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Abstract

We present a comparison of different selec-
tional preference models and evaluate them
on an automatic verb classification task in
German. We find that all the models we
compare are effective for verb clustering;
the best-performing model uses syntactic
information to induce nouns classes from
unlabelled data in an unsupervised man-
ner. A very simple model based on lexical
preferences is also found to perform well.

1 Introduction

Selectional preferences (Katz and Fodor, 1963;
Wilks, 1975; Resnik, 1993) are the tendency for
a word to semantically select or constrain which
other words may appear in a direct syntactic re-
lation with it. Selectional preferences (SPs) have
been a perennial knowledge source for NLP tasks
such as word sense disambiguation (Resnik, 1997;
Stevenson and Wilks, 2001; McCarthy and Car-
roll, 2003) and semantic role labelling (Erk, 2007);
and recognising selectional violations is thought
to play a role in identifying and interpreting meta-
phor (Wilks, 1978; Shutova et al., 2013). We focus
on the SPs of verbs, since determining which argu-
ments are typical of a given verb sheds light on the
semantics of that verb.

In this study, we present the first empirical com-
parison of different SP models from the perspective
of automatic verb classification (Schulte im Walde,
2009; Sun, 2012), the task of grouping verbs to-
gether based on shared syntactic and semantic prop-
erties.

We cluster German verbs using features captur-
ing their valency or subcategorisation, following
prior work (Schulte im Walde, 2000; Esteve Ferrer,
2004; Schulte im Walde, 2006; Sun et al., 2008;
Korhonen et al., 2008; Li and Brew, 2008), and
investigate the effect of adding information about

verb argument preferences. SPs are represented
by features capturing lexical information about the
heads of arguments to the verbs; we restrict our
focus here to nouns.

We operationalise a selectional preference model
as a function which maps such an argument head
to a concept label. We submit that the primary
characteristic of such a model is its granularity. In
our baseline condition, all nouns are mapped to the
same label; this effectively captures no information
about a verb’s SPs (i.e., we cluster verbs using sub-
categorisation information only). On the other ex-
treme, each noun is its own concept label; we term
this condition lexical preferences (LP). Between
the baseline and LP lie a spectrum of models, in
which multiple concepts are distinguished, and
each concept label can represent multiple nouns.
Our main hypothesis is that verb clustering will
work best using a model of such intermediate gran-
ularity. This follows the intuition that verbs would
seem to select for classes of nouns; for instance,
we suppose that essen ‘eat’ would tend to prefer as
a direct object a noun from the abstract concept Es-
sen (‘food’). We assume that these concepts can be
expressed independently of particular predicates;
that is, there exist selectional preference models
that will work for all verbs (and all grammatical
relations). Further benefits of grouping nouns into
classes include combating data sparsity, as well
as deriving models which can generalise to nouns
unseen in training data.

Another parameter of a selectional preference
model is the methodology used to induce the con-
ceptual classes; put another way, the success of
an SP model hinges on how it represents concepts.
In this paper, we investigate the choice of noun
categorisation method through an empirical com-
parison of selectional preference models previously
used in the literature.

We set out to investigate the following questions:

1. What classes of nouns are effective descriptors
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of selectional preference concepts? For ex-
ample, do they correspond to features such as
ANIMATE?

2. What is the appropriate granularity of selec-
tional preference concepts?

3. Which methods of classifying nouns into con-
cepts are most effective at capturing selec-
tional preferences for verb clustering?

This paper is structured as follows: In Section 2,
we introduce our baseline method of clustering
verbs using subcategorisation information and de-
scribe evaluation; Section 3 lists the models of se-
lectional preferences that we compare in this work;
Section 4 presents results and discussion; Section 5
summarises related work; and Section 6 concludes
with directions for future research.

2 Automatic verb classification

Verb classifications such as VerbNet (Kipper-
Schuler, 2005) allow generalisations about the syn-
tax and semantics of verbs and have proven useful
for a range of NLP tasks; however, creation of these
resources is expensive and time-consuming. Auto-
matic verb classification seeks to learn verb classes
automatically from corpus data in a cheaper and
faster way. This endeavour is possible due to the
link between a verb’s semantics and its syntactic be-
haviour (Levin, 1993). Recent research has found
that even automatically-acquired classifications can
be useful for NLP applications (Shutova et al., 2010;
Guo et al., 2011). In this section, we introduce the
verb classification method used by our baseline
model, which clusters verbs based on subcategor-
isation information. Following this, Section 2.2 ex-
plains the gold standard verb clustering and cluster
purity metric which we use for evaluation.

2.1 Baseline model
In this work, we take subcategorisation to mean
the requirement of a verb for particular types of
argument or concomitant. For example, the English
verb put subcategorises for subject, direct object,
and a prepositional phrase (PP) like on the shelf :

(1) [NP Al] put [NP the book] [PP on the shelf].

