Scaling Semantic Parsers with On-the-fly Ontology Matching

Tom Kwiatkowski Eunsol Choi

Yoav Artzi Luke Zettlemoyer

Computer Science & Engineering
University of Washington

Seattle, WA 98195
{tomk, eunsol, yoav, lsz}@cs.washington.edu

Abstract

We consider the challenge of learning seman-
tic parsers that scale to large, open-domain
problems, such as question answering with
Freebase. In such settings, the sentences cover
a wide variety of topics and include many
phrases whose meaning is difficult to rep-
resent in a fixed target ontology. For ex-
ample, even simple phrases such as ‘daugh-
ter’ and ‘number of people living in’ can-
not be directly represented in Freebase, whose
ontology instead encodes facts about gen-
der, parenthood, and population. In this pa-
per, we introduce a new semantic parsing ap-
proach that learns to resolve such ontologi-
cal mismatches. The parser is learned from
question-answer pairs, uses a probabilistic
CCQG to build linguistically motivated logical-
form meaning representations, and includes
an ontology matching model that adapts the
output logical forms for each target ontology.
Experiments demonstrate state-of-the-art per-
formance on two benchmark semantic parsing
datasets, including a nine point accuracy im-
provement on a recent Freebase QA corpus.

1 Introduction

Semantic parsers map sentences to formal represen-
tations of their underlying meaning. Recently, al-
gorithms have been developed to learn such parsers
for many applications, including question answering
(QA) (Kwiatkowski et al., 2011; Liang et al., 2011),
relation extraction (Krishnamurthy and Mitchell,
2012), robot control (Matuszek et al., 2012; Kr-
ishnamurthy and Kollar, 2013), interpreting instruc-

1545

tions (Chen and Mooney, 2011; Artzi and Zettle-
moyer, 2013), and generating programs (Kushman
and Barzilay, 2013).

In each case, the parser uses a predefined set
of logical constants, or an ontology, to construct
meaning representations. In practice, the choice
of ontology significantly impacts learning. For
example, consider the following questions (Q) and
candidate meaning representations (MR):

QI: What is the population of Seattle?
Q2: How many people live in Seattle?
MRI1: Az.population(Seattle, x)
MR2: count(Az.person(x) A live(z, Seattle))

A semantic parser might aim to construct MR1 for
QI and MR?2 for Q2; these pairings align constants
(count, person, etc.) directly to phrases (‘How
many, ‘people,” etc.). Unfortunately, few ontologies
have sufficient coverage to support both meaning
representations, for example many QA databases
would only include the population relation required
for MR1. Most existing approaches would, given
this deficiency, simply aim to produce MR1 for Q2,
thereby introducing significant lexical ambiguity
that complicates learning. Such ontological mis-
matches become increasingly common as domain
and language complexity increases.

In this paper, we introduce a semantic parsing ap-
proach that supports scalable, open-domain ontolog-
ical reasoning. The parser first constructs a linguis-
tically motivated domain-independent meaning rep-
resentation. For example, possibly producing MR1
for Q1 and MR2 for Q2 above. It then uses a learned
ontology matching model to transform this represen-

Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1545-1556,
Seattle, Washington, USA, 18-21 October 2013. (©)2013 Association for Computational Linguistics

T: How many people visit the public library of New York annually

lo: Az.eq(z, count(Ny.people(y) A Je.wisit(y, tz.public(z) A library(z) A of (z, new york), e) A annually(e)))
Y Ax.library.public_library_system.annual visits(x,new_york public_library)

a: 13,554,002

T What works did Mozart dedicate to Joseph Haydn

lo: Az.works(z) A Je.dedicate(mozart, x,e) A to(haydn, e)))

E Ax.dedicated work(x) A Je.dedicated _by(mozart,e) A dedication(x,e) A dedicated_to(haydn,e)))
a: { String Quartet No. 19, Haydn Quartets, String Quartet No. 16, String Quartet No. 18, String Quartet No. 17 }

Figure 1: Examples of sentences x, domain-independent underspecified logical forms [y, fully specified
logical forms y, and answers a drawn from the Freebase domain.

tation for the target domain. In our example, pro-
ducing either MR 1, MR2 or another more appropri-
ate option, depending on the QA database schema.
This two stage approach enables parsing without
any domain-dependent lexicon that pairs words with
logical constants. Instead, word meaning is filled
in on-the-fly through ontology matching, enabling
the parser to infer the meaning of previously un-
seen words and more easily transfer across domains.
Figure 1 shows the desired outputs for two example
Freebase sentences.

