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Abstract

This paper investigates the use of neural
networks for the acquisition of selectional
preferences. Inspired by recent advances
of neural network models for NLP applica-
tions, we propose a neural network model
that learns to discriminate between felici-
tous and infelicitous arguments for a par-
ticular predicate. The model is entirely un-
supervised – preferences are learned from
unannotated corpus data. We propose two
neural network architectures: one that han-
dles standard two-way selectional prefer-
ences and one that is able to deal with
multi-way selectional preferences. The
model’s performance is evaluated on a
pseudo-disambiguation task, on which it
is shown to achieve state of the art perfor-
mance.

1 Introduction

Predicates often have a semantically motivated pref-
erence for particular arguments. Compare for ex-
ample the sentences in (1) and (2).

(1) The vocalist sings a ballad.

(2) The exception sings a tomato.

Most language users would have no problems ac-
cepting the first sentence as well-formed: a vocalist
can be expected to sing, and a ballad is something
that can be sung. The same language users, how-
ever, would likely consider the second sentence to
be ill-formed: an exception is not supposed to sing,
nor is a tomato something that is typically sung.
Within the field of natural language processing,
this inclination of predicates to select for particular
arguments is known as selectional preference.

The automatic acquisition of selectional prefer-
ences has been a popular research subject within

the field of natural language processing. An auto-
matically acquired selectional preference resource
is a versatile tool for numerous NLP applications,
such as semantic role labeling (Gildea and Jurafsky,
2002), word sense disambiguation (McCarthy and
Carroll, 2003), and metaphor processing (Shutova
et al., 2013).

Models for selectional preference need to ade-
quately deal with the consequences of Zipf’s law:
language is inherently sparse, and the majority of
language utterances occur very infrequently. As
a consequence, models that are based on corpus
data need to properly generalize beyond the mere
co-occurrence frequencies of sparse corpus data,
taking into account the semantic similarity of both
predicates and arguments. Researchers have come
up with various approaches to this generalization
step. Earlier approaches to selectional preference
acquisition mostly rely on hand-crafted resources
such as WordNet (Resnik, 1996; Li and Abe, 1998;
Clark and Weir, 2001), while later approaches tend
to take advantage of unsupervised learning machin-
ery, such as latent variable models (Rooth et al.,
1999; Ó Séaghdha, 2010) and distributional simi-
larity metrics (Erk, 2007; Padó et al., 2007).

This paper investigates the use of neural net-
works for the acquisition of selectional preferences.
Inspired by recent advances of neural network mod-
els for NLP applications (Collobert and Weston,
2008; Mikolov et al., 2013), we propose a neural
network model that learns to discriminate between
felicitous and infelicitous arguments for a particu-
lar predicate. The model is entirely unsupervised –
preferences are learned from unannotated corpus
data. Positive training instances are constructed
from attested corpus data, while negative instances
are constructed from randomly corrupted instances.
We propose two neural network architectures: one
that handles standard two-way selectional prefer-
ences and one that is able to deal with multi-way
selectional preferences, where the interaction be-
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tween multiple verb arguments is taken into ac-
count. The model’s performance is evaluated on a
pseudo-disambiguation task, on which it is shown
to achieve state of the art performance.

The contributions of this paper are twofold. First
of all, we apply and evaluate a neural network ap-
proach to the problem of standard (two-way) se-
lectional preference acquisition. Selectional pref-
erence acquisition using neural networks has not
yet been explored in the literature. Secondly, we
propose a novel network architecture and training
objective for the acquisition of multi-way selec-
tional preferences, where the interaction between
a verb and its various arguments is captured at the
same time.

The remainder of this paper is as follows. Sec-
tion 2 first discusses related work with respect to se-
lectional preference acquisition and neural network
modeling. Section 3 describes our neural network
architecture and its training procedure. Section 4
evaluates the model’s performance, comparing it
to other existing models for selectional preference
acquisition. Finally, section 5 concludes and indi-
cates a number of avenues for future work.

