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Abstract

State-of-the-art fact extraction is heavily
constrained by recall, as demonstrated by
recent performance in TAC Slot Filling.
We isolate this recall loss for NE slots by
systematically analysing each stage of the
slot filling pipeline as a filter over correct
answers. Recall is critical as candidates
never generated can never be recovered,
whereas precision can always be increased
in downstream processing.

We provide precise, empirical confirma-
tion of previously hypothesised sources of
recall loss in slot filling. While NE type
constraints substantially reduce the search
space with only a minor recall penalty, we
find that 10% to 39% of slot fills will be
entirely ignored by most systems. One in
six correct answers are lost if coreference
is not used, but this can be mostly retained
by simple name matching rules.

1 Introduction

The TAC Knowledge Base Population (KBP) Slot
Filling (SF) consists of extracting named attributes
from text. Given a query, e.g. John Kerry, a system
searches a corpus for documents which contain the
entity. It then fills a list of slots, named attributes
such as (per:spouse, Teresa Heinz).

The top TAC SF 2013 (TAC13) system scored
37.3% F-score (Roth et al., 2013), and the median
F-score was 16.9% (Surdeanu, 2013). Recall for
SF systems is especially low, with many systems
using precise extractors with low recall. Precision
ranges from 9% to 40% greater than recall for the
top 5 systems in TAC13, and unsurprisingly, Roth
et al. (2013) has the highest recall at 33%. Closing
the recall gap without substantially increasing the
search space is critical to improving SF results.

Ji and Grishman (2011) and Min and Grishman
(2012) identify many of the challenges of SF, and
suggest that inference, coreference and named en-
tity recognition (NER) are key sources of error.
Min and Grishman categorise the slot fills found
by human annotators but not found in the aggre-
gated output of all systems. However, this ap-
proach only allows them to hypothesise the likely
source of recall loss. For instance, it is impossible
to distinguish candidate generation errors from an-
swer merging errors. Roth et al. (2014) categorise
these errors at a high level, without specific anal-
ysis of candidate generation pipeline components
such as coreference.

In this paper, we take this analysis further by
performing a systematic recall analysis that al-
lows us to pinpoint the cause of every recall er-
ror (candidates lost that can never be recovered)
and estimate upper bounds on recall in existing ap-
proaches. We implement a collection of naı̈ve SF

systems utilizing a set of increasingly restrictive
filters over documents and named entities (NEs).
TAC has three slot types: NE, string and value slots.
We consider only those slots filled by NEs as there
are widely-used, high accuracy tools available for
NER, and focusing on NEs only allows us to pre-
cisely gauge performance of filters. String slots do
not have reliable classifiers, and value slots require
more normalisation than directly returning a token
span. Otherwise, this evaluation is not specifically
dependent on the nature of NEs, and we expect
similar results for other slot types.

We focus on systems which first generate can-
didates and then process them, the approach of the
majority of TAC systems. Our filters apply hard
constraints over NEs commonly used in the litera-
ture, accounting for a typical SF candidate genera-
tion pipeline—matching the query term, the form
of candidate fills and the distance between the
query and the candidate—but not performing any
further scoring or thresholding. We compare sev-
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eral forms of coreference as filters, motivated by
the need for efficient coreference resolution when
processing large corpora. Complementing these
unsupervised experiments, we implement a max-
imum recall bootstrap to identify which fills are
reachable from training data.

We find ∼10% of recall is ignored by most sys-
tems due to NER bounds errors, and despite state-
of-the-art coreference, 8% is lost when queries
and fills occur in different sentences. Using NE

type constraints is very effective, reducing recall
by only 2% for a search space reduction of 81%.
Without any coreference, 16% of typed fills are
lost, but 12% of this recall can be recovered us-
ing fast naı̈ve name matching rules, reducing the
search space to 59% that of full coreference. 15%
of recall is lost if a SF approach, such as a boot-
strapping, requires that dependency paths be non-
unique in a corpus. We show that most remaining
candidates are reachable via bootstrapping from
a small number of seeds. Our results provide
systematic confirmation that effective coreference
and NER are critical to high recall slot filling.