The first parsing stage uses a probabilistic combi-
natory categorial grammar (CCG) (Steedman, 2000;
Clark and Curran, 2007) to map sentences to
new, underspecified logical-form meaning represen-
tations containing generic logical constants that are
not tied to any specific ontology. This approach en-
ables us to share grammar structure across domains,
instead of repeatedly re-learning different grammars
for each target ontology. The ontology-matching
step considers a large number of type-equivalent
domain-specific meanings. It enables us to incorpo-
rate a number of cues, including the target ontology
structure and lexical similarity between the names of
the domain-independent and dependent constants, to
construct the final logical forms.

During learning, we estimate a linear model over
derivations that include all of the CCG parsing de-
cisions and the choices for ontology matching. Fol-
lowing a number of recent approaches (Clarke et al.,
2010; Liang et al., 2011), we treat all intermediate
decisions as latent and learn from data containing
only easily gathered question answer pairs. This ap-
proach aligns naturally with our two-stage parsing
setup, where the final logical expression can be di-
rectly used to provide answers.

We report performance on two benchmark

1546

datasets: GeoQuery (Zelle and Mooney, 1996) and
Freebase QA (FQ) (Cai and Yates, 2013a). Geo-
Query includes a geography database with a small
ontology and questions with relatively complex,
compositional structure. FQ includes questions to
Freebase, a large community-authored database that
spans many sub-domains. Experiments demonstrate
state-of-the-art performance in both cases, including
a nine point improvement in recall for the FQ test.

2 Formal Overview

Task Let an ontology O be a set of logical con-
stants and a knowledge base K be a collection of
logical statements constructed with constants from
O. For example, IC could be facts in Freebase (Bol-
lacker et al., 2008) and O would define the set
of entities and relation types used to encode those
facts. Also, let y be a logical expression that can
be executed against K to return an answer a
EXEC(y, KC). Figure 1 shows example queries and
answers for Freebase. Our goal is to build a function
y = PARSE(z, Q) for mapping a natural language
sentence x to a domain-dependent logical form y.

Parsing We use a two-stage approach to define
the space of possible parses GEN(x, O) (Section 5).
First, we use a CCG and word-class information
from Wiktionary! to build domain-independent un-
derspecified logical forms, which closely mirror the
linguistic structure of the sentence but do not use
constants from O. For example, in Figure 1, [de-
notes the underspecified logical forms paired with
each sentence x. The parser then maps this interme-
diate representation to a logical form that uses con-
stants from O, such as the y seen in Figure 1.

'www.wiktionary.com

Learning We assume access to data containing
question-answer pairs {(x;,a;) : ¢ = 1...n} and
a corresponding knowledge base K. The learn-
ing algorithm (Section 7.1) estimates the parame-
ters of a linear model for ranking the possible en-
tires in GEN(z, ©). Unlike much previous work
(e.g., Zettlemoyer and Collins (2005)), we do not
induce a CCG lexicon. The lexicon is open domain,
using no symbols from the ontology O for XC. This
allows us to write a single set of lexical templates
that are reused in every domain (Section 5.1). The
burden of learning word meaning is shifted to the
second, ontology matching, stage of parsing (Sec-
tion 5.2), and modeled with a number of new fea-
tures (Section 7.2) as part of the joint model.

Evaluation We evaluate on held out question-
answer pairs in two benchmark domains, Freebase
and GeoQuery. Following Cai and Yates (2013a),
we also report a cross-domain evaluation where the
Freebase data is divided by topics such as sports,
film, and business. This condition ensures that the
test data has a large percentage of previously unseen
words, allowing us to measure the effectiveness of
the real time ontology matching.

