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Abstract 

The syntactic ambiguity of a transitive 
verb (Vt) followed by a noun (N) has 
long been a problem in Chinese parsing. 
In this paper, we propose a classifier to 
resolve the ambiguity of Vt-N structures. 
The design of the classifier is based on 
three important guidelines, namely, 
adopting linguistically motivated features, 
using all available resources, and easy in-
tegration into a parsing model. The lin-
guistically motivated features include 
semantic relations, context, and morpho-
logical structures; and the available re-
sources are treebank, thesaurus, affix da-
tabase, and large corpora. We also pro-
pose two learning approaches that resolve 
the problem of data sparseness by auto-
parsing and extracting relative 
knowledge from large-scale unlabeled 
data. Our experiment results show that 
the Vt-N classifier outperforms the cur-
rent PCFG parser. Furthermore, it can be 
easily and effectively integrated into the 
PCFG parser and general statistical pars-
ing models. Evaluation of the learning 
approaches indicates that world 
knowledge facilitates Vt-N disambigua-
tion through data selection and error cor-
rection. 

1 Introduction 

In Chinese, the structure of a transitive verb (Vt) 
followed by a noun (N) may be a verb phrase 
(VP), a noun phrase (NP), or there may not be a 
dependent relation, as shown in (1) below. In 
general, parsers may prefer VP reading because a 
transitive verb followed by a noun object is nor-

mally a VP structure. However, Chinese verbs 
can also modify nouns without morphological 
inflection, e.g., 養殖 /farming 池 /pond. Conse-
quently, parsing Vt-N structures is difficult be-
cause it is hard to resolve such ambiguities with-
out prior knowledge. The following are some 
typical examples of various Vt-N structures:  

1) 
解決/solve 問題/problem  VP 
解決/solving 方案/method  NP 
解決/solve 人類/mankind (問題/problem)None 

To find the most effective disambiguation fea-
tures, we need more information about the Vt-N 
 NP construction and the semantic relations 
between Vt and N. Statistical data from the Sini-
ca Treebank (Chen et al., 2003) indicates that 
58% of Vt-N structures are verb phrases, 16% 
are noun phrases, and 26% do not have any de-
pendent relations. It is obvious that the semantic 
relations between a Vt-N structure and its con-
text information are very important for differen-
tiating between dependent relations. Although 
the verb-argument relation of VP structures is 
well understood, it is not clear what kind of se-
mantic relations result in NP structures. In the 
next sub-section, we consider three questions: 
What sets of nouns accept verbs as their modifi-
ers? Is it possible to identify the semantic types 
of such pairs of verbs and nouns? What are their 
semantic relations? 

1.1 Problem Analysis 

Analysis of the instances of NP(Vt-N) structures 
in the Sinica Treebank reveals the following four 
types of semantic structures, which are used in 
the design of our classifier. 

 
Type 1. Telic(Vt) + Host(N): Vt denotes the 

telic function (purpose) of the head noun N, e.g., 
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研 究 /research 工 具 /tool; 探 測 /explore 機
/machine; 賭/gamble 館/house; 搜尋/search 程
式/program. The telic function must be a salient 
property of head nouns, such as tools, buildings, 
artifacts, organizations and people. To identify 
such cases, we need to know the types of nouns 
which take telic function as their salient property. 
Furthermore, many of the nouns are monosyl-
labic words, such as 員/people, 器/instruments, 
機/machines. 

Type 2. Host-Event(Vt) + Attribute(N): 
Head nouns are attribute nouns that denote the 
attributes of the verb, e.g., 研究/research 方法

/method (method of research); 攻擊/attack 策略

/strategy (attacking strategy); 書寫/write 內容

/context (context of writing); 賭/gamble 規/rule 
(gambling rules). An attribute noun is a special 
type of noun. Semantically, attribute nouns de-
note the attribute types of objects or events, such 
as weight, color, method, and rule. Syntactically, 
attribute nouns do not play adjectival roles (Liu, 
2008). By contrast, object nouns may modify 
nouns. The number of attributes for events is 
limited. If we could discover all event-attribute 
relations, then we can solve this type of construc-
tion. 

Type 3. Agentive + Host: There is only a lim-
ited number of such constructions and the results 
of the constructions are usually ambiguous, e.g., 
炒飯/fried rice (NP), 叫聲/shouting sound. The 
first example also has the VP reading. 