A subcategorisation frame (SCF) describes a
combination of arguments required by a specific
verb; a description of the set of SCFs which a verb
may take is called its subcategorisation preference.

We acquire descriptions of verbal SCF preferences
on the basis of unannotated corpus data.

Our experiments use the SdeWaC corpus (Faaß
and Eckart, 2013), containing 880 million words
in 45 million sentences; this is a subset of deWaC
(Baroni et al., 2009), a corpus of 109 words extrac-
ted from Web search results. SdeWaC is filtered
to include only those sentences which are max-
imally parsable1. We parsed SdeWaC with the
mate-tools dependency parser (Bohnet et al.,
2013)2, which performs joint POS and morpholo-
gical tagging, as well as lemmatisation. Our sub-
categorisation analyses are delivered by the rule-
based SCF tagger described by Roberts et al. (2014),
which operates using the dependency parses and as-
signs each finite verb an SCF type. The SCF tags are
taken from the SCF inventory proposed by Schulte
im Walde (2002), which indicates combinations
of nominal and verbal complement types, such as
nap:für.Acc (transitive verb, with a PP headed
by für ‘for’). Examples of complements are n for
nominative subject, and a for accusative direct ob-
ject; in SCFs which include PPs (p), the SCF tag
specifies the head of the PP and the case of the pre-
positional argument (Acc in our example indicates
the accusative case of the prepositional argument).
The SCF tagger undoes passivisation and analyses
verbs embedded in modal and tense constructions.
We record 673 SCF types in SdeWaC.

From SdeWaC, we extracted the first 3,000,000
verb instances assigned an SCF tag by the SCF tag-
ger, where the verb lemma is one of the 168 listed
in our gold standard clustering (this requires ap-
proximately 270 million words of parsed text, or
25% of SdeWaC). We refer to this as our test set.
In this set, each verb is seen on average 17,857
times; the most common is geben (‘give’, 328,952
instances), and the least is grinsen (‘grin’, 50).

We represent verbs as vectors, where each di-
mension represents a different SCF type. Vector
entries are initialised with SCF code counts over
the test set, and each vector is then normalised to
sum to 1, so that a vector represents a discrete prob-
ability distribution over the SCF inventory. We use
the Jensen-Shannon divergence as a dissimilarity
measure between pairs of verb vectors. The Jensen-
Shannon divergence (Lin, 1991) is an information-
theoretic, symmetric measure (Equation (2)) re-

1The filtering used a rule-based dependency parser to es-
timate a per-token parse error rate for each sentence, and
removed those sentences with very high error rates.

2https://code.google.com/p/mate-tools/
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lated to the Kullback-Leibler divergence (Equa-
tion (3)).

JS(p, q) = D(p||p+ q

2
) +D(q||p+ q

2
) (2)

D(p||q) =
∑

i

pi log
pi

qi
(3)

With this dissimilarity measure, we use hier-
archical clustering with Ward’s criterion (Ward,
Jr, 1963) to partition the verbs into K disjoint sets
(i.e., hard clustering), where we match K to the
number of classes in our gold standard (described
below).

2.2 Evaluation paradigm

We evaluate the automatically induced verb cluster-
ings against a manually-constructed gold standard,
published by Schulte im Walde (2006, page 162ff.).
This Levin-style classification groups 168 high-
and low-frequency verbs into 43 semantic classes;
examples include Aspect (e.g., anfangen ‘begin’),
Propositional Attitude (e.g., denken ‘think’), and
Weather (e.g., regnen ‘rain’). Some of the classes
are further sub-classified; for the purposes of our
evaluation, we ignore the hierarchical structure of
the classification and consider each class or sub-
class to be a separate entity. In this way, we obtain
classes of fairly comparable size and sufficient se-
mantic consistency.3

We evaluate a given verb clustering against
the gold standard using the pairwise F -score
(Hatzivassiloglou and McKeown, 1993). To calcu-
late this statistic, we construct a contingency table
over the

(
n
2

)
pairs of verbs, the idea being that the

gold standard provides binary judgements about
whether two verbs should be clustered together or
not. If a clustering agrees with the gold standard as
to whether a pair of verbs belong together or not,
this is a “correct” answer. Using the contingency
table, the standard information retrieval measures
of precision (P ) and recall (R) can be computed;
the F -score is then the harmonic mean of these:
F = 2PR/(P +R). The random baseline is 2.08
(calculated as the average score of 50 random parti-
tions), and the optimal score is 95.81, calculated by
evaluating the gold standard against itself. As the
gold standard includes polysemous verbs, which

3In contrast, a top-level class like ‘Transfer of Possession
(Obtaining)’, not only covers 25% of the gold standard, it also
comprises the semantically very diverse subclasses ‘Transfer
of Possession (Giving)’, ‘Manner of Motion’, and ‘Emotion’.

belong to more than one cluster, the optimal score is
calculated by randomly picking one of their senses;
the average is then taken over 50 such trials.