2 Why focus on recall?

In this work, we determine the recall loss caused
by candidate generation constraints in SF systems.
SF pipelines are typically implemented using a
coarse-to-fine approach, where all possible candi-
dates are generated and then filtered by hard con-
straints and more sophisticated downstream pro-
cesses. Following this, we maximally generate
candidates and assume a high-precision but rela-
tively costly downstream process selects the final
extractions. While ultimately any system makes
precision-recall trade-offs, the recall of a system’s
coarse candidate generation process sets a hard
upper bound on performance, as candidates that
are not generated at all can never be recovered by
downstream processes. SF systems could gener-
ate every noun phrase in a corpus as potential can-
didates, but they apply hard candidate generation
constraints for efficiency and precision.

We implement these hard constraints as a se-
ries of filters, and return every candidate which
passes a filter without further ranking or threshold-
ing. These filters are comprised of generic com-
ponents, such as NER, which are representative of
SF pipelines. We are only interested in precision
in so much as it corresponds to the size of the
search space (the candidates generated), assum-

ing a small, fixed number of answers. The search
space determines the workload of later stages re-
sponsible for extraction, merging and ranking.
Precision can be improved by this post-processing
of the candidate set, but recall cannot.

3 Background

Slot filling (SF) is a query-oriented relation ex-
traction (RE) task in the Knowledge Base Popu-
lation (KBP) track of the Text Analysis Confer-
ences (TAC) (McNamee and Dang, 2009). A SF

system is queried with a name and a predefined
relation schema, or slots, and must seek instances
of any relations involving the query entity, and the
corresponding slot fills, from a corpus.

Systems typically consist of several pipelined
stages (Ji et al., 2011), providing many potential
locations for error. The basic pipeline, in Fig-
ure 1, consists of four stages (Ji and Grishman,
2011): document retrieval, candidate generation,
answer extraction, and answer merging and rank-
ing. The output of the second stage is a set of can-
didates which are then usually ranked using RE

techniques,1 to precisely pinpoint answers. TAC

penalises redundant responses, requiring a final
answer merging and ranking stage. The first two
stages are the focus of this work, as they inad-
vertently filter correct answers that cannot be re-
covered, and they determine the size of the search
space for later stages.

Min and Grishman (2012) conducted an analy-
sis of the 140 TAC 2010 SF fills that were found by
human annotators but not any system, and manu-
ally look for evidence in the reference document
and categorise the hypothetical sources of error.
They find inference, coreference and NER to be
the top sources of error, and that the most studied
component (sentence-level RE) is not the domi-
nant problem, contributing only 10% of recall loss.
We precisely characterise the contribution of these
sources of error.

We follow the SF literature in adopting RE tech-
niques for filtering candidates. RE focuses on
identifying relations between entities (or attributes
of entities) as mentioned in text. Both relation
schema and training data are often provided, and
extraction is done using learnt classifiers (Mintz
et al., 2009; Surdeanu et al., 2012; Riedel et al.,

1We note that question answering techniques have been
used directly by SF systems (Byrne and Dunnion, 2011) but
RE techniques are the primary method for answer extraction.
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Figure 1: Candidate filters within the standard SF pipeline. Arrows indicate a sequence of filters.

2013; Zhang et al., 2013) or semi-supervised tech-
niques (Agichtein and Gravano, 2000; Wang et al.,
2011; Carlson et al., 2010).

Relation phrases or patterns may be identified
without labels (Fader et al., 2011; Mausam et al.,
2012) or clustered (Yao et al., 2012) into types.
Generating candidate entity pairs and using the
syntactic or surface path between them to decide
whether a relation exists are common threads in
RE that also form part of the SF pipeline. In some
RE tasks, entities mentioned may already be iden-
tified in a document and provided to a RE sys-
tem; in general, automatic NER is required. Some
tasks are defined more generally to include com-
mon noun phrases (Fader et al., 2011; Carlson et
al., 2010). SF specifically includes slots that can
be filled by arbitrary strings such as per:cause
of death, which make up a large number of
slot fills but may require the use of different tech-
niques for extraction, separate from names. NER

may be further enhanced by resolving names to
a KB (Mintz et al., 2009; Hoffmann et al., 2011;
Surdeanu et al., 2012; Wang et al., 2011), reduc-
ing noise in learning and extraction processes, but
we do not take this step in this work.