Type 4. Apposition + Affair: Head nouns are 
event nouns and modifiers are verbs of apposi-
tion events, e.g. 追撞/collide 事故/accident, 破
壞 /destruct 運動 /movement, 憤恨 /hate 行為

/behavior. There is finite number of event nouns.  
 
Furthermore, when we consider verbal modi-

fiers, we find that verbs can play adjectival roles 
in Chinese without inflection, but not all verbs 
play adjectival roles. According to Chang et al. 
(2000) and our observations, adjectival verbs are 
verbs that denote event types rather than event 
instances; that is, they denote a class of events 
which that are concepts in an upper-level ontolo-
gy. One important characteristic of adjectival 
verbs is that they have conjunctive morphologi-
cal structures, i.e., the words are conjunct with 
two nearly synonymous verbs, e.g., 研/study 究
/search (research), 探 /explore 測 /detect (ex-
plore), and 搜/search 尋/find (search). Therefore, 
we need a morphological classifier that can de-
tect the conjunctive morphological structure of a 

verb by checking the semantic parity of two 
morphemes of the verb. 

Based on our analysis, we designed a Vt-N 
classifier that incorporates the above features to 
solve the problem. However, there is a data 
sparseness problem because of the limited size of 
the current Treebank. In other words, Treebank 
cannot provide enough training data to train a 
classifier properly. To resolve the problem, we 
should mine useful information from all availa-
ble resources. 

The remainder of this paper is organized as 
follows. Section 2 provides a review of related 
works. In Section 3, we describe the disambigua-
tion model with our selected features, and intro-
duce a strategy for handling unknown words. We 
also propose a learning approach for a large-
scale unlabeled corpus. In Section 4, we report 
the results of experiments conducted to evaluate 
the proposed Vt-N classifier on different feature 
combinations and learning approaches. Section 5 
contains our concluding remarks. 

2 Related Work 

Most works on V-N structure identification focus 
on two types of relation classification: modifier-
head relations and predicate-object relations (Wu, 
2003; Qiu, 2005; Chen, 2008; Chen et al., 2008; 
Yu et al., 2008). They exclude the independent 
structure and conjunctive head-head relation, but 
the cross-bracket relation does exist between two 
adjacent words in real language. For example, if 
“遍佈/all over  世界/world ” was included in the 
short sentence “遍佈/all over  世界/world 各國
/countries”, it would be an independent structure. 
A conjunctive head-head relation between a verb 
and a noun is rare. However, in the sentence “服
務 設備 都 甚 周到” (Both service and equip-
ment are very thoughtful.), there is a conjunctive 
head-head relation between the verb 服 務

/service and the noun 設備/equipment. Therefore, 
we use four types of relations to describe the V-
N structures in our experiments. The symbol 
‘H/X’ denotes a predicate-object relation; ‘X/H’ 
denotes a modifier-head relation; ‘H/H’ denotes 
a conjunctive head-head relation; and ‘X/X’ de-
notes an independent relation. 

Feature selection is an important task in V-N 
disambiguation. Hence, a number of studies have 
suggested features that may help resolve the am-
biguity of V-N structures (Zhao and Huang, 1999; 
Sun and Jurafsky, 2003; Chiu et al., 2004; Qiu, 
2005; Chen, 2008). Zhao and Huang used lexi-
cons, semantic knowledge, and word length in-
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formation to increase the accuracy of identifica-
tion. Although they used the Chinese thesaurus 
CiLin (Mei et al., 1983) to derive lexical seman-
tic knowledge, the word coverage of CiLin is 
insufficient. Moreover, none of the above papers 
tackle the problem of unknown words. Sun and 
Jurafsky exploit the probabilistic rhythm feature 
(i.e., the number of syllables in a word or the 
number of words in a phrase) in their shallow 
parser. Their results show that the feature im-
proves the parsing performance, which coincides 
with our analysis in Section 1.1. Chiu et al.’s 
study shows that the morphological structure of 
verbs influences their syntactic behavior. We 
follow this finding and utilize the morphological 
structure of verbs as a feature in the proposed Vt-
N classifier. Qiu’s approach uses an electronic 
syntactic dictionary and a semantic dictionary to 
analyze the relations of V-N phrases. However, 
the approach suffers from two problems: (1) low 
word coverage of the semantic dictionary and (2) 
the semantic type classifier is inadequate. Finally, 
Chen proposed an automatic VN combination 
method with features of verbs, nouns, context, 
and the syllables of words. The experiment re-
sults show that the method performs reasonably 
well without using any other resources. 