The pairwise F -score is known to be somewhat
nonlinear (Schulte im Walde, 2006), penalising
early clustering “mistakes” more than later ones,
but it has the advantage that we can easily determ-
ine statistical significance using the contingency
table and McNemar’s test.

We use only one clustering algorithm and one
purity metric, because our prior work shows that
the most important choices for verb clustering are
the distance measure used, and how verbs are rep-
resented. These factors set, we expect similar per-
formance trends from different algorithms, with
predictable variation (e.g., spectral tends to outper-
form hierarchical clustering, which in turn outper-
forms k-means). Combining Ward’s criterion and
F -score is a trade-off at this point; the criterion is
deterministic, giving reproducible results without
computational complexity, but disallows estimates
of density over our evaluation metric and is greedy
(see discussion in Section 4.3).

3 Selectional preference models

In this section, we introduce the various SP models
that we compare in this paper. In all cases, we
hold the verb clustering procedure described in the
previous section unchanged, with the exception
that SCF tags for verbs are parameterised for
selectional preferences. As an example, a verb
instance observed in a simple transitive frame with
a nominal subject and accusative object would
receive the SCF tag na. Assuming that a given SP

model places the subject noun in the SP concept
animate and the object noun in the concept
concrete, the parameterised SCF tag would be
na*subj-{animate}*obj-{concrete}.
This process captures argument co-occurrence
information about verb instances, and has the effect
of multiplying the SCF inventory size, making the
verb vectors described in Section 2.1 both longer
and sparser.

We evaluate various types of SP models: the
simple lexical preferences model; three models
which perform automatic unsupervised induction
of noun concepts from unlabelled data; and one
which uses a manually-built lexical resource. As
far as we are aware, two of these, the word space
and LDA models, have never been applied to verb
classification before.
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N Coverage of test set

100 12.08%
200 17.18%
500 26.11%

1,000 32.70%
5,000 45.31%

10,000 49.09%
50,000 55.69%

100,000 57.67%

Table 1: Fraction of verb instances in the test set
parameterised by LP as a function of the number of
nouns N included in the LP model.

3.1 Lexical preferences

The LP model is the simplest in our study after the
baseline condition; it simply maps a noun to its own
lemma. We include as a parameter of the LP model
a maximum number of nouns N to admit as LP

tags. In this way, the LP model parameterises SCFs
using only the N most frequent nouns in SdeWaC;
nouns beyond rank N are treated as if they were
unseen. Table 1 indicates what fraction of the 3
million verb instances receive SCF tags specifying
one or more LPs as a function of this parameter.
Note that the coverage approaches an asymptote
of around 60%. This is due to the fact that noun
arguments are not observed for every verb instance;
many verbs’ arguments are pronominal or verbal
and are not treated by our SP models. Setting N
allows a simple way of tuning the LP model: With
increasing N , the LP model should capture more
data about verb instances, but after a point this
benefit should be cancelled out by the increasing
sparsity in the verb vectors.

3.2 Sun and Korhonen model

The SP model described in this section (SUN) was
first used by Sun and Korhonen (2009) to de-
liver state-of-the-art verb classification perform-
ance for English; more recently, the technique was
applied to successfully identify metaphor in free
text (Shutova et al., 2010; Shutova et al., 2013).
It uses co-occurrence counts that describe which
nouns are found with which verbs in which gram-
matical relations; this information is used to sort the
nouns into classes in a procedure almost identical
to our verb clustering method described in Sec-
tion 2.1.

We extract all verb instances in SdeWaC which

are analysed by the SCF tagger, and count all
(verb, grammatical relation, nominal argument
head) triples, where the grammatical relation is
subject, direct (accusative) object, indirect (dative)
object, or prepositional object4, and is listed in the
verb instance’s SCF tag; we undo passivisation, re-
move instances of auxiliary and modal verbs, and
filter out those triples seen less than 10 times in the
corpus.

These observations cover 60,870 noun types and
33,748,390 tokens, co-occurring with 6,705 verb
types (11,426 verb-grammatical-relation types); an
example is (sprechen, obj, Wort) (‘speak’ with dir-
ect object ‘word’, occurring 1,585 times)5. We rep-
resent each noun by a vector whose 11,426 dimen-
sions are the different verb-grammatical-relation
pairs; coordinates in the vector indicate the ob-
served corpus counts. The vectors are then norm-
alised to sum to 1, such that each represents some
particular noun’s discrete probability distribution
over the set of verb-grammatical-relation pairs. The
distance between two noun vectors is defined to
be the Jensen-Shannon divergence between their
probability distributions, and we partition the set
of nouns into M groups using hierarchical Ward’s
clustering.