Typically, a RE system will only consider enti-
ties mentioned together in a sentence. When seek-
ing all instances of a given relation between known
entities, coreference resolution is necessary to sub-
stantially expand the set of candidate pairs (Gab-
bard et al., 2011). Coreference resolution may
not be necessary where each relation is redun-
dantly mentioned in a large corpus, as in SF; in
this vein, “Open” approaches prefer precision and
avoid automatic coreference resolution (Banko et
al., 2007). Moreover, previous analysis attributed
substantial SF error to these tools (Ji and Grish-

man, 2011). Our work evaluates NER, locality
heuristics and coreference within a SF context.

Classification features for RE typically encode:
attributes of the entities; the surface form, depen-
dency path, or phrase structure subtree between
them; and surrounding context (Zhou et al., 2005;
Mintz et al., 2009; Zhang et al., 2013). We eval-
uate the length of dependency path between enti-
ties as a variable affecting SF candidate recall, and
apply naı̈ve entity pair bootstrapping (Brin, 1998;
Agichtein and Gravano, 2000) to assess the gener-
alisation over dependency paths from examples.

4 Experimental setup

We begin with a set of queries (a query being a
NE entity grounded in a mention in a document)
and, for each query q, the documents Dq known to
contain any slot fill for q, as determined by oracle
information retrieval (IR) from human annotation
and judged system output. Filling every slot in q
with every n-gram in Dq constitutes a system with
nearly perfect recall. We apply a series of increas-
ingly restrictive filters over this set. As in Figure 1,
SF systems in practice must retrieve relevant docu-
ments and generate candidates. We propose filters
that allow for analysis of recall lost during these
stages. We ignore the remaining stages and evalu-
ate the set of candidates directly.

Filters define what documents or NEs are al-
lowed to pass through, based on constraints im-
posed by query matching, entity form, and sen-
tence and syntactic context. We combine these fil-
ters in series in a number of configurations. The
use or absence of coreference varies across our
configurations, as the need to identify the query
mention and terms that refer to the query mention
is critical. Finally, we experiment with a boot-
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strapping training process, to reflect constraints
implicitly applied by a training approach.

The SF typical system pipeline presented in Sec-
tion 3 applies to most, but not all SF approaches.
The following filters directly apply only to sys-
tems that use NER as the method of candidate gen-
eration, and where candidate generation is distinct
from answer extraction. Fourteen of the eighteen
teams participating in TAC13 submitted system re-
ports (Surdeanu, 2013). Eleven of these systems
identify NEs with NER and pass these to an answer
extraction process. The remaining three systems
either do not document whether they rely on or do
not rely on NER for candidate generation for name
slots. We include a high recall baseline based on
noun phrases (NPs) to cover these systems.

4.1 Filters

The first step in the SF pipeline is to find a relevant
document and the query entity mentioned within
that document. We use oracle IR to find docu-
ments Dq (ORACLE DOCS in Figure 1) but need to
find a reference to q in these documents for other
filters and downstream stages (ALIAS MATCH in
Figure 1). An exact match to the query name is
trivial, but some documents may not contain the
query verbatim. This primarily occurs in cases
where an alias is used, e.g. where the query Fyffes
PLC is only mentioned as Fyffes in a document.

SF systems typically implement a query expan-
sion step prior to searching for relevant docu-
ments, generating and extracting aliases based on
the corpus and external sources (Ji et al., 2011).
For documents that do not mention the query ver-
batim, we manually annotate the longest token
span which refers to the query. All of our filters
are applied to this base setup. To measure the ef-
fect of our manual aliases on recall, we implement
a naı̈ve EXACT MATCH filter, which allows a doc-
ument only if a NE matches the query verbatim.