3 Related Work

Supervised approaches for learning semantic parsers
have received significant attention, e.g. (Kate and
Mooney, 2006; Wong and Mooney, 2007; Muresan,
2011; Kwiatkowski et al., 2010, 2011, 2012; Jones
et al.,, 2012). However, these techniques require
training data with hand-labeled domain-specific log-
ical expressions. Recently, alternative forms of su-
pervision were introduced, including learning from
question-answer pairs (Clarke et al., 2010; Liang
et al., 2011), from conversational logs (Artzi and
Zettlemoyer, 2011), with distant supervision (Kr-
ishnamurthy and Mitchell, 2012; Cai and Yates,
2013b), and from sentences paired with system
behavior (Goldwasser and Roth, 2011; Chen and
Mooney, 2011; Artzi and Zettlemoyer, 2013). Our
work adds to these efforts by demonstrating a new
approach for learning with latent meaning represen-
tations that scales to large databases like Freebase.
Cai and Yates (2013a) present the most closely
related work. They applied schema matching tech-
niques to expand a CCG lexicon learned with the

1547

UBL algorithm (Kwiatkowski et al., 2010). This ap-
proach was one of the first to scale to Freebase, but
required labeled logical forms and did not jointly
model semantic parsing and ontological reasoning.
This method serves as the state of the art for our
comparison in Section 9.

We build on a number of existing algorithmic
ideas, including using CCGs to build meaning rep-
resentations (Zettlemoyer and Collins, 2005, 2007;
Kwiatkowski et al., 2010, 2011), building deriva-
tions to transform the output of the CCG parser
based on context (Zettlemoyer and Collins, 2009),
and using weakly supervised margin-sensitive pa-
rameter updates (Artzi and Zettlemoyer, 2011,
2013). However, we introduce the idea of learning
an open-domain CCG semantic parser; all previous
methods suffered, to various degrees, from the onto-
logical mismatch problem that motivates our work.

The challenge of ontological mismatch has been
previously recognized in many settings. Hobbs
(1985) describes the need for ontological promiscu-
ity in general language understanding. Many pre-
vious hand-engineered natural language understand-
ing systems (Grosz et al., 1987; Alshawi, 1992; Bos,
2008) are designed to build general meaning rep-
resentations that are adapted for different domains.
Recent efforts to build natural language interfaces to
large databases, for example DBpedia (Yahya et al.,
2012; Unger et al., 2012), have also used hand-
engineered ontology matching techniques. Fader
et al. (2013) recently presented a scalable approach
to learning an open domain QA system, where onto-
logical mismatches are resolved with learned para-
phrases. Finally, the databases research commu-
nity has a long history of developing schema match-
ing techniques (Doan et al., 2004; Euzenat et al.,
2007), which has inspired more recent work on dis-
tant supervision for relation extraction with Free-
base (Zhang et al., 2012).

4 Background

Semantic Modeling We use the typed lambda cal-
culus to build logical forms that represent the mean-
ings of words, phrases and sentences. Logical forms
contain constants, variables, lambda abstractions,
and literals. In this paper, we use the term literal to
refer to the application of a constant to a sequence of

library of new york
N N\N/NP NP
Ax.library(x) AyAfiz.f(x) Aloc(z,y) NYC
>

N\N
A2z f(z) Aloc(z, NYC)

N
Az.library(z) Aloc(x, NYC)

Figure 2: A sample CCG parse.

arguments. We include types for entities e, truth val-
ues t, numbers ¢, events ev, and higher-order func-
tions, such as (e, t) and ((e,t),e). We use David-
sonian event semantics (Davidson, 1967) to explic-
itly represent events using event-typed variables and
conjunctive modifiers to capture thematic roles.

Combinatory Categorial Grammars (CCG)
CCGs are a linguistically-motivated formalism
for modeling a wide range of language phenom-
ena (Steedman, 1996, 2000). A CCG is defined by
a lexicon and a set of combinators. The lexicon
contains entries that pair words or phrases with
CCG categories. For example, the lexical entry
library = N : Az.ibrary(z) in Figure 2 pairs
the word ‘library’ with the CCG category that has
syntactic category N and meaning Az.library(z).
A CCQG parse starts from assigning lexical entries to
words and phrases. These are then combined using
the set of CCG combinators to build a logical form
that captures the meaning of the entire sentence. We
use the application, composition, and coordination
combinators. Figure 2 shows an example parse.