The SP model then maps a noun to an arbitrary
label indicating which of the M disjoint sets that
noun is to be found in (i.e., all nouns in the first
noun class map to the concept label concept1);
we employ the parameter M to model SP concept
granularity. As with the LP model, we use the
parameter N to indicate how many nouns are in-
cluded in the SUN model; we search the parameter
values N = {300, 500, 1000, 5000, 10000} and
N
M = {5, 10, 15, 20, 30, 50}.

3.3 Word space model

Word space models (WSMs, (Sahlgren, 2006;
Turney and Pantel, 2010)) use word co-occurrence
counts to represent the distributional semantics of a
word. This strategy makes possible a clustering of
nouns that does not depend on verbal dependencies
in the first place.

4We have also experimented with adding features for each
noun showing nominal modification features (e.g., (schwarz,
nmod, Haar), ‘hair’ modified by ‘black’), but these seem to
hurt performance.

5Triples representing prepositional object relations are dis-
tinguished by preposition (e.g., the triple (geben, prep-in,
Auftrag), ‘give’ with PP headed by ‘in’ with argument head
‘contract’, an idiomatic expression meaning ‘to commission’
something).

514



Dagan et al. (1999) address the problem of data
sparseness for the automatic determination of word
co-occurrence probabilities, which includes selec-
tional preferences. They introduce the idea of es-
timating the probability of hitherto unseen word
combinations using available information on words
that are closest w.r.t. distributional word similar-
ity. Following this idea, Erk (2007) and Padó et al.
(2007) describe a memory-based SP model, using a
WSM similarity measure to generalise the model to
unseen data.

We build a WSM of German nouns and use it to
partition nouns into disjoint sets, which we then
employ as with the SUN model. We compute word
co-occurrence counts across the whole SdeWaC
corpus, using as features the 50,000 most common
words in SdeWaC, skipping the first 50 most com-
mon words (i.e., we use words 50 through 50,050),
with sentences as windows. We lemmatise the cor-
pus and remove all punctuation; no other normalisa-
tion is performed. Co-occurrence counts between
a word wi and a feature cj are weighted using the
t-test scheme:

ttest(wi, cj) =
p(wi, cj)− p(wi)p(cj)√

p(wi)p(cj)

We use a recent technique called context selec-
tion (Polajnar and Clark, 2014) to improve the word
space model, whereby only the C most highly
weighted features are kept for each word vector.
We set C by optimising the correlation between the
word space model’s cosine similarity and a data
set of human semantic relatedness judgements for
65 word pairs (Gurevych and Niederlich, 2005); at
C = 380, we obtain Spearman ρ = 0.813 and Pear-
son r = 0.707 (human inter-annotator agreement
for this data set is given as r = 0.810).

After this, we build a similarity matrix between
all pairs of nouns using the cosine similarity, and
then partition the set of N nouns into M disjoint
classes using spectral clustering with the MNCut
algorithm (Meilă and Shi, 2001). As with the SUN

model, this SP model assigns labels to nouns indic-
ating which noun class they belong to. We search
the same parameter space for N and M as for the
SUN model.

3.4 GermaNet
Statistical models of SPs have often used WordNet
as a convenient and well-motivated inventory of
concepts (e.g., Resnik (1997), Li and Abe (1998),

Clark and Weir (2002)). Typically, such models
make use of probabilistic treatments to determine
an appropriate concept granularity separately for
each predicate; we opt here for a simple model that
allows more direct control over concept granularity.
We take the set of concepts relevant to describing
selectional preferences to be a target set of synsets
in GermaNet (Hamp and Feldweg, 1997), and rep-
resent the target set as the set of synsets which are
at some depth d or less in the GermaNet noun hier-
archy: {s | depth(s) ≤ d} where depth(s) counts
the number of hypernym links separating s from
the root of the hierarchy. We model concept gran-
ularity by varying d = 1 . . . 6; at d = 1, the target
set is of size 5, and at d = 6, it is of size 17,125.
Nouns are attributed to concepts as follows: Given
a noun belonging to a synset s, either s is in the
target set, or we take s’s lowest hypernym in the
target set. For polysemous nouns, each synset list-
ing a sense of the noun votes for a member of the
target set; the noun observation is then spread over
the target set using the votes as weights.

This procedure makes our GermaNet SP model a
soft clustering over nouns (i.e., a noun can belong
to more than one SP concept); a consequence of
this is that a single verb occurrence in the corpus
can contribute fractional counts to multiple SCF

types.

