
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1983–1995,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Breaking Out of Local Optima with Count Transforms
and Model Recombination: A Study in Grammar Induction

Valentin I. Spitkovsky
valentin@cs.stanford.edu

Hiyan Alshawi
hiyan@google.com

Daniel Jurafsky
jurafsky@stanford.edu

Abstract

Many statistical learning problems in NLP call
for local model search methods. But accu-
racy tends to suffer with current techniques,
which often explore either too narrowly or too
broadly: hill-climbers can get stuck in local
optima, whereas samplers may be inefficient.
We propose to arrange individual local opti-
mizers into organized networks. Our building
blocks are operators of two types: (i)trans-
form, which suggests new places to search, via
non-random restarts from already-found local
optima; and (ii)join, which merges candidate
solutions to find better optima. Experiments
on grammar induction show that pursuing dif-
ferent transforms (e.g., discarding parts of a
learned model or ignoring portions of train-
ing data) results in improvements. Groups of
locally-optimal solutions can be further per-
turbed jointly, by constructing mixtures. Us-
ing these tools, we designed several modu-
lar dependency grammar induction networks
of increasing complexity. Our complete sys-
tem achieves 48.6% accuracy (directed depen-
dency macro-average over all 19 languages in
the 2006/7 CoNLL data) — more than 5%
higher than the previous state-of-the-art.

1 Introduction

Statistical methods for grammar induction often boil
down to solving non-convex optimization problems.
Early work attempted to locally maximize the likeli-
hood of a corpus, using EM to estimate probabilities
of dependency arcs between word bigrams (Paskin
2001a; 2001b). That parsing model has since been
extended to make unsupervised learning more feasi-
ble (Klein and Manning, 2004; Headden et al., 2009;
Spitkovsky et al., 2012b). But even the latest tech-
niques can be quite error-prone and sensitive to ini-
tialization, because of approximate, local search.

In theory, global optima can be found by enumer-
ating all parse forests that derive a corpus, though
this is usually prohibitively expensive in practice. A

preferable brute force approach is sampling, as in
Markov-chain Monte Carlo (MCMC) and random
restarts (Hu et al., 1994), which hit exact solutions
eventually. Restarts can be giant steps in a parameter
space that undo all previous work. At the other ex-
treme, MCMC may cling to a neighborhood, reject-
ing most proposed moves that would escape a local
attractor. Sampling methods thus take unbounded
time to solve a problem (and can’t certify optimal-
ity) but are useful for finding approximate solutions
to grammar induction (Cohn et al., 2011; Mareček
andŽabokrtský, 2011; Naseem and Barzilay, 2011).

We propose an alternative (deterministic) search
heuristic that combines local optimization via EM
with non-random restarts. Its new starting places are
informed by previously found solutions, unlike con-
ventional restarts, but may not resemble their prede-
cessors, unlike typical MCMC moves. We show that
one good way to construct such steps in a parame-
ter space is by forgetting some aspects of a learned
model. Another is by merging promising solutions,
since even simple interpolation (Jelinek and Mercer,
1980) of local optima may be superior to all of the
originals. Informed restarts can make it possible to
explore a combinatorial search space more rapidly
and thoroughly than with traditional methods alone.

2 Abstract Operators

Let C be a collection of counts — the sufficient
statistics from which a candidate solution to an
optimization problem could be computed, e.g., by
smoothing and normalizing to yield probabilities.
The counts may be fractional and solutions could
take the form of multinomial distributions. A local
optimizerL will convert C into C∗ = LD(C) — an
updated collection of counts, resulting in a proba-
bilistic model that is no less (and hopefully more)
consistent with a data setD than the originalC:

(1)

LDC C∗

1983

UnlessC∗ is a global optimum, we should be able
to make further improvements. But ifL is idempo-
tent (and ran to convergence) thenL(L(C)) = L(C).
Given onlyC andLD, the single-node optimization
network above would be the minimal search pattern
worth considering. However, if we had another opti-
mizerL′ — or a fresh starting pointC′ — then more
complicated networks could become useful.

2.1 Transforms (Unary)

New starts could be chosen by perturbing an existing
solution, as in MCMC, or independently of previous
results, as in random restarts. We focus on interme-
diate changes toC, without injecting randomness.

All of our transforms involve selective forgetting
or filtering. For example, if the probabilistic model
that is being estimated decomposes into independent
constituents (e.g., several multinomials) then a sub-
set of them can be reset to uniform distributions, by
discarding associated counts fromC. In text classifi-
cation, this could correspond to eliminating frequent
or rare tokens from bags-of-words. We use circular
shapes to represent such model ablation operators:

(2)C

An orthogonal approach might separate out vari-
ous counts inC by their provenance. For instance,
if D consisted of several heterogeneous data sources,
then the counts from some of them could be ignored:
a classifier might be estimated from just news text.
We will use squares to represent data-set filtering:

(3)C

Finally, if C represents a mixture of possible inter-
pretations overD — e.g., because it captures the out-
put of a “soft” EM algorithm — contributions from
less likely, noisier completions could also be sup-
pressed (and their weights redistributed to the more
likely ones), as in “hard” EM. Diamonds will repre-
sent plain (single) steps of Viterbi training:

(4)C

2.2 Joins (Binary)

Starting from different initializers, sayC1 andC2,
it may be possible forL to arrive at distinct local
optima,C∗

1 6= C∗

2 . The better of the two solutions,
according to likelihoodLD of D, could then be se-
lected — as is standard practice when sampling.

Our joining technique could do better than either
C∗

1 or C∗

2 , by entertaining also a third possibility,
which combines the two candidates. We construct
a mixture model by adding together all counts from
C∗

1 andC∗

2 into C+ = C∗

1 + C∗

2 . Original initializers
C1, C2 will, this way, have equal pull on the merged
model,1 regardless of nominal size (becauseC∗

1 , C
∗

2

will have converged using a shared training set,D).
We return the best ofC∗

1 , C∗

2 andC∗

+ = L(C+). This
approach may uncover more (and never returns less)
likely solutions than choosing amongC∗

1 , C
∗

2 alone:

(5)

LD

LD

LD

+

arg
M

A
X
L
D

C1

C∗

1 = L(C1)

C2
C∗

2 = L(C2)

C∗

1 + C∗

2 = C+

We will use a short-hand notation to represent the
combiner network diagrammed above, less clutter:

(6)

LDC2

C1

3 The Task and Methodology

We apply transform and join paradigms to grammar
induction, an important problem of computational
linguistics that involves notoriously difficult objec-
tives (Pereira and Schabes, 1992; de Marcken, 1995;
Gimpel and Smith, 2012,inter alia). The goal is to
induce grammars capable of parsing unseen text. In-
put, in both training and testing, is a sequence of to-
kens labeled as: (i) a lexical item and its category,
(w, cw); (ii) a punctuation mark; or (iii) a sentence
boundary. Output is unlabeled dependency trees.

3.1 Models and Data

We constrain all parse structures to be projective, via
dependency-and-boundary grammars (Spitkovsky et
al., 2012a; 2012b): DBMs 0–3 are head-outward
generative parsing models (Alshawi, 1996) that dis-
tinguish complete sentences from incomplete frag-
ments in a corpusD: Dcomp comprises inputs ending
with punctuation;Dfrag = D − Dcomp is everything

1If desired, a scaling factor could be used to biasC+ towards
eitherC∗

1 or C∗

2 , for example based on their likelihood ratio.