Entity form filters are based on the form of the
entities extracted from documents. We initially
consider all substrings of all NPs for a high-recall,
yet tractable, baseline. The NP N-GRAMS filter al-
lows every n-gram of every NP. NES allows NEs
only; and for TYPES, fill NEs must be of a NER

type defined by the slot, e.g. for per:city of
birth only LOC NEs are allowed.

Sentence filters require the query mention and
fill to be in the same sentence, or to have mentions
in the same sentence. Sentence filters are COREF:

the query and the fill must be mentioned in the
same sentence; COREF NNP: as for COREF, but
the query and the fill must have coreferent proper
noun mentions in the same sentence; NAÏVE NNP:
as for COREF NNP, but instead of using a full
coreference system and identifying proper noun
mentions, we use a naı̈ve proper noun coreference
process; and NOCOREF: the verbatim query and
the fill must be named in the same sentence.

As dependency paths are often a key fea-
ture for extracting relations, we apply further
syntactic filters based on dependency paths be-
tween NEs and mentions in sentences. Where
we use dependencies, we use the Stanford col-
lapsed and propagated representation (de Marn-
effe and Manning, 2008), e.g. in Alice is an em-
ployee of Bob and Charlie the collapsed and prop-
agated dependency path between Alice and Charlie
is→nsubj→employee←prep of←.

Syntactic filters roughly capture the complex-
ity of the syntactic configuration between query
and filler: LENGTH ≤ N requires that the query
and fill are separated by a dependency path of at
most N arcs, e.g. the above dependency path is
two arcs; VERB requires a verb to be present in the
dependency path between the query and fill men-
tions or names; and NON-UNIQUE requires the de-
pendency path between the query and fill to occur
more than once in a corpus, modelling a hard con-
straint on bootstrapping and other learning pro-
cesses that require a shared dependency context
between training and test examples.

4.2 Bootstrapping reachability

In addition to the upper bound set by these explicit
hard constraints, we want to reflect constraints that
are implicitly applied by an extraction process—
are there fills that are never learnable given a set of
features and a set of training data? We extend our
evaluation to include a training process in a semi-
supervised setting. We treat this as a bootstrap-
ping task (Agichtein and Gravano, 2000): given
training pairs of NEs in text (each pair effectively
a query entity and a candidate slot fill, or vice-
versa), extract the context of each pair, and find
other pairs in the corpus that share that context.
A pair is reachable, and hence learnable, if it can
be found by iterating this process. We continue to
evaluate maximum recall and do not apply thresh-
olding or ranking that would typically be utilised
in a bootstrapping process. We simply output all
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Figure 2: Bootstrapping. The rightmost vertex is labelled with per:employee of after two iterations.

possible candidates in order to measure recall loss:
as with hard constraints applied by filters, if recall
is lost it can never be recovered.

Given a set of training data, we identify if we
can reach a test instance by bootstrapping, no mat-
ter how remotely it is connected to training in-
stances. We use lemmatised dependency paths as
the context for this process as they are relatively
precise and discriminative, compared to other fea-
tures used for SF. In order to simplify process-
ing, we construct a graph of all pairs and paths
in the corpus first, and then bootstrap from train-
ing instances over this graph. Bootstrapping more
general features (e.g. bag-of-words) results in the
graph becoming too large to process on our com-
puting resources.

The graph is constructed as follows. Each ver-
tex represents a typed pair of NEs that occur in the
same sentence in the TAC KBP Source Data (LDC,
2010), collapsing vertices that have equal names
and types into a single vertex. An edge exists
between pairs that are connected at least once by
the same dependency path. The constructed graph
is equivalent to the EXACT MATCH + NOCOREF

+ NON-UNIQUE filter. Constructing a graph for
COREF (which requires many more edges than
NOCOREF) was impractical.

Initially, pairs in training data are labelled with
their corresponding slots (see Figure 2). In each
bootstrap iteration, the labels of each vertex are
added to its neighbouring vertices. There is no fil-
tering or competition between labels on a vertex,
they are all added. We analyse performance after
each iteration, evaluating by mapping the labelled
graph back to the equivalent SF queries. This en-
ables us to determine what fills are recoverable
from the bootstrapping process.