3.5 LDA

Latent Dirichlet allocation (Blei et al., 2003) is a
generative model that discovers similarities in data
using latent variables; it is frequently used for topic
modelling. LDA models of SPs have been proposed
by Ó Séaghdha (2010) and Ritter et al. (2010);
previous to this, Rooth et al. (1999) also described
a latent variable model of SPs.

We implement the LDA model of selectional pref-
erences described by Ó Séaghdha (2010). Gener-
atively, the model produces nominal arguments to
verbs as follows: For a given (verb, grammatical re-
lation) pair (v, r), (1) Sample a noun class z from a
from a multinomial distribution Φv,r with a Dirich-
let prior parameterised by α; (2) Sample a noun n
from a multinomial distribution Θz with a Dirichlet
prior parameterised by β. Like Ó Séaghdha, we use
an asymmetric Dirichlet prior for Φv,r (i.e., α can
differ for each noun class) and a symmetric prior
for Θz (β is the same for each Θz). We estimate
the LDA model using the MALLET software (Mc-
Callum, 2002) using the same (verb, grammatical
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relation, argument head) co-occurrence statistics
used for the SUN model. We train for 1,000 it-
erations using the software’s default parameters,
allowing the LDA hyperparameters α and β to be
re-estimated every 10 iterations. We build mod-
els with 50 or 100 topics as a proxy to concept
granularity; models include number of nouns N of
{500, 1000, 5000, 10000, 50000, 100000}.

As with the GermaNet-based model, the LDA

model creates a soft clustering of nouns; the abil-
ity of a noun to have degrees of membership in
multiple concepts might be a good way to model
polysemy. We also experiment with a hard cluster-
ing version of the LDA model; to do this, we assign
each noun n its most likely class label z using the
model’s estimate for P (z|n).

4 Results

We experimented with applying the SP models to
different combinations of grammatical relations
(e.g., only subject, only object, subject+object,
etc.), but generally obtained better results by para-
meterising SCF tags for all grammatical relations.
Table 2 summarises the evaluation scores and para-
meter settings for the best-performing SP models,
applied to verb arguments in all four grammatical
relations (subject, direct, indirect and prepositional
object)6. The table also indicates the number of
SCF types constructed by each SP model (i.e., the
number of dimensions of the vectors representing
verbs).

All the SP models we compare help with auto-
matic verb clustering. Using McNemar’s test on
the contingency tables underlying the F -scores, all
models score better than the baseline at at least the
p < 0.01 level. LDA-hard is better than the Ger-
maNet, LDA-soft, WSM and LP models at at least
the p < 0.05 level; SUN is better (p ≤ 0.05) than
all models except LDA-hard. All other performance
differences are not statistically significant7.

We can also demonstrate the effectiveness of the
SP models with a regression analysis on the models’
coverage of the test set. By varying the number of
nouns N included in the SP models which use this
parameter (LP, SUN, WSM, LDA), or by paramet-
erising SCF tags with SP information only for par-

6 Due to space constraints, we do not present here a de-
tailed per-model study of performance as a function of para-
meter settings; we feel a summary to be adequate, since the
relative performances of the models reflect trends across a
range of parameter settings.

7Using a significance criterion of p < 0.05.

ticular combinations of grammatical relations, dif-
ferent numbers of the verb instances in the test data
will end up with SP information in their SCF tags
(this is the “coverage” statistic in Table 1); with
the exception of the GermaNet model, all of the SP

models we examine here show positive correlation
between the number of verb instances tagged for
SP information and verb clustering performance.
This effect is independent of parameter settings,
indicating the performance benefit conferred by the
SP models is robust.

4.1 Comparison of SP models

The GermaNet model is the least successful in our
study. It achieves its best performance with a depth
of 5; after this, verb clustering performance drops
off again. Verb clustering using the GermaNet
SP model is only slightly better than the baseline
condition.

Against our expectations, the hard clustering
LDA models perform better than the soft cluster-
ing ones, achieving the second highest score in our
evaluation; also, in contrast to the other SP mod-
els studied in this paper, LDA performs best with
fewer, coarser-grained topics. We observe that the
soft clustering models produce verb vectors more
than an order of magnitude longer than the hard
clustering models, and suggest that simple soft clus-
tering may be causing problems with data sparsity
that interfere with verb clustering. We have also
observed that the topics found by LDA do not rep-
resent polysemy as we had hoped. While some
of the topics discovered by the LDA models can
be easily assigned labels (e.g., body parts, people,
quantities, emotions, places, buildings, tools, etc.),
others are less cohesive. We found that frequent
words (e.g., time, person) are generated with high
probability by multiple topics in ways that do not
appear to reflect multiple word senses, and that the
100-topic models exhibit this property to a greater
extent. For instance, Zeit ‘time’ is highly predict-
ive of three topics in the 50-topic models, of which
only the highest-weighted topic groups time ex-
pressions together; in the 100-topic models, Zeit
is found in six topics. Again, of these six, only
the topic with the highest α consists of time expres-
sions. In the 50-topic models, we find 11 topics that
we cannot assign a coherent label; in the 100-topic
models, there are 38 of these mismatched topics.
In our work to date, we have not found that LDA

models with greater numbers of topics find more
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SP model Parameters Granularity F -score Number of SCF types