1984

else. The “complete” subset is further partitioned
into simple sentences,Dsimp ⊆ Dcomp, with no inter-
nal punctuation, and others, which may be complex.

As an example, consider the beginning of an arti-
cle from (simple) Wikipedia: (i)Linguistics (ii) Lin-
guistics (sometimes called philology) is the science
that studies language.(iii) Scientists who study lan-
guage are called linguists.Since the title does not
end with punctuation, it would be relegated toDfrag.
But two complete sentences would be inDcomp, with
the last also filed underDsimp, as it has only a trail-
ing punctuation mark. Spitkovsky et al. suggested
two curriculum learning strategies: (i) one in which
induction begins with clean, simple data,Dsimp, and
a basic model, DBM-1 (2012b); and (ii) an alterna-
tive bootstrapping approach: starting with still more,
simpler data — namely, short inter-punctuation frag-
ments up to lengthl = 15, Dl

split ⊇ Dl

simp — and a
bare-bones model, DBM-0 (2012a). In our example,
Dsplit would hold five text snippets: (i)Linguistics;
(ii) Linguistics; (iii) sometimes called philology;
(iv) is the science that studies language; and (v)Sci-
entists who study language are called linguists.
Only the last piece of text would still be considered
complete, isolating its contribution to sentence root
and boundary word distributions from those of in-
complete fragments. The sparse model, DBM-0, as-
sumes a uniform distribution for roots of incomplete
inputs and reduces conditioning contexts of stopping
probabilities, which works well with split data. We
will exploit both DBM-0 and the full DBM,2 draw-
ing also on split, simple and raw views of input text.

All experiments prior to final multi-lingual eval-
uation will use the Penn English Treebank’s Wall
Street Journal (WSJ) portion (Marcus et al., 1993) as
the underlying tokenized and sentence-broken cor-
pusD. Instead of gold parts-of-speech, we plugged
in 200 context-sensitive unsupervised tags, from
Spitkovsky et al. (2011c),3 for the word categories.

3.2 Smoothing and Lexicalization

All unlexicalized instances of DBMs will be esti-
mated with “add one” (a.k.a. Laplace) smoothing,

2We use the short-hand DBM to refer to DBM-3, which is
equivalent to DBM-2 ifD has no internally-punctuated sen-
tences (D=Dsplit), and DBM-1 if all inputs also have trailing
punctuation (D=Dsimp); DBM0 is our short-hand for DBM-0.

3
http://nlp.stanford.edu/pubs/goldtags-data.tar.bz2

using only the word categorycw to represent a token.
Fully-lexicalized grammars (L-DBM) are left un-
smoothed, and represent each token as both a word
and its category, i.e., the whole pair(w, cw). To eval-
uate a lexicalized parsing model, we will always ob-
tain a delexicalized-and-smoothed instance first.

3.3 Optimization and Viterbi Decoding

We use “early-switching lateen” EM (Spitkovsky et
al., 2011a,§2.4) to train unlexicalized models, alter-
nating between the objectives of ordinary (soft) and
hard EM algorithms, until neither can improve its
own objective without harming the other’s. This ap-
proach does not require tuning termination thresh-
olds, allowing optimizers to run to numerical con-
vergence if necessary, and handles only our shorter
inputs (l ≤ 15), starting with soft EM (L = SL, for
“soft lateen”). Lexicalized models will cover full
data (l ≤ 45) and employ “early-stopping lateen”
EM (2011a,§2.3), re-estimating via hard EM until
soft EM’s objective suffers. Alternating EMs would
be expensive here, since updates take (at least)O(l3)

time, and hard EM’s objective (L = H) is the one
better suited to long inputs (Spitkovsky et al., 2010).

Our decoders always force an inter-punctuation
fragment to derive itself (Spitkovsky et al., 2011b,
§2.2).4 In evaluation, such (loose) constraints may
help attachsometimesandphilology to called (and
the science...to is). In training, stronger (strict)
constraints also disallow attachment of fragments’
heads by non-heads, to connectLinguistics, called
andis (assuming each piece got parsed correctly).

3.4 Final Evaluation and Metrics

Evaluation is against held-out CoNLL shared task
data (Buchholz and Marsi, 2006; Nivre et al., 2007),
spanning 19 languages. We compute performance
as directed dependency accuracies (DDA), fractions
of correct unlabeled arcs in parsed output (an extrin-
sic metric).5 For most WSJ experiments we include
also sentence and parse tree cross-entropies (soft and
hard EMs’ intrinsic metrics), in bits per token (bpt).

4But these constraints do not impact training with shorter
inputs, since there is no internal punctuation inDsplit or Dsimp.

5We converted gold labeled constituents in WSJ to unlabeled
reference dependencies using deterministic “head-percolation”
rules (Collins, 1999); sentence root symbols, though not punc-
tuation arcs, contribute to scores, as is standard (Paskin,2001b).

1985

4 Concrete Operators

We will now instantiate the operators sketched out
in §2 specifically for the grammar induction task.

Throughout, we repeatedly employ single steps of
Viterbi training to transfer information between sub-
networks in a model-independent way: when a mod-
ule’s output is a set of (Viterbi) parse trees, it neces-
sarily contains sufficient information required to es-
timate an arbitrarily-factored model down-stream.6

4.1 Transform #1: A Simple Filter

Given a model that was estimated from (and there-
fore parses) a data setD, the simple filter (F) at-
tempts to extract a cleaner model, based on the sim-
pler complete sentences ofDsimp. It is implemented
as a single (unlexicalized) step of Viterbi training:

(7)C F

The idea here is to focus on sentences that are not
too complicated yet grammatical. This punctuation-
sensitive heuristic may steer a learner towards easy
but representative training text and, we showed, aids
grammar induction (Spitkovsky et al., 2012b,§7.1).

4.2 Transform #2: A Symmetrizer

The symmetrizer (S) reduces input models to sets of
word association scores. It blurs all details of in-
duced parses in a data setD, except the number of
times each (ordered) word pair participates in a de-
pendency relation. We implemented symmetrization
also as a single unlexicalized Viterbi training step,
but now with proposed parse trees’ scores, for a sen-
tence inD, proportional to a product over non-root
dependency arcs of one plus how often the left and
right tokens (are expected to) appear connected:

(8)C S

The idea behind the symmetrizer is to glean infor-
mation from skeleton parses. Grammar inducers can
sometimes make good progress in resolving undi-
rected parse structures despite being wrong about
the polarities of most arcs (Spitkovsky et al., 2009,
Figure 3: Uninformed). Symmetrization offers an
extra chance to make heads or tails of syntactic rela-
tions, after learning which words tend to go together.

6A related approach — initializing EM training with an
M-step — was advocated by Klein and Manning (2004,§3).