2 Related Work

2.1 Selectional preferences
One of the first approaches to the automatic induc-
tion of selectional preferences from corpora was
the one by Resnik (1996). Resnik (1996) relies
on WordNet synsets in order to generate gener-
alized noun clusters. The selectional preference
strength of a specific verb v in a particular relation
is calculated by computing the Kullback-Leibler
divergence between the cluster distribution of the
verb and the prior cluster distribution.

SR(v) = ∑
c

p(c|v) log
p(c|v)
p(c)

(1)

where c stands for a noun cluster, and R stands for a
given predicate-argument relation. The selectional
association of a particular noun cluster is then the
contribution of that cluster to the verb’s preference
strength.

AR(v,c) =
p(c|v) log p(c|v)

p(c)

SR(v)
(2)

The model’s generalization relies entirely on Word-
Net, and there is no generalization among the verbs.

Other researchers have equally relied on Word-
Net in order to generalize over arguments. Li and

Abe (1998) use the principle of Minimum Descrip-
tion Length in order to find a suitable generalization
level within the lexical WordNet hierarchy. A same
intuition is used by Clark and Weir (2001), but they
use hypothesis testing instead to find the appro-
priate level of generalization. A recent approach
that makes use of WordNet (in combination with
Bayesian modeling) is the one by Ó Séaghdha and
Korhonen (2012).

Most researchers, however, acknowledge the
shortcomings of hand-crafted resources, and fo-
cus on the acquisition of selectional preferences
from corpus data. Rooth et al. (1999) propose an
Expectation-Maximization (EM) clustering algo-
rithm for selectional preference acquisition based
on a probabilistic latent variable model. The idea
is that both predicate v and argument o are gen-
erated from a latent variable c, where the latent
variables represent clusters of tight verb-argument
interactions.

p(v,o) = ∑
c∈C

p(c,v,o) = ∑
c∈C

p(c)p(v|c)p(o|c) (3)

The use of latent variables allows the model to
generalize to predicate-argument tuples that have
not been seen during training. The latent variable
distribution – and the probabilities of predicates
and argument given the latent variables – are au-
tomatically induced from data using EM. We will
compare against their model for evaluation pur-
poses.

Erk (2007) and Erk et al. (2010) describe a
method that uses corpus-driven distributional simi-
larity metrics for the induction of selectional pref-
erences. The key idea is that a predicate-argument
tuple (v,o) is felicitous if the predicate v appears
in the training corpus with arguments o′ that are
similar to o, i.e.

S(v,o) = ∑
o′∈Ov

wt(v,o′)
Z(v)

· sim(o,o′) (4)

where Ov represents the set of arguments that have
been attested with predicate v, wt(·) represents an
appropriate weighting function (such as the fre-
quency of the (v,o′) tuple), and Z is a normaliza-
tion factor. We equally compare to their model for
evaluation purposes.

Bergsma et al. (2008) present a discriminative
approach to selectional preference acquisition. Pos-
itive examples are taken from observed predicate-
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argument pairs, while negative examples are con-
structed from unobserved combinations. An SVM

classifier is used to distinguish the positive from the
negative instances. The training procedure used in
their model is based on an intuition that is similar
to ours, although it is implemented using different
techniques.

A number of researchers presented models that
are based on the framework of topic modeling. Ó
Séaghdha (2010) describes three models for selec-
tional preference induction based on Latent Dirich-
let Allocation, which model the selectional pref-
erence of a predicate and a single argument. Rit-
ter et al. (2010) equally present a selectional pref-
erence model based on topic modeling, but they
tackle multi-way selectional preferences (of transi-
tive predicates, which take two arguments) instead.

Finally, in previous work (Van de Cruys, 2009)
we presented a model for multi-way selectional
preference induction based on tensor factorization.
Three-way co-occurrences of subjects, verbs, and
objects are represented as a three-way tensor (the
generalization of a matrix), and a latent factoriza-
tion model is applied in order to generalize to
unseen instances. We will compare our neural
network based-approach for multi-way selectional
preference acquisition to this tensor-based factor-
ization model.