SUN 10,000 nouns 1,000 noun classes 39.76 248,665
LDA (hard) 10,000 nouns 50 topics 39.10 78,409
LP 5,000 nouns 38.02 388,691
WSM 10,000 nouns 500 noun classes 36.95 149,797
LDA (soft) 10,000 nouns 50 topics 35.91 1,524,338
GermaNet depth = 5 8,196 synsets 34.41 851,265
Baseline 33.47 673

Table 2: Evaluation of the best SP models.
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Figure 1: Verb clustering performance (black) and
test set coverage (grey) of the LP model as a func-
tion of the number of nouns N included in the
model.

specific concepts; it is possible that this problem
might be alleviated by careful filtering of the (verb,
grammatical relation, noun) triples, but we leave
this question to future research.

The LP model is very effective, which is surpris-
ing given its simplicity. As expected, with increas-
ing N , we do observe sparsity effects which hurt
verb clustering performance (see Figure 1).

Our best performing model is SUN. Our best res-
ult is obtained with 10,000 nouns (the maximum
value of N that we tried) in 1,000 classes, giving
relatively fine-grained classes (on average 10 nouns
per class). Table 3 shows some example noun
classes learned by the SUN model. These include:
groups with synonyms or near synonyms, often in-
cluding alternate spellings of the same word (such
as in the truck grouping); and groups of closely-
related co-hyponyms, such as the body part group-
ing and the clothing grouping. In the latter, bill,
joint responsibility, complicity and inscription are
also included as things which can be borne, this
is due to the fact that the SUN noun clustering is
based on triples of verbs, grammatical relations,
and nouns.

LKW (truck), Lkw (truck), Lastwagen (truck),
Castor (container for highly radioactive mater-
ial), Laster (truck), Krankenwagen (ambulance),
Transporter (van), Traktor (tractor)

Hand (hand), Kopf (head), Fuß (foot), Haar
(hair), Bein (leg), Arm (arm), Zahn (tooth), Fell
(fur)

Leiche (corpse), Leichnam (body), Schädel
(skull), Skelett (skeleton), Wrack (wreck), Mu-
mie (mummy), Trümmer (debris)

Sauna (sauna), Badezimmer (bathroom),
Schwimmbad (swimming pool), Nachbildung
(replica), Kamin (fireplace), Aufenthaltsraum
(common room), Mensa (cafeteria)

Rechnung (bill), Kopftuch (headscarf), Uniform
(uniform), Anzug (suit), Helm (helmet), Gewand
(garment), Handschuh (glove), Mitverantwor-
tung (joint responsibility), Bart (beard), Rüs-
tung (armour), Mitschuld (complicity), Socke
(sock), Jeans (jeans), Sonnenbrille (sunglasses),
Aufschrift (inscription), Pullover (sweater),
Weste (vest), Handschellen (handcuffs), Hörner
(horns), Kennzeichen (marking), Tracht (tradi-
tional costume), Korsett (corset), Schuhwerk
(footwear), Kopfbedeckung (headgear), Pelz
(fur), Maulkorb (muzzle)

Missionar (missionary), Weihnachtsmann
(Santa Claus), Selbstmordattentäter (sui-
cide bomber), Bote (messenger), Nikolaus
(Nicholas), Killer (killer), Bomber (bomber),
Osterhase (Easter bunny)

Table 3: Example noun clusters in the SUN SP

model.
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Furthermore, there are thematically related
groups (corpse, body, etc., and sauna, bathroom,
etc.). All months are placed together in one 12-
word group.

Some classes can be easily subdivided into sep-
arate groups, and sometimes the source for this can
be guessed: For example, sports (football, golf, ten-
nis) are lumped together with musical instruments
(guitar, piano, violin) and film roles (starring role,
supporting role), these all being things that can
be played. Many groups of personal roles (such
as various kinds of government ministers) are dis-
tinguished, as are diseases and medications; other
groupings contain proper names or geographical
locations, sometimes of surprising specificity (e.g.,
authors, Biblical names, philosophers, NGOs, East-
ern European countries, foreign currencies, Ger-
man male first names, newspapers, television chan-
nels). The last group in Table 3 shows a grouping
which appears to combine two of these semantic-
ally narrow categories, in which Santa Claus and
the Easter bunny are united with killers and suicide
bombers.