S Parsing Sentences to Meanings

The function GEN(z, O) defines the set of possible
derivations for an input sentence x. Each derivation
d = (I1, M) builds a logical form y using constants
from the ontology O. II is a CCG parse tree that
maps x to an underspecified logical form [y. M is an
ontological match that maps [y onto the fully spec-
ified logical form y. This section describes, with
reference to the example in Figure 3, the operations
used by IT and M.

5.1 Domain Independent Parsing

Domain-independent CCG parse trees II are built
using a predefined set of 56 underspecified lexi-

1548

cal categories, 49 domain-independent lexical items,
and the combinatory rules introduced in Section 4.

An underspecified CCG lexical category has a
syntactic category and a logical form containing no
constants from the domain ontology O. Instead, the
logical form includes underspecified constants that
are typed placeholders which will later be replaced
during ontology matching. For example, a noun
might be assigned the lexical category N : Az.p(x),
where p is an underspecified (e, t)-type constant.

During parsing, lexical categories are created dy-
namically. We manually define a set of POS tags for
each underspecified lexical category, and use Wik-
tionary as a tag dictionary to define the possible POS
tags for words and phrases. Each phrase is assigned
every matching lexical category. For example, the
word ‘visit’ can be either a verb or a noun in Wik-
tionary. We accordingly assign it all underspecified
categories for the classes, including:

N:Az.p(z) , S\NP/NP:AzAyJev.p(y,z,ev)

for nouns and transitive verbs respectively.

We also define domain-independent lexical items
for function words such as ‘what,” ‘when,” and
‘how many,” ‘and, and ‘is. These lexi-
cal items pair a word with a lexical cate-
gory containing only domain-independent con-
stants. For example, how many F S/(S\NP)/N :
Af g Az.eq(x, count(Ay.f(y) A g(y))) contains
the function count and the predicate eq.

Figure 3a shows the lexical categories and combi-
nator applications used to construct the underspeci-
fied logical form /y. Underspecified constants in this
figure have been labeled with the words that they are
associated with for readability.

5.2 Ontological Matching

The second, domain specific, step M maps the un-
derspecified logical form [y onto the fully specified
logical form y. The mapping from constants in [
to constants in ¥y is not one-to-one. For example, in
Figure 3, [y contains 11 constants but y contains only
2. The ontological match is a sequence of matching
operations M = (oj ..., 0p) that can transform the
structure of the logical form or replace underspeci-
fied constants with constants from O.

(a) Underspecified CCG parse I1: Map words onto underspecified lexical categories as described in Section 5.1. Use
the CCG combinators to combine lexical categories to give the full underpecified logical form /.

how many people visit the public library of new york annually
S/(S\NP)/N N S\NP/NP NP/N N/N N N\N/NP NP AP
AfAg.Azx.eq(x, count(Ax.People(x) Axz.Ay.Jev. Afax. f(z) XNfxx.f(z)A Az.Library(z) Ay.Af.dz.Of NewYork Xev.Annually(ev)
Ay f(y) A g(y))) Visit(y, x, ev) Public(z) (z,y) A f(=)
> >
>
>

>

S
lo : Az.eq(z, count(Ay.People(y) A Je.Visit(y, tz. Public(z) A Library(z) A Of(z, NewYork)) A Annually(e)))

(b) Structure Matching Steps in M/: Use the operators described in Section 5.2.1 and Figure 4 to transform ly. In
each step one of the operators is applied to a subexpression of the existing logical form to generate a modified logical
form with a new underspecified constant marked in bold.

lo: MAz.eq(z, count(Ay.People(y) A Je.Visit(y, tz.Public(z) A Library(z) A Of(z, NewYork), e) A Annually(e)))
Iy : Az.eq(z, count(Ay.People(y) A Je.Visit(y, PublicLibraryOfNewYork, ¢) A Annually(e)))
la: Az.HowManyPeopleVisitAnnually(z, PublicLibraryO f NewY ork)))

(c) Constant Matching Steps in M: Replace all underspecified constants in the transformed logical form with a
similarly typed constant from O, as described in Section 5.2.2. The underspecified constant to be replaced is marked
in bold and constants from O are written in typeset.