5 Evaluation

We evaluate our filters on the TAC KBP English
Slot Filling 2011 corpus, queries and task spec-
ification. As we aim to determine recall upper

bounds and recall loss, we use only the documents
D from the TAC KBP Source Data (LDC, 2010)
that are known to contain at least one correct slot
fill in the TAC KBP 2011 English Slot Filling As-
sessment Results (LDC, 2011).

We restrict the assessment results and the eval-
uation process to all slot types that are filled by
name content types as opposed to value or
string. We also do not evaluate the per:alt-
ernate names or org:alternate names
slots, as extraction of fills for these slots typically
falls outside the RE task: while X also known as Y
or similar may appear in text, X and Y are typically
mentioned independently across documents.

There are 100 TAC11 queries, 50 PER and 50
ORG. There are 535 fills in our reduced evalua-
tion, 1,171 correct responses over these fills: 56%
of the original evaluation slots. The distribution of
fills per slot is listed in Table 1. The number of fills
per query ranges from 0 (one query has no name
fills) to 71, with a median of 17. D is comprised
of 1,351 documents. The number of documents
per query ranges from 0 to 63, with a median of
15.5. We use TAC 2009 and 2010 results and an-
notations as training data for bootstrapping, with
4,647 relevant training examples.

We evaluate ignoring case and without requir-
ing a specific source document: nocase and
anydoc in SF evaluation. Note that each slot
fill is an equivalence class of responses: e.g. for
org:founded by the correct fills Clifford S. As-
ness and Clifford Asness are equivalent. Consis-
tent with SF evaluation, we identify at what con-
straint an entire equivalence class no longer has
any member proposed as a fill.

We process documents with Stanford CoreNLP:
tokenisation, POS tagging (Toutanova et al.,
2003), NER (Finkel et al., 2005), parsing (Klein
and Manning, 2003), and coreference resolution
(Lee et al., 2011), and these annotations form the
relevant components of our filters. Where we use
dependency paths, we lemmatise tokens on the
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slot #
org:top members,employees 118
per:employee of 71
per:member of 47
org:subsidiaries 32
org:parents 24
per:origin 23
org:country of headquarters 22
per:countries of residence 20
org:city of headquarters 19
org:shareholders 18

slot #
per:cities of residence 17
per:children 17
org:stateorprovince of headquarters 17
per:schools attended 16
per:stateorprovinces of residence 11
org:member of 11
per:spouse 8
org:members 8
org:founded by 7
per:siblings 6

slot #
per:other family 6
per:city of birth 6
per:parents 3
per:country of birth 3
org:political,religious affiliation 2
per:stateorprovince of birth 1
per:country of death 1
per:city of death 1

Table 1: Number of fills for slots in the evaluation.

path to increase generality and recall in further
analysis. For example, for Alice employs Bob we
extract the path←nsubj←employ→dobj→.

The COREF NNP filter uses CoreNLP corefer-
ence, limited to mentions which are headed by
NNPs. For NAÏVE NNP we use a naı̈ve rule-based
coreference process (Pink et al., 2013), motivated
by efficiency reasons, as the full CoreNLP requires
parsing and a more complex model. The rules do
not require deep processing and can run quickly
over large volumes of text. All NEs from a doc-
ument are matched by processing in decreasing
length order. Two names are marked coreferent
where, ignoring titles and case: they match ex-
actly; they have a matching final word; they have
a matching initial word; or one is an acronym of
the other. If multiple conditions are matched, the
earliest (the most strict match) is used.

The NON-UNIQUE filter requires that a depen-
dency path occurs more than once between NEs
in the full TAC KBP Source Data (LDC, 2010),
comprised of 1.8M documents and 318M NE pairs.
There are 38.6M distinct lemmatised dependency
paths, 5M of which occur more than once.

6 Results

We now analyse where the filters lose recall. Re-
sults for non-syntactic filters are listed in Table 2.
Figure 3 illustrates our main pipeline which con-
tains filters that would typically be implemented.