Based on the above feature selection methods, 
we extract relevant knowledge from Treebank to 
design a Vt-N classifier. However we have to 
resolve the common problem of data sparseness. 
Learning knowledge by analyzing large-scale 
unlabeled data is necessary and proved useful in 
previous works (Wu, 2003; Chen et al., 2008; Yu 
et al., 2008). Wu developed a machine learning 
method that acquires verb-object and modifier-
head relations automatically. The mutual infor-
mation scores are then used to prune verb-noun 
whose scores are below a certain threshold. The 
author found that accurate identification of the 
verb-noun relation improved the parsing perfor-
mance by 4%. Yu et al. learned head-modifier 
pairs from parsed data and proposed a head-
modifier classifier to filter the data. The filtering 
model uses the following features: a PoS-tag pair 
of the head and the modifier; the distance be-
tween the head and the modifier; and the pres-
ence or absence of punctuation marks (e.g., 
commas, colons, and semi-colons) between the 
head and the modifier. Although the method im-
proves the parsing performance by 2%, the filter-
ing model obtains limited data; the recall rate is 
only 46.35%. The authors also fail to solve the 
problem of Vt-N ambiguity. 

Our review of previous works and the obser-
vations in Section 1.1 show that lexical words, 
semantic information, the syllabic length of 
words, neighboring PoSs and the knowledge 
learned from large-scale data are important for 
Vt-N disambiguation. We consider more features 
for disambiguating Vt-N structures than previous 
studies. For example, we utilize (1) four relation 
classification in a real environment, including 
‘X/H’, ‘H/X’, ‘X/X’ and ‘H/H’ relations; (2) un-
known word processing of Vt-N words (includ-
ing semantic type predication and morph-
structure predication); (3) unsupervised data se-
lection (a simple and effective way to extend 
knowledge); and (4) supervised knowledge cor-
rection, which makes the extracted knowledge 
more useful. 

3 Design of the Disambiguation Model 

The disambiguation model is a Vt-N relation 
classifier that classifies Vt-N relations into ‘H/X’ 
(predicate-object relations), ‘X/H’ (modifier-
head relations), ‘H/H’ (conjunctive head-head 
relations), or ‘X/X’ (independent relations). We 
use the Maximum Entropy toolkit (Zhang, 2004) 
to construct the classifier. The advantage of us-
ing the Maximum Entropy model is twofold: (1) 
it has the flexibility to adjust features; and (2) it 
provides the probability values of the classifica-
tion, which can be easily integrated into our 
PCFG parsing model. 

In the following sections, we discuss the de-
sign of our model for feature selection and ex-
traction, unknown word processing, and world 
knowledge learning. 

3.1 Feature Selection and Extraction 

We divide the selected features into five groups: 
PoS tags of Vt and N, PoS tags of the context, 
words, semantics, and additional information. 
Table 1 shows the feature types and symbol nota-
tions. We use symbols of t1 and t2 to denote the 
PoS of Vt and N respectively. The context fea-
ture is neighboring PoSs of Vt and N: the sym-
bols of t-2 and t-1 represent its left PoSs, and the 
symbol t3 and t4 represent its right PoSs. The se-
mantic feature is the lexicon’s semantic type ex-
tracted from E-HowNet sense expressions 
(Huang et al., 2008). For example, the E-
HowNet expression of “ 車 輛 /vehicles” is 
{LandVehicle| 車 :quantity={mass| 眾 }}, so its 
semantic type is {LandVehicle|車}. We discuss 
the model’s performance with different feature 
combinations in Section 4. 
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Feature  Feature Description 
PoS PoS of Vt and N 

t1; t2 
Context Neighboring PoSs 

t-2; t-1; t3; t4 
Word Lexical word 

w1; w2 
Semantic Semantic type of word 

st1; st2 
Additional 
Information 

Morphological structure of verb 
Vmorph 

 Syllabic length of noun 
Nlen 

 
Table 1. The features used in the Vt-N classifier 
 

The example in Figure 1 illustrates feature la-
beling of a Vt-N structure. First, an instance of a 
Vt-N structure is identified from Treebank. Then, 
we assign the semantic type of each word with-
out considering the problem of sense ambiguity 
for the moment. This is because sense ambigui-
ties are partially resolved by PoS tagging, and 
the general problem of sense disambiguation is 
beyond the scope of this paper. Furthermore, 
Zhao and Huang (1999) demonstrated that the 
retained ambiguity does not have an adverse im-
pact on identification. Therefore, we keep the 
ambiguous semantic type for future processing. 

 
zhe        zaochen     xuexi  zhongwen    DE    fongchao 
this         cause        learn     Chinese                    trend 
“This causes the trend of learning Chinese.” 