2.2 Neural networks

In the last few years, neural networks have become
increasingly popular in NLP applications. In partic-
ular, neural language models (Bengio et al., 2003;
Mnih and Hinton, 2007; Collobert and Weston,
2008) have demonstrated impressive performance
at the task of language modeling. By incorporating
distributed representations for words that model
their similarity, neural language models are able
to overcome the problem of data sparseness that
standard n-gram models are confronted with. Also
related to our work is the approach by Tsubaki et
al. (2013), who successfully use a neural network
to model co-compositionality.

Our model for selectional preference acquisition
uses a network architecture that is similar to the
abovementioned models. Its training objective is
also similar to the ranking-loss training objective
proposed by Collobert and Weston (2008), but we
present a novel, modified version in order to deal
with multi-way selectional preferences.

3 Methodology

3.1 Neural network architecture
Our model computes the score for a predicate i
and an argument j as follows. First, the selectional
preference tuple (i, j) is represented as the concate-
nation of the vectors vi and o j, i.e.

x = [vi,o j] (5)

Vectors vi and o j are extracted from two embedding
matrices, V ∈ RN×I (the predicate matrix, where I
represents the number of elements in the predicate
vocabulary) and O ∈ RN×J (the argument matrix,
where J represents the number of elements in the
argument vocabulary). N is a parameter setting of
the model, representing the vector size of the em-
beddings. Matrices V and O will be automatically
learned during training.

Vector x then serves as input vector to our neural
network. We use a feed-forward neural network
architecture with one hidden layer:

a1 = f (W1x+b1) (6)

y = W2a1 (7)

where x ∈ R2N is our input vector, a1 ∈ RH repre-
sents the activation of the hidden layer with H hid-
den nodes, W1 ∈ RH×2N and W2 ∈ R1×H respec-
tively represent the first and second layer weights,
b1 represents the first layer’s bias, f (·) represents
the element-wise activation function tanh, and y is
our final selectional preference score. The left-hand
picture of figure 1 gives a graphical representation
of our standard neural network architecture.

3.2 Training the network
A proper estimation of a neural network’s param-
eters requires a large amount of training data. To
be able to use non-annotated corpus data for train-
ing, we use the method proposed by Collobert and
Weston (2008). The authors present a method for
training a neural network language model from un-
labeled data by corrupting actual attested n-grams
with a random word. They then define a ranking-
type cost function, which allows the network to
learn to discriminate between good and bad word
sequences. We adopt the same method for our se-
lectional preference model as follows.

Let (i, j) be our proper, attested predicate-
argument tuple. The goal of our model is to dis-
criminate the correct tuple (i, j) from other, non-
attested tuples (i, j′), in which the correct predicate
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Figure 1: Neural network architectures for selectional preference acquisition. The left-hand picture shows
the architecture for two-way selectional preferences, the right-hand picture shows the architecture for
three-way selectional preferences. In both cases, vector x is constructed from the appropriate predicate
and argument vectors from the embedding matrices, and fed forward through the network to yield a
preference score y.

j has been replaced with a random predicate j′. We
require the score for the correct tuple to be larger
than the score for the corrupt tuple by a margin
of one. For one tuple (i, j), this corresponds to
minimizing the objective function in (8)

∑
j′∈J

max(0,1−g[(i, j)]+g[(i, j′)]) (8)

where J represents the predicate vocabulary, and
g[·] represents our neural network scoring function
presented in the previous section.

In line with Collobert and Weston (2008), the
gradient of the objective function is sampled by
randomly picking one corrupt argument j′ from the
argument vocabulary for each attested predicate-
argument tuple (i, j). The derivative of the cost
with respect to the model’s parameters (weight ma-
trices W1 and W2, bias vector b1, and embedding
matrices V and O) is computed, and the appropriate
parameters are updated through backpropagation.