NP n-grams We choose all n-grams of NPs
(from the CoreNLP constituency parser) to be our
highest recall filter, and so our highest baseline
has 3% recall loss. We identify the reasons for
loss at this filter. There are four errors due to
the fill not existing verbatim in text, e.g. Pinellas
and Pasco counties does not contain Pinellas County
verbatim. Four errors occur where an NP is not

correctly identified, which occurs in two differ-
ent cases: where there is genuine error or where
the sentence being parsed is actually a list or other
semi-structured data as opposed to an actual sen-
tence. four errors are where a correct answer has
not been annotated as correct, we refer to this as
ANNOTATION error below, and one case where an
incorrect response has been annotated as correct.

While 97% recall is an excellent starting point,
53M candidates is a huge, likely intractable search
space for any downstream process. Hence NER is
commonly used as the starting point for SF.

NEs Most errors here are due to NER errors, and
these errors result in nearly a 10% recall loss. 25
errors are caused where no token in the fill has
been tagged as part of a NE (NO NER); and 13
where some tokens were missed (NER BOUNDS).
There are two additional cases of ANNOTATION

due to determiners not being included in an NE,
where they perhaps should have also been anno-
tated. Hence, in agreement with previous analy-
ses, NER error has a large impact on SF.

On this data set we have 10% recall loss that
most SF or RE approaches would never be able to
extract. However, it is still fairly unconstrained
and a high recall bound in comparison to the fol-
lowing filters. Recall errors could be substan-
tially reduced if SF approaches were to take into
consideration all NEs in documents as a set of
candidates, and take a more document-based ap-
proach to RE as opposed to sentence-based. While
there has been some work in extracting relations
across sentences without coreference (Swampillai
and Stevenson, 2011), RE across sentence bound-
aries is effectively limited to coreference chains
between sentences. Currently whole document
extraction is not a research focus for SF, and
the implementation of whole document techniques
throughout SF pipelines would likely be beneficial.
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Figure 3: Results for NP N-GRAMS + NES + TYPES, followed by sentence filters with a range of corefer-
ence configurations. Grey fill and % indicates recall after each filter, and the number in the arrow is the
size of the result set passed to the next filter or to the downstream process.

experiment R (%) |search space|
NP N-GRAMS 97 53966773
. . . + NEs 90 562318
. . . + TYPES (1) 88 109241
. . . + EXACT MATCH (2) 85 105764
(1) + COREF 80 49170
(1) + NNP COREF 78 43476
(1) + NNP NAÏVE 76 29171
(1) + NOCOREF 64 18331
(2) + COREF 77 47439
(2) + NNP COREF 73 30089
(2) + NNP NAÏVE 73 27770
(2) + NOCOREF 61 16978
(1) + COREF + NON-UNIQUE 65 19958
(1) + NNP COREF + NON-UNIQUE 62 17692
(1) + NNP NAÏVE + NON-UNIQUE 61 13960
(1) + NOCOREF + NON-UNIQUE 48 8084
(2) + COREF + NON-UNIQUE 63 18953
(2) + NNP COREF + NON-UNIQUE 60 16712
(2) + NNP NAÏVE + NON-UNIQUE 56 13064
(2) + NOCOREF + NON-UNIQUE 43 7236

Table 2: Results on D given sets of filters config-
urations. The ellipses indicate the previous line.

Exact match Requiring that the query name is
exactly matched (EXACT MATCH) loses a further
2% recall. Effectively this is the recall error cre-
ated by the IR component of SF. Five error cases
occur when an alias is required, e.g. Quds Force
for IRGC-QF; Chris Bentley for Christopher Bentley.
Eight errors occur where the query term is a refer-
ence to an entity but not its name, all pertaining to
the query GMAC’s Residential Capital LLC.

Types All errors created by the TYPES filter are
due to incorrect NER types on mentions proposed
by CoreNLP. We do not aggregate the NE type over
the coreference chain. Applying this filter cuts
down the search space substantially, with minimal
loss to recall. Adding TYPES results in a recall loss
of 2%, but cuts down the search space by 80%.