 
Figure 1. An example of a tree with a Vt-N struc-
ture 

 
Table 2 shows the labeled features for “學習

/learn  中文/Chinese” in Figure 1. The column x  
and y describe relevant features in “學習/learn” 
and “中文/Chinese” respectively. Some features 
are not explicitly annotated in the Treebank, e.g., 
the semantic types of words and the morphologi-
cal structure of verbs. We propose labeling 
methods for them in the next sub-section. 

Feature Type x y 
Word w1=學習 w2=中文 
PoS t1=VC t2=Na 
Semantic st1=study|學習 st2=language|語言 
Context t-2=Nep; t-1=VK; t3=DE; t4=Na 
Additional 
Information Vmorph=VV Nlen=2 

Relation Type  rt = H/X 
 
Table 2. The feature labels of Vt-N pair in Figure 
1 

3.2 Unknown Word Processing 

In Chinese documents, 3% to 7% of the words 
are usually unknown (Sproat and Emerson, 
2003). By ‘unknown words’, we mean words not 
listed in the dictionary. More specifically, in this 
paper, unknown words means words without se-
mantic type information (i.e., E-HowNet expres-
sions) and verbs without morphological structure 
information. Therefore, we propose a method for 
predicting the semantic types of unknown words, 
and use an affix database to train a morph-
structure classifier to derive the morphological 
structure of verbs. 

 
Morph-Structure Predication of Verbs: We 

use data analyzed by Chiu et al. (2004) to devel-
op a classifier for predicating the morphological 
structure of verbs. There are four types of mor-
phological structures for verbs: the coordinating 
structure (VV), the modifier-head structure (AV), 
the verb-complement structure (VR), and the 
verb-object structure (VO). To classify verbs 
automatically, we incorporate three features in 
the proposed classifier, namely, the lexeme itself, 
the prefix and the suffix, and the semantic types 
of the prefix and the suffix. Then, we use train-
ing data from the affix database to train the clas-
sifier. Table 3 shows an example of the unknown 
verb “ 傳播到 /disseminate” and the morph-
structure classifier shows that it is a ‘VR’ type. 

 
Feature Feature Description 
Word=傳播到 Lexicon 
PW=傳播 Prefix word 
PWST={disseminate|傳播} Semantic Type of 

Prefix Word 傳播 
SW=到 Suffix Word 
SWST={Vachieve|達成} Semantic Type of 

Suffix Word 到 
 
Table 3. An example of an unknown verb and 
feature templates for morph-structure predication 
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Semantic Type Provider: The system ex-

ploits WORD, PoS, affix and E-HowNet infor-
mation to obtain the semantic types of words (see 
Figure 2). If a word is known and its PoS is giv-
en, we can usually find its semantic type by 
searching the E-HowNet database. For an un-
known word, the semantic type of its head mor-
pheme is its semantic type; and the semantic type 
of the head morpheme is obtained from E-
HowNet1. For example, the unknown word “傳
播到 /disseminate”, its prefix word is “傳播
/disseminate” and we learn that its semantic type 
is {disseminate|傳播} from E-HowNet. There-
fore, we assign {disseminate|傳播} as the se-
mantic type of “傳播到 /disseminate”. If the 
word or head morpheme does not exist in the 
affix database, we assign a general semantic type 
based on its PoS, e.g., nouns are {thing|萬物} 
and verbs are {act|行動}. In this matching pro-
cedure, we may encounter multiple matching 
data of words and affixes. Our strategy is to keep 
the ambiguous semantic type for future pro-
cessing. 
 
Input: WORD, PoS 
Output: Semantic Type (ST) 
procedure STP(WORD, PoS) 
 (* Initial Step *) 
 ST := null; 
 (* Step 1: Known word *) 
 if WORD already in E-HowNet then 
  ST := EHowNet(WORD, PoS); 
 else if WORD in Affix database then 
  ST := EHowNet(affix of WORD, PoS); 
 (* Step 2 : Unknown word *) 
 if ST is null and PoS is ‘Vt’ then 
  ST := EHowNet(prefix of WORD, PoS);  
 else if ST is null and PoS is ‘N’ then 
  ST := EHowNet(suffix of WORD, PoS);  
 (* Step 3 : default *) 
 if ST is null and PoS is ‘Vt’ then 
  ST := ‘act|行動’; 
 else if ST is null and PoS is ‘N’ then 
  ST := ‘thing|萬物’ 
 (* Finally *) 
 STP := ST; 
end; 
 
Figure 2. The Pseudo-code of the Semantic Type 
Predication Algorithm. 
 