3.3 Multi-way selectional preferences

The model presented in the previous section is
only able to deal with two-way selectional pref-
erences. In this section, we present an extension of
the model that is able to handle multi-way selec-
tional preferences.1

1We exemplify the model using three-way selectional pref-
erences for transitive predicates, but the model can be straight-
forwardly generalized to other multi-way selectional prefer-
ences.

In order to model the selectional preference of a
transitive verb for its subject and direct object, we
start out in a similar fashion to the two-way case.
Instead of having only one embedding matrix, we
now have two embedding matrices S ∈ RN×J and
O∈RN×K , representing the two different argument
slots of a transitive predicate. Our input vector can
now be represented as

x = (vi,s j,ok) (9)

Note that x ∈ R3N and W1 ∈ RH×3N . The rest of
our neural network architecture stays exactly the
same. The right-hand picture of figure 1 presents a
graphical representation.

For the multi-way case, we present an adapted
version of the training objective. Given an attested
subject-verb-object tuple (i, j,k), the goal of our
network is now to discriminate this correct tuple
from other, corrupted tuples (i, j,k′), (i, j′,k) and
(i, j′,k′), where the correct arguments have been
replaced by random subjects j′ and random objects
k′. Note that we do not only want the network
to learn the infelicity of tuples in which both the
subject and object slot are corrupted; we also want
our network to learn the infelicity of tuples in which
either the subject or object slot is corrupt, while the
other slot contains the correct, attested argument.
This leads us to the objective function represented
in (10).
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∑
k′∈K

max(0,1−g[(i, j,k)]+g[(i, j,k′)])

+ ∑
j′∈J

max(0,1−g[(i, j,k)]+g[(i, j′,k)])

+ ∑
j′∈J

k′∈K

max(0,1−g[(i, j,k)]+g[(i, j′,k′)]) (10)

As in the two-way case, the gradient of the objec-
tive function is sampled by randomly picking one
corrupted subject j′ and one corrupted object k′ for
each tuple (i, j,k). All of the model’s parameters
are again updated through backpropagation.

4 Evaluation

4.1 Implementational details

We evaluate our neural network approach to se-
lectional preference acquisition using verb-object
tuples for the two-way model, and subject-verb-
object tuples for the multi-way model.

Our model has been applied to English, using the
UKWaC corpus (Baroni et al., 2009), which covers
about 2 billion words of web text. The corpus
has been part of speech tagged and lemmatized
with Stanford Part-Of-Speech Tagger (Toutanova
et al., 2003), and parsed with MaltParser (Nivre
et al., 2006), so that dependency tuples could be
extracted.

For the two-way model, we select all verbs and
objects that appear within a predicate-argument re-
lation with a frequency of at least 50. This gives
us a total of about 7K verbs and 30K objects. For
the multi-way model, we select the 2K most fre-
quent verbs, together with the 10K most frequent
subjects and the 10K most frequent objects (that
appear within a transitive frame).

All words are converted to lowercase. We use
the lemmatized forms, and only keep those forms
that contain alphabetic characters. Furthermore,
we require each tuple to appear at least three times
in the corpus.

We set N, the size of our embedding matrices, to
50, and H, the number of units in the hidden layer,
to 100. Following Huang et al. (2012), we use
mini-batch L-BFGS (Liu and Nocedal, 1989) with
1000 pairs of good and corrupt tuples per batch for
training, and train for 10 epochs.