At each instance where a worda© attachesz© on
(say) the right, our implementation attributes half its
weight to the intended construction,

y

a© z©, reserving
the other half for the symmetric structure,z© attach-
ing a© to its left:

x

a© z©. For the desired effect, these
aggregated counts are left unnormalized, while all
other counts (of word fertilities and sentence roots)
get discarded. To see why we don’t turn word attach-
ment scores into probabilities, consider sentences
a© z© and c© z©. The fact that z© co-occurs with a©

introduces an asymmetry intoz©’s relation with c©:
P(z© | c©) = 1 differs fromP(c© | z©) = 1/2. Normal-
izing might force the interpretation

y

c© z© (and also
y

a© z©), not because there is evidence in the data, but
as a side-effect of a model’s head-driven nature (i.e.,
factored with dependents conditioned on heads). Al-
ways branching right would be a mistake, however,
for example if z© is a noun, since either ofa© or c©

could be a determiner, with the other a verb.

4.3 Join: A Combiner

The combiner must admit arbitrary inputs, includ-
ing models not estimated fromD, unlike the trans-
forms. Consequently, as a preliminary step, we con-
vert each inputCi into parse trees ofD, with counts
C′

i
, via Viterbi-decoding with a smoothed, unlexical-

ized version of the corresponding incoming model.
Actual combination is then performed in a more pre-
cise (unsmoothed) fashion:C∗

i
are the (lexicalized)

solutions starting fromC′

i
; andC∗

+ is initialized with
their sum,

∑
i
C∗

i
. Counts of the lexicalized model

with lowest cross-entropy onD become the output:7

(9)

LDC2

C1

5 Basic Networks

We are ready to propose a non-trivial subnetwork for
grammar induction, based on the transform and join
operators, which we will reuse in larger networks.

5.1 Fork/Join (FJ)

Given a model that parses a base data setD0, the
fork/join subnetwork will output an adaptation of
that model forD. It could facilitate a grammar in-
duction process, e.g., by advancing it from smaller

7In our diagrams, lexicalized modules are shaded black.

1986

to larger — or possibly more complex — data sets.

We first fork off two variations of the incoming
model based onD0: (i) a filtered view, which fo-
cuses on cleaner, simpler data (transform #1); and
(ii) a symmetrized view that backs off to word asso-
ciations (transform #2). Next is grammar induction
overD. We optimize a full DBM instance starting
from the first fork, and bootstrap a reduced DBM0

from the second. Finally, the two new induced sets
of parse trees, forD, are merged (lexicalized join):

(10)

HL·DBM
D

SLDBM
D

SLDBM0

D

C

F

S

D0

C1

C2

C′

1

C′

2

The idea here is to prepare for two scenarios: an
incoming grammar that is either good or bad forD.
If the model is good, DBM should be able to hang
on to it and make improvements. But if it is bad,
DBM could get stuck fitting noise, whereas DBM0
might be more likely to ramp up to a good alterna-
tive. Since we can’t know ahead of time which is the
true case, we pursue both optimization paths simul-
taneously and let a combiner later decide for us.

Note that the forks start (and end) optimizing with
soft EM. This is because soft EM integrates previ-
ously unseen tokens into new grammars better than
hard EM, as evidenced by our failed attempt to re-
produce the “baby steps” strategy with Viterbi train-
ing (Spitkovsky et al., 2010, Figure 4). A combiner
then executes hard EM, and since outputs of trans-
forms are trees, the end-to-end process is a chain of
lateen alternations that starts and ends with hard EM.

We will use a “grammar inductor” to represent
subnetworks that transition fromDl

split to Dl+1
split, by

taking transformed parse trees of inter-punctuation
fragments up to lengthl (base data set,D0) to ini-
tialize training over fragments up to lengthl + 1:

(11)C
l+1

The FJ network instantiates a grammar inductor
with l = 14, thus training on inter-punctuation frag-
ments up to length 15, as in previous work, starting
from an empty set of counts,C = ∅. Smoothing

causes initial parse trees to be chosen uniformly at
random, as suggested by Cohen and Smith (2010):

(12)∅
15

5.2 Iterated Fork/Join (IFJ)

Our second network daisy-chains grammar induc-
tors, starting from the single-word inter-punctuation
fragments inD1

split, then retraining onD2
split, and so

forth, until finally stopping atD15
split, as before:

(13)1 2 14 15

We diagrammed this system as not taking an input,
since the first inductor’s output is fully determined
by unique parse trees of single-token strings. This
iterative approach to optimization is akin to deter-
ministic annealing (Rose, 1998), and is patterned af-
ter “baby steps” (Spitkovsky et al., 2009,§4.2).

Unlike the basic FJ, where symmetrization was a
no-op (since there were no counts inC = ∅), IFJ
makes use of symmetrizers — e.g., in the third in-
ductor, whose input is based on strings with up to
two tokens. Although it should be easy to learn
words that go together from very short fragments,
extracting correct polarities of their relations could
be a challenge: to a large extent, outputs of early in-
ductors may be artifacts of how our generative mod-
els factor (see§4.2) or how ties are broken in opti-
mization (Spitkovsky et al., 2012a, Appendix B). We
therefore expect symmetrization to be crucial in ear-
lier stages but to weaken any high quality grammars,
nearer the end; it will be up to combiners to handle
such phase transitions correctly (or gracefully).

5.3 Grounded Iterated Fork/Join (GIFJ)

So far, our networks have been either purely itera-
tive (IFJ) or static (FJ). These two approaches can
also be combined, by injecting FJ’s solutions into
IFJ’s more dynamic stream. Our new transition sub-
network will join outputs of grammar inductors that
either (i) continue a previous solution (as in IFJ); or
(ii) start over from scratch (“grounding” to an FJ):

(14)
HL·DBM

D
l+1

split∅

Cl Cl+1l+1

l+1

The full GIFJ network can then be obtained by un-
rolling the above template froml = 14 back to one.

1987

WSJ15
split

WSJ15simp

Instance Label Model hsents htrees DDA hsents htrees DDA TA Description

DBM 6.54 6.75 83.7 6.05 6.21 85.1 42.7 Supervised(MLE of WSJ45)
∅ = C — 8.76 10.46 21.4 8.58 10.52 20.7 3.9 Random Projective Parses

SL(S(C)) = C2 DBM0 6.18 6.39 57.0 5.90 6.11 57.5 10.4 B
A

}

Unlexicalized
BaselinesSL(F (C)) = C1 DBM 5.89 5.99 62.2 5.79 5.90 60.9 12.0

H(C′

2) = C∗

2 L-DBM 7.28 7.30 59.2 6.87 6.88 58.6 10.4

Fork/Join















Baseline
Combination

H(C′

1) = C∗

1 L-DBM 7.07 7.08 62.3 6.72 6.73 60.8 12.0
C∗

1 + C∗

2 = C+ L-DBM 7.20 7.27 64.0 6.82 6.88 62.5 12.3
H(C+) = C∗

+ L-DBM 7.02 7.04 64.2 6.64 6.65 62.7 12.8
L-DBM 6.95 6.96 70.5 6.55 6.56 68.2 14.9 Iterated Fork/Join (IFJ)
L-DBM 6.91 6.92 71.4 6.52 6.52 69.2 15.6 Grounded Iterated Fork/Join
L-DBM 6.83 6.83 72.3 6.41 6.41 70.2 17.9 Grammar Transformer(GT)
L-DBM 6.92 6.93 71.9 6.53 6.53 69.8 16.7 IFJ

GT

}

w/Iterated
CombinersL-DBM 6.83 6.83 72.9 6.41 6.41 70.6 18.0

Table 1: Sentence string and parse tree cross-entropies (inbpt), and accuracies (DDA), on inter-punctuation fragments
up to length 15 (WSJ15split) and its subset of simple, complete sentences (WSJ15

simp, with exact tree accuracies — TA).