Coref This filter is the starting point for many
recent SF approaches: we consider entities that are
either named or mentioned in the same sentence.
Table 3 shows that coreference is the largest cat-
egory of recall error created by the COREF filter.
NN COREF, NNP COREF and PRP COREF indicate
failure to resolve common noun, proper noun and
pronoun coreference.

The remainder of the errors are cases where
mentions of the fills do not occur in the same sen-
tence. ROLE INF indicates that an individual’s role
is mentioned, e.g. Gene Roberts, the executive editor,
where The Inquirer is mentioned in a previous sen-
tence. LOC INF where additional location knowl-
edge is required: a French company is headquar-
tered in France. The search space has been sub-
stantially reduced, by a further 55% to 0.1% of the
original space. However, the recall upper bound
has dropped to 80% of all fills.

Coref NNP and naive NNP While coreference
is important for high recall, more difficult coref-
erence cases (common noun and pronoun coref-
erence) may generate a large number of spurious
cases. Using COREF NNP as the sentence filter
loses 2% recall, to an upper bound of 78%, for
a 12% reduction in the search space. However,
using a full coreference system generates may
more candidates than using simple NNP corefer-
ence. NAÏVE NNP has an upper bound of 76%.
This is only 4% lower recall than COREF, but
for a 41% reduction in search space. In addi-
tion, CoreNLP coreference is much more expen-
sive than our naı̈ve approach as it requires parsing.

No coref Errors for NOCOREF are listed in Ta-
ble 3. INF indicates that inference or more sophis-
ticated analysis is required to find the fill, such as
correctly identifying the relation between entities
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Experiment NN COREF NNP COREF PRP COREF ROLE INF LOC INF INF NO NER ANNOTATION

COREF 9 6 13 4 3 0 8 1
NOCOREF 16 52 20 4 3 2 14 3

Table 3: Error types for COREF and NOCOREF.
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referred to in an interview. NOCOREF results in a
recall upper bound of 64%. While this gives us a
small search space, we are now losing a substan-
tial proportion of the correct fills.

Precision-recall curves for the dependency path
filters are given in Figures 4, 5 and 6. We choose

to report precision for simplicity, and note that the
downstream search space is the inverse of preci-
sion multiplied by the number of correct fills. Dots
from low recall to high recall indicate maximum
dependency path length from n = 1 to n = 7. De-
pendency paths of length 7 give maximum recall
in our experiments. Results for the addition of the
NON-UNIQUE constraint are given in Table 2.

Use of coreference While critical for recall, use
of coreference generates a large number of candi-
dates and presents a key trade-off for SF, as indi-
cated by Figure 4. At maximum dependency path
length, coreference gives 16% greater recall at a
cost of 1.1% precision, roughly half the precision
of no coreference.

Higher precision indicates that fewer candidates
are generated. Fewer candidates allows for SF ap-
proaches to be scaled to larger amounts of data,
and enables techniques that take advantage of re-
dundancy or clustering to be used. Hence the
higher precision no coreference approach may al-
low for more precise learning methods to be used,
which may provide better results overall than an
approach using coreference.

Short dependency paths In all of our filter con-
figurations, a short dependency path length is suf-
ficient for extracting the majority of slot fills for
that particular configuration. Improving precision
of fills found on short dependency paths may be a
more effective and scalable approach to improving
F-score rather than focusing on long paths.

In Figure 5 we consider NOCOREF. Limiting the
dependency path length to three loses 11% recall,
but gains 0.7% precision. While this loss of re-
call is high, the reduction in unique dependency
paths is substantial. For maximum path length
three there are 10,732 paths (1,551 unique); for all
paths there are 17,394 paths (2,863 unique).

Verb Figure 6 shows the VERB filters has less
impact or recall or precision than some other de-
pendency filters. For COREF with all paths, adding
the VERB filter loses 6% recall for a 0.1% gain in
precision. Some slots not included in this anal-
ysis, such as per:title, tend to be described
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by shorter paths that often do not include verbs.
These slots are also frequent in the TAC11 dataset.