4.2 Noun classes as SP concepts

The WSM SP model is not as successful as SUN, but,
due to the methodological similarity between these
two (SP concepts modelled as hard partitions of
nouns), it affords us an opportunity to investigate
the question of what properties might make for an
effective noun partition.

The WSM model partitions nouns based on
paradigmatic information (which sentence con-
texts a noun appears in), rather than SUN’s use
of syntagmatic information (which grammatical
contexts a noun appears in). Therefore, it is per-
haps not surprising that the noun classes derived
by the WSM are organised thematically, and the
synonym/co-hyponym structure observed in the
SUN noun classes is in many cases absent (e.g.,
{Pferd (horse), Reiter (rider), Stall (stable), Sattel
(saddle), Stute (mare)}; these classes can easily
conflate semantic roles (e.g., Agent for rider and
Location for stable), which is presumably unhelp-
ful for representing selectional preferences.

The distribution of noun classes also differs
between SUN and WSM. The largest noun class
in the WSM model contains 1,076 high-frequency
nouns which are semantically unrelated (day, ques-
tion, case, part, reason, kind, form, week, person,
month, . . . ). We suppose that these nouns are them-
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Figure 2: Verb clustering performance of SP mod-
els as a function of number of verb instances.

atically “neutral” and are classed together by virtue
of their usage in a wide variety of sentences. This
one noun class by itself subsumes 13.6% of all
noun tokens in SdeWaC. WSM also includes 56
singleton noun classes; the variance in noun class
size is 2800. For comparison, in SUN, the largest
noun class has 73 words, and the smallest, 2 (there
are 12 of these two-word classes); noun class size
variance is 37. The 73-word class in SUN does in-
deed appear to be a grab bag (including gas, taboo,
pioneer, mustard, spy, mafia, and skinhead), but
these are uncommon words and account for only
0.1% of noun tokens in SdeWaC. The next two
most common classes (with some 40 nouns each)
are lists of names (politicians’ surnames, and male
first names). The noun class in the SUN model con-
taining the largest number of high-frequency nouns
(28 nouns: human, child, woman, man, people, Mr.,
mother, father, . . . ) only covers 3.6% of noun us-
ages in SdeWaC and is both semantically cohesive
and intuitively useful as a SP concept.

These issues raise the question of why the WSM

model is effective at all for verb classification.
We think that the larger less-related noun classes
neither help nor hurt verb clustering, and we find
that some of the thematic classes represent abstrac-
tions that should be useful for describing SPs. Ex-
amples include lists of body parts, countries (separ-
ate classes for Europe, Africa, Asia, etc.), diseases,
human names, articles of clothing, and the group
{fruit, apple, banana, pear, strawberry}.
4.3 Effects of test set size

We were curious if the success of the LP model
might be due to the size of the test set preventing
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sparsity from becoming a problem. To pursue this
question, we take the four best performing SP mod-
els and run the verb clustering evaluation with the
number of verb instances in the test set varying
between 10,000 and the full SdeWaC corpus (11
million). The results are displayed in Figure 2. This
graph indicates that below 3× 105 verb instances,
sparsity seems to become a problem for all mod-
els on this task, and the baseline delivers the best
performance. Above this threshold, it seems that
sparsity is not a major issue: LP performs fairly con-
sistently, and is competitive with the SUN model.
We attribute this to our use of the Jensen-Shannon
divergence as a verb dissimilarity measure, which
seems relatively robust to data sparsity. The LDA-
hard model with its fewer topics seems to do quite
well with fewer data; as the test set size increases, it
drops off in the rankings. At the maximum number
of verb instances, the best-performing models are
SUN, WSM and the lexical preferences. The figure
also shows that our evaluation metric is not smooth
(note, e.g., the fluctuations in the baseline score).
We believe that this reflects a degree of instability
in the Ward’s hierarchical clustering algorithm; this
clustering method is greedy, and clustering errors
can be expected to propagate, which might explain
the jaggedness of the plot.

4.4 Conclusions

To conclude, we summarise the results of our ana-
lysis, using the questions formulated in the Intro-
duction as guidelines.

First, we wanted to compare the efficiency of
different classes of nouns as descriptors of selec-
tional preference concepts. Our findings suggest
that noun classes are most effective when they are
semantically highly consistent, representing groups
of strongly related nouns. It seems reasonable that
SP concepts representing collections of synonyms
would be useful for generalising observations, and
should represent arguments better than simple LP.
A classification of proper names (e.g., as human,
corporation, country, medication) is also useful.
This implies that we can expect features such as
ANIMATE to be shared by all members of a noun
cluster.