4.2 Evaluation Setup

4.2.1 Task
Our models are quantitatively evaluated using a
pseudo-disambiguation task (Rooth et al., 1999),
which bears some resemblance to our training pro-
cedure. The task provides an adequate test of the
generalization capabilities of our models. For the
two-way case, the task is to judge which object (o
or o′) is more likely for a particular verb v, where
(v,o) is a tuple attested in the corpus, and o′ is a di-
rect object randomly drawn from the object vocab-
ulary. The tuple is considered correct if the model
prefers the attested tuple (v,o) over (v,o′). For the
three-way case, the task is to judge which subject
(s or s′) and direct object (o or o′) are more likely
for a particular verb v, where (v,s,o) is the attested
tuple, and s′ and o′ are a random subject and object
drawn from their respective vocabularies. The tu-
ple is considered correct if the model prefers the
attested tuple (v,s,o) over the alternatives (v,s,o′),
(v,s′,o), and (v,s′,o′). Tables 1 and 2 respectively
show a number of examples from the two-way and
three-way pseudo-disambiguation task.

v o o′

perform play geometry
buy wine renaissance
read introduction peanut

Table 1: Pseudo-disambiguation examples for two-
way verb-object tuples

v s o s′ o′

win team game diversity egg
publish government document grid priest
develop company software breakfast landlord

Table 2: Pseudo-disambiguation examples for
three-way subject-verb-object tuples

The models are evaluated using 10-fold cross
validation. All tuples from our corpus are randomly
divided into 10 equal parts. Next, for each fold, 9
parts are used for training, and the remaining part
is used for testing. In order to properly test the
generalization capability of our models, we make
sure that all instances of a particular tuple appear in
one part only. This way, we make sure that tuples
used for testing are never seen during training.

For the two-way model, our corpus consists of
about 70M tuple instances (1.9M types), so in each
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fold, about 63M tuple instances are used for train-
ing and about 7M (190K types) are used for testing.
For the three-way model, our corpus consists of
about 5,5M tuple instances (750K types), so in
each fold, about 5M tuples are used for training
and about 500K (75K types) are used for testing.
Note that our training procedure is instance-based,
while our evaluation is type-based: during training,
the neural network sees a tuple as many times as it
appears in the training set, while for testing each
individual tuple is only evaluated once.

4.2.2 Comparison models
We compare our neural network model to a number
of other models for selectional preference acquisi-
tion.

For the two-way case, we compare our model
to the EM-based clustering technique presented
by Rooth et al. (1999),2 and to Erk et al.’s (2010)
similarity-based model. For Rooth et al.’s model,
we set the number of latent factors to 50. Us-
ing a larger number of latent factors does not in-
crease performance. For Erk et al.’s model, we
create a dependency-based similarity model from
the UKWaC corpus using our 30K direct objects
as instances and 100K dependency relations as
features. The resulting matrix is weighted using
pointwise mutual information (Church and Hanks,
1990). Similarity values are computed using cosine.
Furthermore, we use a sampling procedure in the
testing phase: we sample 5000 predicate-argument
pairs for each fold, as testing Erk et al.’s model on
the complete test sets proved prohibitively expen-
sive.

For the three-way case, we compare our model
to the tensor factorization model we developed in
previous work (Van de Cruys, 2009). We set the
number of latent factors to 300.3

4.3 Results

4.3.1 Two-way model
Table 3 compares the results of our neural network
architecture for two-way selectional preferences to
the results of Rooth et al.’s (1999) model and Erk
et al.’s (2010) model.

2Our own implementation of Rooth et al.’s (1999) al-
gorithm is based on non-negative matrix factorization (Lee
and Seung, 2000). Non-negative matrix factorization with
Kullback-Leibler divergence has been shown to minimize the
same objective function as EM (Li and Ding, 2006).

3The best scoring model presented by Van de Cruys (2009)
also uses 300 latent factors; using more factors does not im-
prove the results.

model accuracy (µ±σ )

Rooth et al. (1999) .720 ± .002
Erk et al. (2010) .887 ± .004

2-way neural network .880 ± .001

Table 3: Comparison of model results for two-way
selectional preference acquisition – mean accuracy
and standard deviations of 10-fold cross-validation
results

The results indicate that our neural network ap-
proach outperforms Rooth et al.’s (1999) method
by a large margin (16%). Clearly, the neural net-
work architecture is able to model selectional pref-
erences more profoundly than Rooth et al.’s latent
variable approach. The difference between the
models is highly statistically significant (paired
t-test, p < .01), as the standard deviations already
indicate.