Az.HowM anyPeopleVisit Annually(z, PublicLibraryOfNewYork)
lg: — Az.HowManyPeopleVisit Annually(x,new_york_public_library)
Az.HowManyPeopleVisitAnnually(z,new_york public library)

Yy — Az.public_library system.annual visits(z,new_york_public_library)

Figure 3: Example derivation for the query ‘how many people visit the public library of new york annu-
ally. Underspecified constants are labelled with the words from the query that they are associated with for
readability. Constants from O, written in typeset, are introduced in step (c).

l Operator [Definition and Conditions [Example

tz.Public(z) A Library(z) AN Of(z, NewY ork
Co.llapse Plai,... an) —c ()H PubliiL)ibrary(OfNewYork))
Literal
a s.t. type(P(a1,...,an)) = type(c) Input and output have type e.
Constant type(c) € {e, i} e is allowed in O.
freev(P(ai,...,an)) =0 Input contains no free variables.
eq(z, count(Ay.People(y) A Je.Visit(y,
PublicLibraryO f NewY ork) A Annually(e
Collapse Plar, s an) = Qb1 bm) — C’ountPeopleVisitAnnu)ally(Jc, ()
b Literal PublicLibraryO f NewY ork)
" to s.t. type(P(a1,...,an)) = type(Q(b1,...,bm)) Input and output have type ¢.
Literal type(Q) € {type(c) : c € O} New constant has type (, (e, t)), allowed in O.
freev(P(ai,...,as)) = freev(Q(b1,...,bmn)) | Inputand output contain single free variable x.
{b1,...,bm} € subexps(P(ai,...,an)) Arguments of output literal are subexpressions of input.
P(ai,...,ak, @, Qkt1,---,0n) Dedicate(Mozart, Haydn, ev)
Split —QM1,...,z,... b)) ANQ"(c1,. .., T, ... Cm) +— Dedicate(Mozart, ev) A Dedicate’ (Haydn, ev)
¢ Literal s.t. type(P(...)) =t Input has type t. This matches output type by definition.
{type(Q), type(Q")} € {type(c) : c € O} New constants have allowed type (e, {ev, t)).
{b1,...,bn,c1,...,em} ={a1,...,an} All arguments of input literal are preserved in output.

Figure 4: Definition of the operations used to transform the structure of the underspecified logical form [y to
match the ontology O. The function type(c) calculates a constant ¢’s type. The function freev(l f) returns
the set of variables that are free in [f (not bound by a lambda term or quantifier). The function subexps(lf)
generates the set of all subexpressions of the lambda calculus expression [f.

1549

5.2.1 Structure Matching

Three structure matching operators, illustrated in
Figure 4, are used to collapse or expand literals in
lg. Collapses merge a subexpression from [y to cre-
ate a new underspecified constant, generating a log-
ical form with fewer constants. Expansions split a
subexpression from [to generate a new logical form
containing one extra constant.

Collapsing Operators The collapsing operator
defined in Figure 4a merges all constants in a
literal to generate a single constant of the same
type. This operator is used to map :z.Public(z)A
Library(z)AO f (z,NewY ork) tO PublicLibraryO f NewY ork
in Figure 3b. Its operation is limited to entity typed
expressions that do not contain free variables.

The operator in Figure 4b, in contrast, can be used
to collapse the expression eq(x,count(\y.People(y)A
Je.Visit(y,PublicLibraryO f NewY ork,e))AAnnually(e))),
which contains free variable = onto a new expression
CountPeopleVisit Annually(z,PublicLibraryO f NewY ork).
This is only possible when the type of the newly
created constant is allowed in O and the variable x
is free in the output expression. Subsets of conjuncts
can be collapsed using the operator in Figure 4b by
creating ad-hoc conjunctions that encapsulate them.
Disjunctions are treated similarly.

Performing collapses on the underspecified logi-
cal form allows non-contiguous phrases to be rep-
resented in the collapsed form. In this exam-
ple, the logical form representing the phrase ‘how
many people visit’ has been merged with the logi-
cal form representing the non-adjacent adverb ‘an-
nually.” This generates a new underspecified con-
stant that can be mapped onto the Freebase relation
public_library_system_annual_visits that re-
lates to both phrases.