1 The E-HowNet function in Figure 2 will return a null ST 
value where words do not exist in E-HowNet or Affix data-
base. 

3.3 Learning World Knowledge 

Based on the features discussed in the previous 
sub-section, we extract prior knowledge from 
Treebank to design the Vt-N classifier. However, 
the training suffers from the data sparseness 
problem. Furthermore most ambiguous Vt-N 
relations are resolved by common sense 
knowledge that makes it even harder to construct 
a well-trained system. An alternative way to ex-
tend world knowledge is to learn from large-
scale unlabeled data (Wu, 2003; Chen et al., 
2008; Yu et al., 2008). However, the unsuper-
vised approach accumulates errors caused by 
automatic annotation processes, such as word 
segmentation, PoS tagging, syntactic parsing, 
and semantic role assignment. Therefore, how to 
extract useful knowledge accurately is an im-
portant issue. 

To resolve the error accumulation problem, we 
propose two methods: unsupervised NP selection 
and supervised error correction. The NP selec-
tion method exploits the fact that an intransitive 
verb followed by a noun can only be interpreted 
as an NP structure, not a VP structure. It is easy 
to find such instances with high precision by 
parsing a large corpus. Based on the selection 
method, we can extend contextual knowledge 
about NP(V+N) and extract nouns that take ad-
jectival verbs as modifiers. The error correction 
method involves a small amount of manual edit-
ing in order to make the data more useful and 
reduce the number of errors in auto-extracted 
knowledge. The rationale is that, in general, high 
frequency Vt-N word-bigram is either VP or NP 
without ambiguity. Therefore, to obtain more 
accurate training data, we simply classify each 
high frequency Vt-N word bigram into a unique 
correct type without checking all of its instances. 
We provide more detailed information about the 
method in Section 4.3. 

4 Experiments and Results 

4.1 Experimental Setting 

We classify Vt-N structures into four types of 
syntactic structures by using the bracketed in-
formation (tree structure) and dependency rela-
tion (head-modifier) to extract the Vt-N relations 
from treebank automatically. The resources used 
in the experiments as follows. 

Treebank: The Sinica Treebank contains 
61,087 syntactic tree structures with 361,834 
words. We extracted 9,017 instances of Vt-N 
structures from the corpus. Then, we randomly 
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selected 1,000 of the instances as test data and 
used the remainder (8,017 instances) as training 
data. Labeled information of word segmentation 
and PoS-tagging were retained and utilized in the 
experiments. 

E-HowNet: E-HowNet contains 99,525 lexi-
cal semantic definitions that provide information 
about the semantic type of words. We also im-
plement the semantic type predication algorithm 
in Figure 2 to generate the semantic types of all 
Vt and N words, including unknown words. 

Affix Data: The database includes 13,287 ex-
amples of verbs and 27,267 examples of nouns, 
each example relates to an affix. The detailed 
statistics of the verb morph-structure categoriza-
tion are shown in Table 4. The data is used to 
train a classifier to predicate the morph-structure 
of verbs. We found that verbs with a conjunctive 
structure (VV) are more likely to play adjectival 
roles than the other three types of verbs. The 
classifier achieved 87.88% accuracy on 10-fold 
cross validation of the above 13,287 verbs. 
 

 VV VR AV VO 
Prefix 920 2,892 904 662 
Suffix 439 7,388 51 31 

 
Table 4. The statistics of verb morph-structure 
categorization 
 

Large Corpus: We used a Chinese parser to 
analyze sentence structures automatically. The 
auto-parsed tree structures are used in Experi-
ment 2 (described in the Sub-section 4.3). We 
obtained 1,262,420 parsed sentences and derived 
237,843 instances of Vt-N structure as our da-
taset (called as ASBC). 

4.2 Experiment 1: Evaluation of the Vt-N 
Classifier 

In this experiment, we used the Maximum En-
tropy Toolkit (Zhang, 2004) to develop the Vt-N 
classifier. Based on the features discussed in Sec-
tion 3.1, we designed five models to evaluate the 
classifier’s performance on different feature 
combinations.  