6 Performance of Basic Networks

We compared our three networks’ performance on
their final training sets,WSJ15split (see Table 1, which
also tabulates results for a cleaner subset,WSJ15simp).
The first network starts fromC = ∅, helping us es-
tablish several straw-man baselines. Its empty ini-
tializer corresponds to guessing (projective) parse
trees uniformly at random, which has 21.4% accu-
racy and sentence string cross-entropy of 8.76bpt.

6.1 Fork/Join (FJ)

FJ’s symmetrizer yields random parses ofWSJ14split,
which initialize training of DBM0. This baseline (B)
lowers cross-entropy to 6.18bpt and scores 57.0%.
FJ’s filter starts from parse trees ofWSJ14simp only, and
trains up a full DBM. This choice makes a stronger
baseline (A), with 5.89bpt cross-entropy, at 62.2%.

The join operator uses counts from A and B,C1

andC2, to obtain parse trees whose own countsC′

1

andC′

2 initialize lexicalized training. From eachC′

i
,

an optimizer arrives atC∗

i
. Grammars corresponding

to these counts have higher cross-entropies, because
of vastly larger vocabularies, but also better accura-
cies: 59.2 and 62.3%. Their mixtureC+ is a simple
sum of counts inC∗

1 andC∗

2 : it is not expected to be
an improvement but happens to be a good move, re-
sulting in a grammar with higher accuracy (64.0%),
though not better Viterbi cross-entropy (7.27 falls
between 7.08 and 7.30bpt) than both sources. The
combiner’s third alternative, a locally optimalC∗

+, is

then obtained by re-optimizing fromC+. This so-
lution performs slightly better (64.2%) and will be
the local optimum returned by FJ’s join operator, be-
cause it attains the lowest cross-entropy (7.04bpt).

6.2 Iterated Fork/Join (IFJ)

IFJ’s iterative approach results in an improvement:
70.5% accuracy and 6.96bpt cross-entropy. To test
how much of this performance could be obtained by
a simpler iterated network, we experimented with
ablated systems that don’t fork or join, i.e., our clas-
sic “baby steps” schema (chaining together 15 op-
timizers), using both DBM and DBM0, with and
without a transform in-between. However, all such
“linear” networks scored well below 50%. We con-
clude from these results that an ability to branch out
into different promising regions of a solution space,
and to merge solutions of varying quality into better
models, are important properties of FJ subnetworks.

6.3 Grounded Iterated Fork/Join (GIFJ)

Grounding improves GIFJ’s performance further, to
71.4% accuracy and 6.92bpt cross-entropy. This re-
sult shows that fresh perspectives from optimizers
that start over can make search efforts more fruitful.

7 Enhanced Subnetworks

Modularity and abstraction allow for compact repre-
sentations of complex systems. Another key benefit
is that individual components can be understood and
improved in isolation, as we will demonstrate next.

1988

7.1 An Iterative Combiner (IC)

Our basic combiner introduced a third option,C∗

+,
into a pool of candidate solutions,{C∗

1 , C
∗

2}. This
new entry may not be a simple mixture of the orig-
inals, because of non-linear effects from applyingL

to C∗

1 + C∗

2 , but could most likely still be improved.
Rather than stop atC∗

+, when it is better than both
originals, we could recombine it with a next best so-
lution, continuing until no further improvement is
made. Iterating can’t harm a given combiner’s cross-
entropy (e.g., it lowers FJ’s from 7.04 to 7.00bpt),
and its advantages can be realized more fully in the
larger networks (albeit without any end-to-end guar-
antees): upgrading all 15 combiners in IFJ would
improve performance (slightly) more than ground-
ing (71.5vs.71.4%), and lower cross-entropy (from
6.96 to 6.93bpt). But this approach is still a bit timid.

A more greedy way is to proceed so long asC∗

+

is not worse thanboth predecessors. We shall now
state our most general iterative combiner (IC) algo-
rithm: Start with a solution poolp = {C∗

i
}n
i=1. Next,

constructp′ by addingC∗

+ = L(
∑n

i=1 C
∗

i
) to p and re-

moving the worst ofn+ 1 candidates in the new set.
Finally, if p = p′, return the best of the solutions inp;
otherwise, repeat fromp := p′. At n = 2, one could
think of takingL(C∗

1 + C∗

2) as performing a kind of
bisection search in some (strange) space. With these
new and improved combiners, the IFJ network per-
forms better: 71.9% (up from 70.5 — see Table 1),
lowering cross-entropy (down from 6.96 to 6.93bpt).
We propose a distinguished notation for the ICs:

(15)

*
C2

C1

7.2 A Grammar Transformer (GT)

The levels of our systems’ performance at grammar
induction thus far suggest that the space of possible
networks (say, with up tok components) may itself
be worth exploring more thoroughly. We leave this
exercise to future work, ending with two relatively
straight-forward extensions for grounded systems.

Our static bootstrapping mechanism (“ground” of
GIFJ) can be improved by pretraining with simple
sentences first — as in the curriculum for learning
DBM-1 (Spitkovsky et al., 2012b,§7.1), but now
with a variable length cut-offl (much lower than the
original 45) — instead of starting from∅ directly:

(16)

SDBM
D

l

simp
∅

l+1







l

The output of this subnetwork can then be refined,
by reconciling it with a previous dynamic solution.
We perform a mini-join of a new ground’s counts
with Cl, using the filter transform (single steps of
lexicalizedViterbi training on clean, simple data),
ahead of the main join (over more training data):

(17)
HL·DBM

D
l+1

split

Cl Cl+1

l+1

F
l

This template can be unrolled, as before, to obtain
our last network (GT), which achieves 72.9% accu-
racy and 6.83bpt cross-entropy (slightly less accu-
rate with basic combiners, at 72.3% — see Table 1).

8 Full Training and System Combination

All systems that we described so far stop training at
D15

split. We will use a two-stage adaptor network to
transition their grammars to a full data set,D45:

(18)

HL·DBM
D

45
split

HL·DBM
D45C

The first stage exposes grammar inducers to longer
inputs (inter-punctuation fragments with up to 45
tokens); the second stage, at last, reassembles text
snippets into actual sentences (also up tol = 45).8

After full training, our IFJ and GT systems parse
Section 23 of WSJ at 62.7 and 63.4% accuracy, bet-
ter than the previous state-of-the-art (61.2% — see
Table 2). To test the generalized IC algorithm, we
merged our implementations of these three strong
grammar induction pipelines into a combined sys-
tem (CS). It scored highest: 64.4%.

(19)

HL·DBM
D45

(GT) #1
(IFJ) #2

#3
CS

The quality of bracketings corresponding to (non-
trivial) spans derived by heads of our dependency
structures is competitive with the state-of-the-art in
unsupervisedconstituentparsing. On the WSJ sen-
tences up to length 40 in Section 23, CS attains sim-
ilar F1-measure (54.2vs.54.6, with higher recall) to

8Note that smoothing in the final (unlexicalized) Viterbi step
masks the fact that model parts that could not be properly es-
timated in the first stage (e.g., probabilities of punctuation-
crossing arcs) are being initialized to uniform multinomials.