Erk et al.’s model reaches a slightly better score
than our model, and this result is also statistically
significant (paired t-test, p < .01). However, Erk et
al.’s model does not provide full coverage, whereas
the other two models are able to compute scores
for all pairs in the test set. In addition, Erk et al.’s
model is much more expensive to compute. Our
model computes selectional preference scores for
the test set in a matter of seconds, whereas for
Erk et al.’s model, we ended up sampling from
the test set, as computing preference values for the
complete test set proved prohibitively expensive.

4.3.2 Three-way model
Table 4 compares the results of our neural network
architecture for three-way selectional preference
acquisition to the results of the tensor-based factor-
ization method (Van de Cruys, 2009).

model accuracy (µ±σ )

Van de Cruys (2009) .874 ± .001
3-way neural network .889 ± .001

Table 4: Comparison of model results for three-way
selectional preference acquisition – mean accuracy
and standard deviations of 10-fold cross-validation
results

The results indicate that the neural network ap-
proach slightly outperforms the tensor-based factor-
ization method. Again the model difference is sta-
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tistically significant (paired t-test, p < 0.01). Using
our adapted training objective, the neural network
is clearly able to learn a rich model of three-way
selectional preferences, reaching state of the art
performance.

4.4 Examples

We conclude our results section by briefly present-
ing a number of examples that illustrate the kind
of semantics present in our models. Similar to neu-
ral language models, the predicate and argument
embedding matrices of our neural network con-
tain distributed word representations, that capture
the similarity of predicates and arguments to other
words.

Tables 5 and 6 contain a number of nearest neigh-
bour similarity examples for predicate and argu-
ments from our two-way neural network model.
The nearest neighbours were calculated using stan-
dard cosine similarity.

DRINK PROGRAM INTERVIEW FLOOD

SIP RECOMPILE RECRUIT INUNDATE
BREW UNDELETE PERSUADE RAVAGE
MINCE CODE INSTRUCT SUBMERGE

FRY IMPORT PESTER COLONIZE

Table 5: Nearest neighbours of 4 verbs, calculated
using the distributed word representations of em-
bedding matrix V from our two-way neural net-
work model

Table 5 indicates that the network is effectively
able to capture a semantics for verbs. The first
column – verbs similar to DRINK – all have to do
with food consumption. The second column con-
tains verbs related to computer programming. The
third column is related to human communication;
and the fourth column seems to illustrate the net-
work’s comprehension of FLOOD having to do with
invasion and water.

PAPER RASPBERRY SECRETARY DESIGNER

BOOK COURGETTE PRESIDENT PLANNER
JOURNAL LATTE MANAGER PAINTER
ARTICLE LEMONADE POLICE SPECIALIST

CODE OATMEAL EDITOR SPEAKER

Table 6: Nearest neighbours of 4 direct objects, cal-
culated using the distributed word representations
of embedding matrix O from our two way neural
network model

Similarly, table 6 shows the network’s ability to
capture the meaning of nouns that appear as direct
objects to the verbs. Column one contains things
that can be read. Column two contains things that
can be consumed. Column three seems to hint at
supervising professions, while column four seems
to capture creative professions.

A similar kind of semantics is present in the em-
bedding matrices of the three-way neural network
model. Tables 7, 8, and 9 again illustrate this using
word similarity calculations.

SEARCH DIMINISH CONFIGURE PROSECUTE

CLICK LESSEN AUTOMATE CRITICISE
BROWSE DISTORT SCROLL URGE
SCROLL HEIGHTEN PROGRAM DEPLORE
UPLOAD DEGRADE INSTALL CONDEMN

Table 7: Nearest neighbours of 4 verbs, calculated
using the distributed word representations of em-
bedding matrix V from our three-way neural net-
work model

Table 7 shows the network’s verb semantics for
the three-way case. The first column is related to
internet usage, the second column contains verbs
of scalar change, column three is again related to
computer usage, and column four seems to capture
‘mending’ verbs.

