbounded contexts (Wood et al., 2009).

The idea of using neural networks for language
modeling is not new (Miikkulainen and Dyer,
1991), but recent efforts (Mnih and Hinton, 2007,
Mikolov et al., 2010) have achieved impressive
performance. These methods can be quite expen-
sive to train and query (especially as the vocab-
ulary size increases). Techniques such as noise
contrastive estimation (Gutmann and Hyvérinen,
2012; Mnih and Teh, 2012; Vaswani et al., 2013),
subsampling (Xu et al., 2011), or careful engi-
neering approaches for maximum entropy LMs
(which can also be applied to neural networks)
(Wu and Khudanpur, 2000) have improved train-
ing of these models, but querying the probabil-
ity of the next word given still requires explicitly
normalizing over the vocabulary, which is expen-
sive for big corpora or in languages with a large
number of word types. Mnih and Teh (2012) and
Vaswani et al. (2013) propose setting the normal-
ization constant to 1, but this is approximate and
thus can only be used for downstream evaluation,
not for perplexity computation. An alternate tech-
nique is to use word-classing (Goodman, 2001;
Mikolov et al., 2011), which can reduce the cost
of exact normalization to O(+/V'). In contrast, our
approach is much more scalable, since it is triv-
ially parallelized in training and does not require
explicit normalization during evaluation.

There are a few low rank approaches (Saul and
Pereira, 1997; Bellegarda, 2000; Hutchinson et al.,
2011), but they are only effective in restricted set-

tings (e.g. small training sets, or corpora divided
into documents) and do not generally perform
comparably to state-of-the-art models. Roark et
al. (2013) also use the idea of marginal constraints
for re-estimating back-off parameters for heavily-
pruned language models, whereas we use this con-
cept to estimate n-gram specific discounts.

8 Conclusion

We presented power low rank ensembles, a tech-
nique that generalizes existing n-gram smoothing
techniques to non-integer n. By using ensembles
of sparse as well as low rank matrices and ten-
sors, our method captures both the fine-grained
and coarse structures in word sequences. Our
discounting strategy preserves the marginal con-
straint and thus generalizes Kneser Ney, and un-
der slight changes can also extend other smooth-
ing methods such as deleted-interpolation/Jelinek-
Mercer smoothing. Experimentally, PLRE con-
vincingly outperforms Kneser-Ney smoothing as
well as class-based baselines.
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