1989

System DDA(@10)

(Gimpel and Smith, 2012) 53.1(64.3)

(Gillenwater et al., 2010) 53.3(64.3)

(Bisk and Hockenmaier, 2012) 53.3(71.5)

(Blunsom and Cohn, 2010) 55.7(67.7)

(Tu and Honavar, 2012) 57.0(71.4)

(Spitkovsky et al., 2011b) 58.4(71.4)

(Spitkovsky et al., 2011c) 59.1(71.4)

#3 (Spitkovsky et al., 2012a) 61.2(71.4)

#2
w/Full Training

{

IFJ
GT

62.7 (70.3)

#1 63.4 (70.3)

#1 + #2 + #3 System Combination CS 64.4 (72.0)

Supervised DBM (also withloosedecoding) 76.3(85.4)

Table 2: Directed dependency accuracies (DDA) on Sec-
tion 23 of WSJ (all sentences and up to length ten) for
recent systems, our full networks (IFJ and GT), and three-
way combination (CS) with the previous state-of-the-art.

PRLG (Ponvert et al., 2011), which is the strongest
system of which we are aware (see Table 3).9

9 Multi-Lingual Evaluation

Last, we checked how our algorithms generalize out-
side English WSJ, by testing in 23 more set-ups: all
2006/7 CoNLL test sets (Buchholz and Marsi, 2006;
Nivre et al., 2007), spanning 19 languages. Most re-
cent work evaluates against this multi-lingual data,
with the unrealistic assumption of part-of-speech
tags. But since inducing high quality word clusters
for many languages would be beyond the scope of
our paper, here we too plugged in gold tags for word
categories (instead of unsupervised tags, as in§3–8).

We compared to the two strongest systems we
knew:10 MZ (Mareček andŽabokrtský, 2012) and
SAJ(Spitkovsky et al., 2012b), which report average
accuracies of 40.0 and 42.9% for CoNLL data (see
Table 4). Our fully-trained IFJ and GT systems score
40.0 and 47.6%. As before, combining these net-
works with our own implementation of the best pre-
vious state-of-the-art system (SAJ) yields a further
improvement, increasing final accuracy to 48.6%.

9These numbers differ from Ponvert et al.’s (2011, Table 6)
for the full Section 23 because we restricted theireval-ps.py
script to a maximum length of 40 words, in our evaluation, to
match other previous work: Golland et al.’s (2012, Figure 1)for
CCM and LLCCM; Huang et al.’s (2012, Table 2) for the rest.

10During review, another strong system (Mareček and Straka,
2013, scoring 48.7%) of possible interest to the reader cameout,
exploiting prior knowledge of stopping probabilities (estimated
from large POS-tagged corpora, via reducibility principles).

System F1

Binary-Branching Upper Bound 85.7
Left-Branching Baseline 12.0
CCM (Klein and Manning, 2002) 33.7
Right-Branching Baseline 40.7
F-CCM (Huang et al., 2012) 45.1
HMM (Ponvert et al., 2011) 46.3
LLCCM (Golland et al., 2012) 47.6 P R
CCL (Seginer, 2007) 52.8 54.6 51.1
PRLG (Ponvert et al., 2011) 54.6 60.4 49.8

CS System Combination 54.2 55.6 52.8
Supervised DBM Skyline 59.3 65.7 54.1
Dependency-Based Upper Bound 87.2 100 77.3

Table 3: Harmonic mean (F1) of precision (P) and re-
call (R) for unlabeled constituent bracketings on Section
23 of WSJ (sentences up to length 40) for our combined
system (CS), recent state-of-the-art and the baselines.

10 Discussion

CoNLL training sets were intended for comparing
supervised systems, and aren’t all suitable for unsu-
pervised learning: 12 languages have under 10,000
sentences (with Arabic, Basque, Danish, Greek, Ital-
ian, Slovenian, Spanish and Turkish particularly
small), compared to WSJ’s nearly 50,000. In some
treebanks sentences are very short (e.g., Chinese and
Japanese, which appear to have been split on punc-
tuation), and in others extremely long (e.g., Arabic).
Even gold tags aren’t always helpful, as their num-
ber is rarely ideal for grammar induction (e.g., 42vs.
200 for English). These factors contribute to high
variances of our (and previous) results (see Table 4).

Nevertheless, if we look at the more stable aver-
age accuracies, we see a positive trend as we move
from a simpler fully-trained system (IFJ, 40.0%),
to a more complex system (GT, 47.6%), to system
combination (CS, 48.6%). Grounding seems to be
more important for the CoNLL sets, possibly be-
cause of data sparsity or availability of gold tags.

11 Related Work

The surest way to avoid local optima is to craft
an objective that doesn’t have them. For example,
Wang et al. (2008) demonstrated a convex train-
ing method for semi-supervised dependency pars-
ing; Lashkari and Golland (2008) introduced a con-
vex reformulation of likelihood functions for clus-
tering tasks; and Corlett and Penn (2010) designed

1990

Directed Dependency Accuracies (DDA)(@10)

CoNLL Data MZ SAJ IFJ GT CS

Arabic 2006 26.5 10.9 33.3 8.3 9.3 (30.2)

’7 27.9 44.9 26.1 25.6 26.8(45.6)

Basque ’7 26.8 33.3 23.5 24.2 24.4(32.8)

Bulgarian ’7 46.0 65.2 35.8 64.2 63.4(69.1)

Catalan ’7 47.0 62.1 65.0 68.4 68.0 (79.2)

Chinese ’6 — 63.2 56.0 55.8 58.4(60.8)

’7 — 57.0 49.0 48.6 52.5(56.0)

Czech ’6 49.5 55.1 44.5 43.9 44.0(52.3)

’7 48.0 54.2 42.9 24.5 34.3(51.1)

Danish ’6 38.6 22.2 37.8 17.1 21.4(29.8)

Dutch ’6 44.2 46.6 40.8 51.3 48.0 (48.7)

English ’7 49.2 29.6 39.3 57.6 58.2 (75.0)

German ’6 44.8 39.1 34.1 54.5 56.2 (71.2)

Greek ’6 20.2 26.9 23.7 45.0 45.4 (52.2)

Hungarian ’7 51.8 58.2 24.8 52.9 58.3 (67.6)

Italian ’7 43.3 40.7 56.8 31.1 34.9 (44.9)

Japanese ’6 50.8 22.7 32.6 63.7 63.0 (68.9)

Portuguese ’6 50.6 72.4 38.0 72.7 74.5 (81.1)

Slovenian ’6 18.1 35.2 42.1 50.8 50.9 (57.3)

Spanish ’6 51.9 28.2 57.0 61.7 61.4 (73.2)

Swedish ’6 48.2 50.7 46.6 48.6 49.7(62.1)

Turkish ’6 — 34.4 28.0 32.9 29.2(33.2)

’7 15.7 44.8 42.1 41.7 37.9(42.4)

Average: 40.0 42.9 40.0 47.6 48.6 (57.8)

Table 4: Blind evaluation on 2006/7 CoNLL test sets (all
sentences) for our full networks (IFJ and GT), previous
state-of-the-art systems of Spitkovsky et al. (2012b) and
Mareček anďZabokrtský (2012), and three-way combi-
nation withSAJ (CS, including results up to length ten).

a search algorithm for encoding decipherment prob-
lems that guarantees to quickly converge on optimal
solutions. Convexity can be ideal for comparative
analyses, by eliminating dependence on initial con-
ditions. But for many NLP tasks, including grammar
induction, the most relevant known objective func-
tions are still riddled with local optima. Renewed ef-
forts to find exact solutions (Eisner, 2012; Gormley
and Eisner, 2013) may be a good fit for the smaller
and simpler, earlier stages of our iterative networks.