Non-unique The frequency of a dependency
path may be a critical feature for learning, as paths
that occur only once will not been seen by a boot-
strapping process or may not be considered by
other machine learning approaches. Applying the
NON-UNIQUE filter (Table 2) has a large effect on
recall: COREF loses 15% recall for a 41% reduc-
tion in the size of the search space; NOCOREF

loses 15% recall for a 44% reduction in search
space. To recover this recall, the strictness of this
filter could be relaxed by further generalising de-
pendency paths or using a different similarity met-
ric to direct match of paths. However, this is the
upper bound for approaches which consider only
exact dependency paths as a feature.

Bootstrapping A small amount of training data
quickly finds slot fills via bootstrapping. One it-
eration has a recall of 24%, with 7,665 candidates
generated. Two to four iterations have recall of
37%–39% (maximum recall), with 31,702–37,797
candidates. The recall upper bound for these con-
figurations is 43%—more training data will allow
for better precision, but will only minimally im-
prove recall in this setup. We note that limit-
ing bootstrap to one or two iterations is ideal for
the best trade-off between recall and search space.
However, closer analysis of discriminative paths is
required for a full SF system.

Note that even when bootstrapping through ev-
ery dependency path in the corpus, there is an up-
per bound on recall of 39%. Even if we used
the test data as additional training data the recall
would still be limited to 43%. This demonstrates
that systems need distributional features, depen-
dency tree kernels or other similarity comparison
as opposed to exact feature matching if depen-
dency paths are to be a useful feature for SF.

7 Discussion

We present an analysis of SF recall bounds given
hard constraints applied by standard system com-
ponents. Pipeline error is common across all NLP

tasks. Our analysis suggests that high-precision
naı̈ve tools, e.g. naı̈ve coreference, can lead to
state-of-the-art performance.

However, the SF task is not strictly an exhaus-
tive evaluation for each query, as the evaluation
data is comprised of the time-limited human anno-

tation plus aggregated system output only. There
may be fills that are missed in the evaluation re-
sults but are correct and returned by our high recall
filters—affecting our reported precisions.

We manually evaluate a small sample of the
queries, the first five person and the first five
organization queries, to identify missed fills in
the COREF output (2,903 of 49,170 total fills, or
5.9%). For these fills, there were 29 fills in the as-
sessment data. Of these fills, 21 are returned by
COREF, however there are two correct fills found
by COREF that are not in the assessment data. One
of these two errors would be identified with cor-
rect coreference, and the other requires complex
long range inference. These additional correct fills
that are identified will not have a large impact on
the absolute precision, as there are two of 2,903
more fills. However, the relative difference in true
positives, 21 to 23, results in some uncertainty in
results when comparing them relatively.

8 Conclusion

Recent TAC KBP Slot Filling results have shown
that state-of-the-art systems are substantially lim-
ited by low recall. In this work, we perform a
maximum recall analysis of slot filling, providing
a comprehensive analysis of recall error created
in the document retrieval and candidate generation
stages. We focus on recall error in candidate gen-
eration as a performance limitation, as candidates
that are lost in the pipeline cannot be recovered by
downstream processes.

We find ∼10% of recall is ignored by most slot
filling systems due to NER error, and while state-
of-the-art coreference provides a substantial recall
gain over no coreference, 8% of recall is still lost
when queries and fills occur in different sentences.
Using NE type constraints is very effective, reduc-
ing recall by only 2% for a search space reduc-
tion of 81%. Without coreference, a further 16%
of fills are lost, but 12% of this recall can be re-
gained using efficient naı̈ve name matching rules,
while still reducing the search space by 41%, mak-
ing such an approach possibly preferable over full
coreference. We confirm that coreference and ac-
curate NER are critical to high recall slot filling.

We find that using maximum recall bootstrap-
ping, 39% of test slots fills are reachable from the
TAC09 and TAC10 training data, limited by an up-
per bound on non-unique paths of 43%.

In the future, we intend to assess how specific
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slots are affected by recall and search space trade-
off, and perform evaluation over all slot types:
names, values and strings. In addition, we in-
tend to expand the bootstrapping experiments with
variations over the training data.

This work highlights NER, coreference and typ-
ing as the areas that have the most impact on
slot filling recall, enabling researchers to focus on
problems that will most improve performance.
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