The features and used in each model are de-
scribed below. The feature values shown in 
brackets refer to the example in Figure 1. 

• M1 is the baseline model. It uses PoS-tag 
pairs as features, such as (t1=VC, t2=Na). 

• M2 extends the M1 model by adding con-
text features of (t-1=VK, t1=VC), (t2=Na, 

t3=DE), (t-2=Nep, t-1=VK, t1=VC), (t2=Na, 
t3=DE, t4=Na) and (t-1=VK, t3=DE). 

• M3 extends the M2 model by adding lexi-
con features of (w1=學習, t1=VK, w2=中
文, t2=Na), (w1＝學習, w2=中文), (w1=學
習) and (w2=中文). 

• M4 extends the M3 model by adding se-
mantic features of (st1=study|學習, t1=VK , 
st2=language|語言 , t2=Na), (st1=study|學
習 , t1=VK) and (st2=language| 語 言 , 
t2=Na). 

• M5 extends the M4 model by adding two 
features: the morph-structure of verbs; and 
the syllabic length of nouns 
(Vmorph=‘VV’) and (Nlen=2). 

Table 5 shows the results of using different 
feature combinations in the models. The symbol 
P1(%) is the 10-fold cross validation accuracy of 
the training data, and the symbol P2(%) is the 
accuracy of the test data. By adding contextual 
features, the accuracy rate of M2 increases from 
59.10% to 72.30%. The result shows that contex-
tual information is the most important feature 
used to disambiguate VP, NP and independent 
structures. The accuracy of M2 is approximately 
the same as the result of our PCFG parser be-
cause both systems use contextual information. 
By adding lexical features (M3), the accuracy 
rate increases from 72.30% to 80.20%. For se-
mantic type features (M4), the accuracy rate in-
creases from 80.20% to 81.90%. The 1.7% in-
crease in the accuracy rate indicates that seman-
tic generalization is useful. Finally, in M5, the 
accuracy rate increases from 81.90% to 83.00%. 
The improvement demonstrates the benefits of 
using the verb morph-structure and noun length 
features. 

 
Models Feature for Vt-N P1(%) P2(%) 

M1 (t1,t2) 61.94 59.10 
M2 + (t-1,t1) (t2,t3) (t-2,t-

1,t1) (t2,t3,t4) (t-1,t3) 
76.59 72.30 

M3 + (w1,t1,w2,t2) (w1,w2) 
(w2) (w1) 

83.55 80.20 

M4 + (st1,t1,st2,t2) (st1,t1) 
(st2, t2) 

84.63 81.90 

M5 + (Vmorph) (Nlen) 85.01 83.00 
 

Table 5. The results of using different feature 
combinations 
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Next, we consider the influence of unknown 
words on the Vt-N classifier. The statistics shows 
that 17% of the words in Treebank lack semantic 
type information, e.g., 留在/StayIn, 填飽/fill, 貼
出/posted, and 綁好/tied. The accuracy of the 
Vt-N classifier declines by 0.7% without seman-
tic type information for unknown words. In other 
words, lexical semantic information improves the 
accuracy of the Vt-N classifier. Regarding the 
problem of unknown morph-structure of words, 
we observe that over 85% of verbs with more 
than 2 characters are not found in the affix data-
base. If we exclude unknown words, the accura-
cy of the Vt-N prediction decreases by 1%. 
Therefore, morph-structure information has a 
positive effect on the classifier. 

4.3 Experiment 2: Using Knowledge Ob-
tained from Large-scale Unlabeled Data 
by the Selection and Correction Meth-
ods. 

In this experiment, we evaluated the two 
methods discussed in Section 3, i.e., unsuper-
vised NP selection and supervised error correc-
tion. We applied the data selection method (i.e., 
distance=1, with an intransitive verb (Vi) fol-
lowed by an object noun (Na)) to select 46,258 
instances from the ASBC corpus and compile a 
dataset called Treebank+ASBC-Vi-N. Table 6 
shows the performance of model 5 (M5) on the 
training data derived from Treebank and Tree-
bank+ASBC-Vi-N. The results demonstrate that 
learning more nouns that accept verbal modifiers 
improves the accuracy. 