Multi-start methods (Solis and Wets, 1981) can
recover certain global extrema almost surely (i.e.,
with probability approaching one). Moreover, ran-
dom restarts via uniform probability measures can
be optimal, in a worst-case-analysis sense, with par-
allel processing sometimes leading to exponential
speed-ups (Hu et al., 1994). This approach is rarely
emphasized in NLP literature. For instance, Moore
and Quirk (2008) demonstrated consistent, substan-
tial gains from random restarts in statistical machine

translation (but also suggested better and faster re-
placements — see below); Ravi and Knight (2009,
§5, Figure 8) found random restarts for EM to be
crucial in parts-of-speech disambiguation. However,
other reviews are few and generally negative (Kim
and Mooney, 2010; Martin-Brualla et al., 2010).

Iterated local search methods (Hoos and Stützle,
2004; Johnson et al., 1988,inter alia) escape lo-
cal basins of attraction by perturbing candidate so-
lutions, without undoing all previous work. “Large-
step” moves can come from jittering (Hinton and
Roweis, 2003), dithering (Price et al., 2005, Ch. 2)
or smoothing (Bhargava and Kondrak, 2009). Non-
improving “sideways” moves offer substantial help
with hard satisfiability problems (Selman et al.,
1992); and injecting non-random noise (Selman et
al., 1994), by introducing “uphill” moves via mix-
tures of random walks and greedy search strate-
gies, does better than random noise alone or simu-
lated annealing (Kirkpatrick et al., 1983). In NLP,
Moore and Quirk’s (2008) random walks from pre-
vious local optima were faster than uniform sam-
pling and also increased BLEU scores; Elsner and
Schudy (2009) showed that local search can outper-
form greedy solutions for document clustering and
chat disentanglement tasks; and Mei et al. (2001)
incorporated tabu search (Glover, 1989; Glover and
Laguna, 1993, Ch. 3) into HMM training for ASR.

Genetic algorithms are a fusion of what’s best in
local search and multi-start methods (Houck et al.,
1996), exploiting a problem’s structure to combine
valid parts of any partial solutions (Holland, 1975;
Goldberg, 1989). Evolutionary heuristics proved
useful in the induction of phonotactics (Belz, 1998),
text planning (Mellish et al., 1998), factored mod-
eling of morphologically-rich languages (Duh and
Kirchhoff, 2004) and plot induction for story gener-
ation (McIntyre and Lapata, 2010). Multi-objective
genetic algorithms (Fonseca and Fleming, 1993) can
handle problems with equally important but con-
flicting criteria (Stadler, 1988), using Pareto-optimal
ensembles. They are especially well-suited to lan-
guage, which evolves under pressures from compet-
ing (e.g., speaker, listener and learner) constraints,
and have been used to model configurations of vow-
els and tone systems (Ke et al., 2003). Our transform
and join mechanisms also exhibit some features of
genetic search, and make use of competing objec-

1991

tives: good sets of parse trees must make sense both
lexicalized and with word categories, to rich and im-
poverished models of grammar, and for both long,
complex sentences and short, simple text fragments.

This selection of text filters is a specialized case
of more general “data perturbation” techniques —
even cycling over randomly chosen mini-batches
that partition a data set helps avoid some local op-
tima (Liang and Klein, 2009). Elidan et al. (2002)
suggested how example-reweighing could cause “in-
formed” changes, rather than arbitrary damage, to
a hypothesis. Their (adversarial) training scheme
guided learning toward improved generalizations,
robust against input fluctuations. Language learn-
ing has a rich history of reweighing data via (co-
operative) “starting small” strategies (Elman, 1993),
beginning from simpler or more certain cases. This
family of techniques has met with success in semi-
supervised named entity classification (Collins and
Singer, 1999; Yarowsky, 1995),11 parts-of-speech
induction (Clark, 2000; 2003), and language model-
ing (Krueger and Dayan, 2009; Bengio et al., 2009),
in addition to unsupervised parsing (Spitkovsky et
al., 2009; Tu and Honavar, 2011; Cohn et al., 2011).

12 Conclusion

We proposed several simple algorithms for combin-
ing grammars and showed their usefulness in merg-
ing the outputs of iterative and static grammar in-
duction systems. Unlike conventional system com-
bination methods, e.g., in machine translation (Xiao
et al., 2010), ours do not require incoming mod-
els to be of similar quality to make improvements.
We exploited these properties of the combiners to
reconcile grammars induced by different views of
data (Blum and Mitchell, 1998). One such view re-
tains just the simple sentences, making it easier to
recognize root words. Another splits text into many
inter-punctuation fragments, helping learn word as-
sociations. The induced dependency trees can them-
selves also be viewed not only as directed structures
but also as skeleton parses, facilitating the recovery
of correct polarities for unlabeled dependency arcs.

By reusing templates, as in dynamic Bayesian
network (DBN) frameworks (Koller and Friedman,

11The so-called Yarowsky-cautiousmodification of the orig-
inal algorithm for unsupervised word-sense disambiguation.

2009, §6.2.2), we managed to specify relatively
“deep” learning architectures without sacrificing
(too much) clarity or simplicity. On a still more
speculative note, we see two (admittedly, tenuous)
connections to human cognition. First, the benefits
of not normalizing probabilities, when symmetriz-
ing, might be related to human language process-
ing through the base-rate fallacy (Bar-Hillel, 1980;
Kahneman and Tversky, 1982) and the availability
heuristic (Chapman, 1967; Tversky and Kahneman,
1973), since people are notoriously bad at probabil-
ity (Attneave, 1953; Kahneman and Tversky, 1972;
Kahneman and Tversky, 1973). And second, inter-
mittent “unlearning” — though perhaps not of the
kind that takes place inside of our transforms —
is an adaptation that can be essential to cognitive
development in general, as evidenced by neuronal
pruning in mammals (Craik and Bialystok, 2006;
Low and Cheng, 2006). “Forgetful EM” strategies
that reset subsets of parameters may thus, possibly,
be no less relevant to unsupervised learning than is
“partial EM,” which only suppresses updates, other
EM variants (Neal and Hinton, 1999), or “dropout
training” (Hinton et al., 2012; Wang and Manning,
2013), which is important in supervised settings.