FLOWER COLLEGE PRESIDENT SONG

FISH UNIVERSITY BUSH FILM
BIRD INSTITUTE BLAIR ALBUM
SUN DEPARTMENT MP PLAY

TREE CENTRE CHAIRMAN MUSIC

Table 8: Nearest neighbours of 4 subjects, calcu-
lated using the distributed word representations of
embedding matrix S from our three way neural
network model

Table 8 illustrates the semantics for the subject
slot of our three-way model. The first column cap-
tures nature terms, the second column contains
university-related terms, the third column contains
politicians/government terms, and the fourth col-
umn contains art expressions.

Finally, table 9 demonstrates the semantics of
our three-way model’s object slot. Column one
generally contains housing terms, column two con-
tains various locations, column three contains din-
ing occasions, and column four contains textual
expressions.
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WALL PARK LUNCH THESIS

FLOOR STUDIO DINNER QUESTIONNAIRE
CEILING VILLAGE MEAL DISSERTATION

ROOF HALL BUFFET PERIODICAL
METRE MUSEUM BREAKFAST DISCOURSE

Table 9: Nearest neighbours of 4 direct objects, cal-
culated using the distributed word representations
of embedding matrix O from our three way neural
network model

Note that the embeddings for the subject and
the object slot is different, although they mostly
contain the same words. This allows the model to
capture specific semantic characteristics for words
given their argument position. Virus, for example,
is in subject position more similar to active words
like animal, whereas in object position, it is more
similar to passive words like cell, device. Similarly,
mouse in subject position tends to be similar to
words like animal, rat whereas in object position it
is similar to words like web, browser.

These examples, although anecdotal, illustrate
that our neural network model is able to capture a
rich semantics for predicates and arguments, which
subsequently allows the network to make accurate
predictions with regard to selectional preference.

5 Conclusion and future work

In this paper, we presented a neural network ap-
proach to the acquisition of selectional preferences.
Inspired by recent work on neural language models,
we proposed a neural network model that learns
to discriminate between felicitous and infelicitous
arguments for a particular predicate. The model is
entirely unsupervised, as preferences are learned
from unannotated corpus data. Positive training
instances are constructed from attested corpus data,
while negative instances are constructed from ran-
domly corrupted instances. Using designated net-
work architectures, we are able to handle stan-
dard two-way selectional preferences as well as
multi-way selectional preferences. A quantitative
evaluation on a pseudo-disambiguation task shows
that our models achieve state of the art perfor-
mance. The results for our two-way neural network
are on a par with Erk et al.’s (2010) similarity-
based approach, while our three-way neural net-
work slightly outperforms the tensor-based factor-
ization model (Van de Cruys, 2009) for multi-way
selectional preference induction.

We conclude with a number of issues for future
work. First of all, we would like to investigate how
our neural network approach might be improved by
incorporating information from other sources. In
particular, we think of initializing our embedding
matrices with distributed representations that come
from a large-scale neural language model (Mikolov
et al., 2013). We also want to further investigate
the advantages and disadvantages of having dif-
ferent embedding matrices for different argument
positions in our multi-way neural network. In our
results section, we demonstrated that such an ap-
proach allows for more flexibility, but it also adds
a certain level of redundancy. We want to inves-
tigate the benefit of our approach, compared to a
model that shares the distributed word representa-
tion among different argument positions. Finally,
we want to investigate more advanced neural net-
work architectures for the acquisition of selectional
preferences. In particular, neural tensor networks
(Yu et al., 2013) have recently demonstrated im-
pressive results in related fields like speech recogni-
tion, and might provide the necessary machinery to
model multi-way selectional preferences in a more
profound way.
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