Second, we were interested in the appropriate
granularity of selectional preference concepts. In
our evaluation, we have observed a tendency for
smaller, more specific noun classes to be superior;
this holds because data sparsity is not a problem

in our experiment. Beyond this finding, we would
have liked to present a direct juxtaposition of differ-
ent models on “granularity” but this is difficult: We
have not yet identified a strong abstraction of gran-
ularity from the proxies we use (e.g., GermaNet
depth, or SUN’s N/M ).

Finally, which methods of classifying nouns into
concepts are most effective at capturing selectional
preferences for verb clustering? In our experiments,
the SUN and LDA-hard models proved to be more
effective than lexical preferences, supporting our
primary hypothesis that some level of SP concept
granularity above the lexical level is desirable for
verb clustering. On the other hand, the LP model is
only slightly worse than SUN and LDA-hard, mak-
ing it attractive because it is so simple. As we have
shown, the potential data sparsity issues with LP

can be alleviated by judiciously choosing the value
of the N parameter that controls the number of
nouns included in the model. In addition, compar-
ing the SUN and WSM models, and observing the
performance of the LDA-hard method, we conclude
that inducing noun classes using syntagmatic in-
formation is more effective than using paradigmatic
relations.

5 Related work

In this study, we have looked at the utility of selec-
tional preferences for automatic verb classification.
Some previous research has followed this line of
inquiry, though prior studies have not compared
alternative methods of modelling SPs. Schulte im
Walde (2006) presented a detailed examination of
parameters for k-means-based verb clustering in
German, using the same gold standard that we em-
ploy here. She reports on the effects of adding SP

information to a SCF-based verb clustering using
15 high-level GermaNet synsets as SP concepts; SP

information for some combinations of grammatical
relations improves clustering performance slightly,
but neither are the effects consistent, nor is the
improvement delivered by the SP model over the
SCF-based baseline statistically significant. Schulte
im Walde et al. (2008) used expectation maximisa-
tion to induce latent verb clusters from the British
National Corpus while simultaneously building a
tree cut model of SPs on the WordNet hierarchy
using a minimum description length method; their
evaluation focuses on the induced soft verb clusters,
reporting the model’s estimated perplexity of (verb,
grammatical relation, argument head) triples. The
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SPs are described qualitatively by presenting two
example cases. Sun and Korhonen (2009) study
the effect of adding selectional preferences to a
subcategorisation-based verb clustering in Eng-
lish using the SUN model (see Section 3.2). They
demonstrate that adding SPs to the SCF preference
data leads to the best results on their two clustering
evaluations; overall, their best results come from
using SP information only for the subject gram-
matical relation. They employ coarse SP concepts
(20 or 30 noun clusters) which capture general se-
mantic categories (Human, Building, Idea, etc.).

Selectional preferences are usually evaluated
either from a word sense disambiguation stand-
point using pseudo-words (Chambers and Juraf-
sky, 2010), or in terms of how acceptable an ar-
gument is with a verb, via regression against hu-
man plausibility judgements. Several studies have
compared SP methodologies from the latter per-
spective. These include Brockmann and Lapata
(2003), who compared three GermaNet-based mod-
els of SP, showing that different models were most
effective for describing different grammatical re-
lations; Ó Séaghdha (2010), who compared dif-
ferent LDA-based models of SP, showing these to
be effective for a variety of grammatical relations;
and Ó Séaghdha and Korhonen (2012), who show
that WordNet tree cut models, LDA, and a hybrid
LDA-WordNet model are effective for describing
verb-object relations.

6 Future work

Our GermaNet model delivered disappointing per-
formance in this study; we would be interested in
seeing whether a more sophisticated implementa-
tion such as the tree cut model of Li and Abe (1998)
would be more competitive. We also would like to
explore alternative noun clustering methods such
as CBC (Pantel and Lin, 2002) and Brown clusters
(Brown et al., 1992), which were not covered in
this work; these would fit easily into our SP eval-
uation paradigm. More challenging would be a
verb classification-based evaluation of the SP mod-
els of (Rooth et al., 1999) and (Schulte im Walde
et al., 2008), which use expectation maximisation
to simultaneously cluster verbs into verb classes
and nominal arguments into noun classes; these ap-
proaches are not compatible with the evaluation
framework we have used here. Finally, the SP

model of Bergsma et al. (2008) has also achieved
impressive results on a number of tasks, but has not

been investigated for use in verb classification.
Our verb clustering evaluation in this work

has matched K, the number of clusters found by
Ward’s method, to the number of classes in the
gold standard. Since the number of clusters has an
influence on the quality of the ensuing semantic
classification (Schulte im Walde, 2006, page 180f.),
we will also be running our experiments with dif-
ferent settings of K to explore whether this also
influences the overall results of our evaluation.
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