Future parsing models, in grammar induction,
may benefit by modeling head-dependent relations
separately from direction. As frequently employed
in tasks like semantic role labeling (Carreras and
Màrquez, 2005) and relation extraction (Sun et al.,
2011), it may be easier to first establish existence,
before trying to understand its nature. Other key
next steps may include exploring more intelligent
ways of combining systems (Surdeanu and Man-
ning, 2010; Petrov, 2010) and automating the op-
erator discovery process. Furthermore, we are opti-
mistic that both count transforms and model recom-
bination could be usefully incorporated into sam-
pling methods: although symmetrized models may
have higher cross-entropies, hence prone to rejection
in vanilla MCMC, they could work well as seeds
in multi-chain designs; existing algorithms, such as
MCMCMC (Geyer, 1991), which switch contents
of adjacent chains running at different temperatures,
may also benefit from introducing the option to com-
bine solutions, in addition to just swapping them.

1992

Acknowledgments

We thank Yun-Hsuan Sung, for early-stage discussions
on ways of extending “baby steps,” Elias Ponvert, for
sharing all of the relevant experimental results and eval-
uation scripts from his work with Jason Baldridge and
Katrin Erk, and the anonymous reviewers, for their
helpful comments on the draft version of this paper.
Funded, in part, by Defense Advanced Research Projects
Agency (DARPA) Deep Exploration and Filtering of
Text (DEFT) Program, under Air Force Research Lab-
oratory (AFRL) prime contract no. FA8750-13-2-0040.
Any opinions, findings, and conclusion or recommen-
dations expressed in this material are those of the au-
thors and do not necessarily reflect the view of the
DARPA, AFRL, or the US government. Once again, the

first author thanks Moofus.

References

H. Alshawi. 1996. Head automata for speech translation. In
ICSLP.

F. Attneave. 1953. Psychological probability as a functionof
experienced frequency.Experimental Psychology, 46.

M. Bar-Hillel. 1980. The base-rate fallacy in probability judg-
ments.Acta Psychologica, 44.

A. Belz. 1998. Discovering phonotactic finite-state automata
by genetic search. InCOLING-ACL.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. 2009.
Curriculum learning. InICML.

A. Bhargava and G. Kondrak. 2009. Multiple word alignment
with profile hidden Markov models. InNAACL-HLT: Stu-
dent Research and Doctoral Consortium.

Y. Bisk and J. Hockenmaier. 2012. Simple robust grammar
induction with combinatory categorial grammars. InAAAI.

A. Blum and T. Mitchell. 1998. Combining labeled and unla-
beled data with co-training. InCOLT.

P. Blunsom and T. Cohn. 2010. Unsupervised induction of tree
substitution grammars for dependency parsing. InEMNLP.

S. Buchholz and E. Marsi. 2006. CoNLL-X shared task on
multilingual dependency parsing. InCoNLL.

X. Carreras and L. Màrquez. 2005. Introduction to the CoNLL-
2005 shared task: Semantic role labeling. InCoNLL.

L. J. Chapman. 1967. Illusory correlation in observationalre-
port. Verbal Learning and Verbal Behavior, 6.

A. Clark. 2000. Inducing syntactic categories by context distri-
bution clustering. InCoNLL-LLL.

A. Clark. 2003. Combining distributional and morphological
information for part of speech induction. InEACL.

S. B. Cohen and N. A. Smith. 2010. Viterbi training for PCFGs:
Hardness results and competitiveness of uniform initializa-
tion. In ACL.

T. Cohn, P. Blunsom, and S. Goldwater. 2011. Inducing tree-
substitution grammars.JMLR.

M. Collins and Y. Singer. 1999. Unsupervised models for
named entity classification. InEMNLP.

M. Collins. 1999.Head-Driven Statistical Models for Natural
Language Parsing. Ph.D. thesis, University of Pennsylvania.

E. Corlett and G. Penn. 2010. An exact A∗ method for deci-
phering letter-substitution ciphers. InACL.

F. I. M. Craik and E. Bialystok. 2006. Cognition through the
lifespan: mechanisms of change.TRENDS in Cognitive Sci-
ences, 10.

C. de Marcken. 1995. Lexical heads, phrase structure and the
induction of grammar. InWVLC.

K. Duh and K. Kirchhoff. 2004. Automatic learning of lan-
guage model structure. InCOLING.

J. Eisner. 2012. Grammar induction: Beyond local search. In
ICGI.

G. Elidan, M. Ninio, N. Friedman, and D. Schuurmans. 2002.
Data perturbation for escaping local maxima in learning. In
AAAI.

J. L. Elman. 1993. Learning and development in neural net-
works: The importance of starting small.Cognition, 48.

M. Elsner and W. Schudy. 2009. Bounding and comparing
methods for correlation clustering beyond ILP. InNAACL-
HLT: Integer Linear Programming for NLP.

C. M. Fonseca and P. J. Fleming. 1993. Genetic algorithms for
multiobjective optimization: Formulation, discussion and
generalization. InICGA.

C. J. Geyer. 1991. Markov chain Monte Carlo maximum like-
lihood. In Interface Symposium.

J. Gillenwater, K. Ganchev, J. Graça, F. Pereira, and B. Taskar.
2010. Posterior sparsity in unsupervised dependency pars-
ing. Technical report, University of Pennsylvania.

K. Gimpel and N. A. Smith. 2012. Concavity and initialization
for unsupervised dependency parsing. InNAACL-HLT.

F. Glover and M. Laguna. 1993. Tabu search. In C. R.
Reeves, editor,Modern Heuristic Techniques for Combina-
torial Problems. Blackwell Scientific Publications.

F. Glover. 1989. Tabu search — Part I.ORSA Journal on
Computing, 1.

D. E. Goldberg. 1989.Genetic Algorithms in Search, Opti-
mization & Machine Learning. Addison-Wesley.

D. Golland, J. DeNero, and J. Uszkoreit. 2012. A feature-
rich constituent context model for grammar induction. In
EMNLP-CoNLL.

M. R. Gormley and J. Eisner. 2013. Nonconvex global opti-
mization for latent-variable models. InACL.

W. P. Headden, III, M. Johnson, and D. McClosky. 2009. Im-
proving unsupervised dependency parsing with richer con-
texts and smoothing. InNAACL-HLT.

G. Hinton and S. Roweis. 2003. Stochastic neighbor embed-
ding. InNIPS.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov. 2012. Improving neural networks by
preventing co-adaptation of feature detectors. InArXiv.

J. H. Holland. 1975.Adaptation in Natural and Artificial Sys-
tems: An Introductory Analysis with Applications to Biology,
Control, and Artificial Intelligence. University of Michigan
Press.

H. H. Hoos and T. Stützle. 2004.Stochastic Local Search:
Foundations and Applications. Morgan Kaufmann.

1993

C. R. Houck, J. A. Joines, and M. G. Kay. 1996. Comparison
of genetic algorithms, random restart, and two-opt switching
for solving large location-allocation problems.Computers
& Operations Research, 23.

X. Hu, R. Shonkwiler, and M. C. Spruill. 1994. Random
restarts in global optimization. Technical report, GT.

Y. Huang, M. Zhang, and C. L. Tan. 2012. Improved con-
stituent context model with features. InPACLIC.

F. Jelinek and R. L. Mercer. 1980. Interpolated estimation
of Markov source parameters from sparse data. InPattern
Recognition in Practice.