 

 Treebank+ 
ASBC-Vi-N Treebank 

size of training 
instances 

46,258 8,017 

M5 - P2(%) 83.90 83.00 
 
Table 6. Experiment results on the test data for 
various knowledge sources 

 
We had also try to use the auto-parsed results 

of the Vt-N structures from the ASBC corpus as 
supplementary training data for train M5. It de-
grades the model’s performance by too much 
error when using the supplementary training data. 
To resolve the problem, we utilize the supervised 
error correction method, which manually correct 
errors rapidly because high frequency instances 
(w1, w2) rarely have ambiguous classifications in 
different contexts. So we designed an editing tool 

to correct errors made by the parser in the classi-
fication of high frequency Vt-N word pairs. After 
the manual correction operation, which takes 40 
man-hours, we assign the correct classifications 
(w1, t1, w2, t2, rt) for 2,674 Vt-N structure types 
which contains 10,263 instances to creates the 
ASBC+Correction dataset. Adding the corrected 
data to the original training data increases the 
precision rate to 88.40% and reduces the number 
of errors by approximately 31.76%, as shown in 
the Treebank+ASBC+Correction column of Ta-
ble 7. 
 

 Treebank+ 
ASBC+Correction 

Treebank+ 
ASBC-Vi-N Treebank 

size of train-
ing instances 

56,521 46,258 8,017 

M5 - P2(%) 88.40 83.90 83.00 
 
Table 7. Experiment results of classifiers with 
different training data 
 

We also used the precision and recall rates to 
evaluate the performance of the models on each 
type of relation. The results are shown in Table 8. 
Overall, the Treebank+ASBC+Correction meth-
od achieves the best performance in terms of the 
precision rate. The results for Treebank+ASBC-
Vi-N show that the unsupervised data selection 
method can find some knowledge to help identi-
fy NP structures. In addition, the proposed mod-
els achieve better precision rates than the PCFG 
parser. The results demonstrate that using our 
guidelines to design a disambiguation model to 
resolve the Vt-N problem is successful. 
 

 H/X X/H X/X 

Treebank 
R(%) 91.11 67.90 74.62 
P(%) 84.43 78.57 81.86 

Treebank+ 
ASBC-Vi-N 

R(%) 91.00 72.22 71.54 
P(%) 84.57 72.67 85.71 

Treebank+ 
ASBC+Correction 

R(%) 98.62 60.49 83.08 
P(%) 86.63 88.29 93.51 

PCFG 
R(%) 90.54 23.63 80.21 
P(%) 78.24 73.58 75.00 

 
Table 8. Performance comparison of different 
classification models. 

 

4.4 Experiment 3: Integrating the Vt-N 
classifier with the PCFG Parser 

Identifying Vt-N structures correctly facilitates 
statistical parsing, machine translation, infor-
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mation retrieval, and text classification. In this 
experiment, we develop a baseline PCFG parser 
based on feature-based grammar representation 
by Hsieh et al. (2012) to find the best tree struc-
tures (T) of a given sentence (S). The parser then 
selects the best tree according to the evaluation 
score Score(T,S) of all possible trees. If there are 
n PCFG rules in the tree T, the Score(T,S) is the 
accumulation of the logarithmic probabilities of 
the i-th grammar rule (RPi). Formula 1 shows the 
baseline PCFG parser. 
 

∑
=

=
n

i
iRPSTScore

1
)(),(  (1)

 
 

The Vt-N models can be easily integrated into 
the PCFG parser. Formula 2 represents the inte-
grated structural evaluation model. We combine 
RPi and VtNPi with the weights w1 and w2 re-
spectively, and set the value of w2 higher than 
that of w1. VtNPi is the probability produced by 
the Vt-N classifier for the type of the relation 
between Vt-N bigram determined by the PCFG 
parsing. The classifier is triggered when a [Vt, N] 
structure is encountered; otherwise, the Vt-N 
model is not processed. 
 

∑
=

×+×=
n

i
ii VtNPwRPwSTScore

1
21 )(),(  (2)

 
 

The results of evaluating the parsing model in-
corporated with the Vt-N classifier (see Formula 
2) are shown in Table 9 and Table 10. The P2 is 
the accuracy of Vt-N classification on the test 
data. The bracketed f-score (BF2) is the parsing 
performance metric. Based on these results, the 
integrated model outperforms the PCFG parser in 
terms of Vt-N classification. Because the Vt-N 
classifier only considers sentences that contain 
Vt-N structures, it does not affect the parsing 
accuracies of other sentences.  
 