D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. 1988.
How easy is local search?Journal of Computer and System
Sciences, 37.

D. Kahneman and A. Tversky. 1972. Subjective probability: A
judgment of representativeness.Cognitive Psychology, 3.

D. Kahneman and A. Tversky. 1973. On the psychology of
prediction.Psychological Review, 80.

D. Kahneman and A. Tversky. 1982. Evidential impact of base
rates. In D. Kahneman, P. Slovic, and A. Tversky, editors,
Judgment under uncertainty: Heuristics and biases. Cam-
bridge University Press.

J. Ke, M. Ogura, and W. S.-Y. Wang. 2003. Optimization mod-
els of sound systems using genetic algorithms.Computa-
tional Linguistics, 29.

J. Kim and R. J. Mooney. 2010. Generative alignment and
semantic parsing for learning from ambiguous supervision.
In COLING.

S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. 1983. Opti-
mization by simulated annealing.Science, 220.

D. Klein and C. D. Manning. 2002. A generative constituent-
context model for improved grammar induction. InACL.

D. Klein and C. D. Manning. 2004. Corpus-based induction of
syntactic structure: Models of dependency and constituency.
In ACL.

D. Koller and N. Friedman. 2009.Probabilistic Graphical
Models: Principles and Techniques. MIT Press.

K. A. Krueger and P. Dayan. 2009. Flexible shaping: How
learning in small steps helps.Cognition, 110.

D. Lashkari and P. Golland. 2008. Convex clustering with
exemplar-based models. InNIPS.

P. Liang and D. Klein. 2009. Online EM for unsupervised
models. InNAACL-HLT.

L. K. Low and H.-J. Cheng. 2006. Axon pruning: an essen-
tial step underlying the developmental plasticity of neuronal
connections.Royal Society of London Philosophical Trans-
actions Series B, 361.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. 1993.
Building a large annotated corpus of English: The Penn
Treebank.Computational Linguistics, 19.

D. Mareček and M. Straka. 2013. Stop-probability estimates
computed on a large corpus improve unsupervised depen-
dency parsing. InACL.

D. Mareček and Z.̌Zabokrtský. 2011. Gibbs sampling with
treeness constraint in unsupervised dependency parsing. In
ROBUS.

D. Mareček and Z.̌Zabokrtský. 2012. Exploiting reducibility
in unsupervised dependency parsing. InEMNLP-CoNLL.

R. Martin-Brualla, E. Alfonseca, M. Pasca, K. Hall, E. Robledo-
Arnuncio, and M. Ciaramita. 2010. Instance sense induction
from attribute sets. InCOLING.

N. McIntyre and M. Lapata. 2010. Plot induction and evolu-
tionary search for story generation. InACL.

X.-d. Mei, S.-h. Sun, J.-s. Pan, and T.-Y. Chen. 2001. Op-
timization of HMM by the tabu search algorithm. InRO-
CLING.

C. Mellish, A. Knott, J. Oberlander, and M. O’Donnell. 1998.
Experiments using stochastic search for text planning. In
INLG.

R. C. Moore and C. Quirk. 2008. Random restarts in min-
imum error rate training for statistical machine translation.
In COLING.

T. Naseem and R. Barzilay. 2011. Using semantic cues to learn
syntax. InAAAI.

R. M. Neal and G. E. Hinton. 1999. A view of the EM al-
gorithm that justifies incremental, sparse, and other variants.
In M. I. Jordan, editor,Learning in Graphical Models. MIT
Press.

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nilsson, S. Riedel,
and D. Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. InEMNLP-CoNLL.

M. A. Paskin. 2001a. Cubic-time parsing and learning algo-
rithms for grammatical bigram models. Technical report,
UCB.

M. A. Paskin. 2001b. Grammatical bigrams. InNIPS.

F. Pereira and Y. Schabes. 1992. Inside-outside reestimation
from partially bracketed corpora. InACL.

S. Petrov. 2010. Products of random latent variable grammars.
In NAACL-HLT.

E. Ponvert, J. Baldridge, and K. Erk. 2011. Simple unsuper-
vised grammar induction from raw text with cascaded finite
state models. InACL-HLT.

K. V. Price, R. M. Storn, and J. A. Lampinen. 2005.Differ-
ential Evolution: A Practical Approach to Global Optimiza-
tion. Springer.

S. Ravi and K. Knight. 2009. Minimized models for unsuper-
vised part-of-speech tagging. InACL-IJCNLP.

K. Rose. 1998. Deterministic annealing for clustering, com-
pression, classification, regression and related optmization
problems.Proceedings of the IEEE, 86.

Y. Seginer. 2007. Fast unsupervised incremental parsing. In
ACL.

B. Selman, H. Levesque, and D. Mitchell. 1992. A new method
for solving hard satisfiability problems. InAAAI.

B. Selman, H. A. Kautz, and B. Cohen. 1994. Noise strategies
for improving local search. InAAAI.

F. J. Solis and R. J.-B. Wets. 1981. Minimization by random
search techniques.Mathematics of Operations Research, 6.

V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. 2009. Baby
Steps: How “Less is More” in unsupervised dependency
parsing. InGRLL.

V. I. Spitkovsky, H. Alshawi, D. Jurafsky, and C. D. Manning.
2010. Viterbi training improves unsupervised dependency
parsing. InCoNLL.

1994

V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. 2011a. Lateen
EM: Unsupervised training with multiple objectives, applied
to dependency grammar induction. InEMNLP.

V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. 2011b. Punctu-
ation: Making a point in unsupervised dependency parsing.
In CoNLL.

V. I. Spitkovsky, A. X. Chang, H. Alshawi, and D. Jurafsky.
2011c. Unsupervised dependency parsing without gold part-
of-speech tags. InEMNLP.

V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. 2012a. Boot-
strapping dependency grammar inducers from incomplete
sentence fragments via austere models. InICGI.

V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. 2012b. Three
dependency-and-boundary models for grammar induction.
In EMNLP-CoNLL.

W. Stadler, editor. 1988.Multicriteria Optimization in Engi-
neering and in the Sciences. Plenum Press.

A. Sun, R. Grishman, and S. Sekine. 2011. Semi-supervised
relation extraction with large-scale word clustering. InACL.

M. Surdeanu and C. D. Manning. 2010. Ensemble models for
dependency parsing: Cheap and good? InNAACL-HLT.

K. Tu and V. Honavar. 2011. On the utility of curricula in
unsupervised learning of probabilistic grammars. InIJCAI.

K. Tu and V. Honavar. 2012. Unambiguity regularization
for unsupervised learning of probabilistic grammars. In
EMNLP-CoNLL.

A. Tversky and D. Kahneman. 1973. Availability: A heuristic
for judging frequency and probability.Cognitive Psychol-
ogy, 5.

S. I. Wang and C. D. Manning. 2013. Fast dropout training. In
ICML.

Q. I. Wang, D. Schuurmans, and D. Lin. 2008. Semi-
supervised convex training for dependency parsing. InHLT-
ACL.

T. Xiao, J. Zhu, M. Zhu, and H. Wang. 2010. Boosting-based
system combination for machine translation. InACL.

D. Yarowsky. 1995. Unsupervised word sense disambiguation
rivaling supervised methods. InACL.

1995