 PCFG +  
M5 (Treebank) PCFG 

P2(%) 80.68 77.09 
BF(%) 83.64 82.80 

 
Table 9. The performance of the PCFG parser 
with and without model M5 from Treebank. 

 

2 The evaluation formula is (BP*BR*2) / (BP+BR), where 
BP is the precision and BR is the recall. 

 PCFG +  
M5 (Treebank+ASBC+Correction) PCFG 

P2(%) 87.88 77.09 
BF(%) 84.68 82.80 

 
Table 10. The performance of the PCFG parser 
with and without model M5 from Tree-
bank+ASBC+Correction data set. 

 

4.5 Experiment 4: Comparison of Various 
Chinese Parsers 

In this experiment, we give some comparison 
results in various parser: ‘PCFG Parser’ (base-
line), ‘CDM Parser’ (Hsieh et al., 2012), and 
‘Berkeley Parser’ (Petrov et al., 2006). The CDM 
parser achieves the best score in Traditional Chi-
nese Parsing task of SIGHAN Bake-offs 2012 
(Tseng et al., 2012). Petrov’s parser (as Berkeley, 
version is 2009 1.1) is the best PCFG parser for 
non-English language and it is an open source. In 
our comparison, we use the same training data 
for training models and parse the same test da-
taset based on the gold standard word segmenta-
tion and PoS tags. We have already discussed the 
PCFG parser in Section 4.4. As for CDM parser, 
we retrain relevant model in our experiments. 
And since Berkeley parser take different tree 
structure (Penn Treebank format), we transform 
the experimental data to Berkeley CoNLL format 
and re-train a new model with parameters “-
treebank CHINESE -SMcycles 4” 3 from training 
data. Moreover we use “-useGoldPOS” parame-
ters to parse test data and further transform them 
to Sinica Treebank style from the Berkeley par-
ser’s results. The different tree structure formats 
of Sinica Treebank and Penn Treebank are as 
follow: 

 
Sinica Treebank:  
S(NP(Head:Nh:他們)|Head:VC:散播

|NP(Head:Na:熱情)) 
 

Penn Treebank:  
( (S (NP (Head:Nh (Nh 他們))) (Head:VC 
(VC 散播)) (NP (Head:Na (Na 熱情))))) 

 
The evaluation results on the testing data, i.e. 

in P2 metric, are as follows. The accuracy of 
PCFG parser is 77.09%; CDM parser reaches 
78.45% of accuracy; and Berkeley parser is 
70.68%. The results show that the problem of Vt-

3 The “-treebank CHINESE -SMcycles 4” is the best train-
ing parameter in Traditional Chinese Parsing task of 
SIGHAN Bake-offs 2012. 
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N cannot be well solved by any general parser 
including CDM parser and Berkeley’s parser. It 
is necessary to have a different approach aside 
from the general model. So we set the target for a 
better model for Vt-N classification which can be 
easily integrated into the existing parsing model. 
So far our best model achieved the P2 accuracy 
of 87.88%.  

5 Concluding Remarks 

We have proposed a classifier to resolve the am-
biguity of Vt-N structures. The design of the 
classifier is based on three important guidelines, 
namely, adopting linguistically motivated fea-
tures, using all available resources, and easy in-
tegration into parsing model. After analyzing the 
Vt-N structures, we identify linguistically moti-
vated features, such as lexical words, semantic 
knowledge, the morphological structure of verbs, 
neighboring parts-of-speech, and the syllabic 
length of words. Then, we design a classifier to 
verify the usefulness of each feature. We also 
resolve the technical problems that affect the 
prediction of the semantic types and morph-
structures of unknown words. In addition, we 
propose a framework for unsupervised data se-
lection and supervised error correction for learn-
ing more useful knowledge. Our experiment re-
sults show that the proposed Vt-N classifier sig-
nificantly outperforms the PCFG Chinese parser 
in terms of Vt-N structure identification. Moreo-
ver, integrating the Vt-N classifier with a parsing 
model improves the overall parsing performance 
without side effects. 

In our future research, we will exploit the pro-
posed framework to resolve other parsing diffi-
culties in Chinese, e.g., N-N combination. We 
will also extend the Semantic Type Predication 
Algorithm (Figure 2) to deal with all Chinese 
words. Finally, for real world knowledge learn-
ing, we will continue to learn more useful 
knowledge by auto-parsing to improve the pars-
ing performance. 
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