The collapsing operations preserve semantic type,
ensuring that all logical forms generated by the
derivation sequence are well typed. The full set of
allowed collapses of [y is given by the transitive clo-
sure of the collapsing operations. The size of this
set is limited by the number of constants in [y, since
each collapse removes at least one constant. At each
step, the number of possible collapses is polynomial
in the number of constants in /o and exponential in
the arity of the most complex type in O. For do-
mains of interest this arity is unlikely to be high and

1550

for triple stores such as Freebase it is 2.

Expansion Operators The fully specified logical
form y can contain constants relating to multiple
words in x. It can also use multiple constants to rep-
resent the meaning of a single word. For example,
Freebase does not contain a relation representing the
concept ‘daughter’, instead using two relations rep-
resenting ‘female’ and ‘child’. The expansion oper-
ator in Figure 4c allows a single predicate to be split
into a pair of conjoined predicates sharing an argu-
ment variable. For example, in Figure 1, the constant
for ‘dedicate’ is split in two to match its represen-
tation in Freebase. Underspecified constants from
lp can be split once. For the experiments in Sec-
tion 8, we constrain the expansion operator to work
on event modifiers but the procedure generalizes to
all predicates.

5.2.2 Constant Matching

To build an executable logical form y, all under-
specified constants must be replaced with constants
from O. This is done through a sequence of con-
stant replacement operations, each of which replaces
a single underspecified constant with a constant of
the same type from O. Two example replacements
are shown in Figure 3c. The output from the last re-
placement operation is a fully specified logical form.

6 Building and Scoring Derivations

This section introduces a dynamic program used to
construct derivations and a linear scoring model.

6.1 Building Derivations

The space of derivations is too large to explicitly
enumerate. However, each logical form (both final
and interim) can be constructed with many differ-
ent derivations, and we only need to find the highest
scoring one. This allows us to develop a simple dy-
namic program for our two-stage semantic parser.
We use a CKY style chart parser to calculate the
k-best logical forms output by parses of x. We then
store each interim logical form generated by an op-
erator in M once in a hyper-graph chart structure.
The branching factor of this hypergraph is polyno-
mial in the number of constants in [y and linear in
the size of . Subsequently, there are too many
possible logical forms to enumerate explicitly; we

prune as follows. We allow the top N scoring on-
tological matches for each original subexpression in
lp and remove matches that differ from score from
the maximum scoring match by more than a thresh-
old 7. When building derivations, we apply constant
matching operators as soon as they are applicable to
new underspecified constants created by collapses
and expansions. This allows the scoring function
used by the pruning strategy to take advantage of all
features defined in Section 7.2.

6.2 Ranking Derivations

Given feature vector ¢ and weight vector 6, the score
of a derivation d = (II, M) is a linear function that
decomposes over the parse tree IT and the individual
ontology-matching steps o.

SCORE(d) = ¢(d)0
= ¢(I)§ +) d(0)f

oeM

ey

The function PARSE(z, O) introduced as our goal in
Section 2 returns the logical form associated with
the highest scoring derivation of z:

PARSE(z,0) = arg max

SCORE(d
dEGEN(a:,O)(RE())

The features and learning algorithm used to estimate
0 are defined in the next section.

7 Learning

This section describes an online learning algorithm
for question-answering data, along with the domain-
independent feature set.

7.1 Learning Model Parameters

Our learning algorithm estimates the parameters 6
from a set {(z;,a;) : i = 1...n} of questions x;
paired with answers a; from the knowledge base
K. Each derivation d generated by the parser is
associated with a fully specified logical form y =
YIELD(d) that can be executed in K. A derivation d
of x; is correct if EXEC(YIELD(d), K) = a;. We use
a perceptron to estimate a weight vector 6 that sup-
port a separation of « between correct and incorrect
answers. Figure 5 presents the learning algorithm.

1551

Input: Q/A pairs {(zi,a;) : ¢ = 1...n}; Knowledge base
IC; Ontology O; Function GEN(z, ©O) that computes deriva-
tions of ; Function YIELD(d)that returns logical form yield
of derivation d; Function EXEC(y, K) that calculates execu-
tion of y in XC; Margin -y; Number of iterations 7.

Output: Linear model parameters 6.

Algorithm:

Fort=1...T,i=1...n:
C = {d : d € GEN(z;, O); EXEC(YIELD(d),K) = a;}
W = {d : d € GEN(z;, O); EXEC(YIELD(d), K) # a;}
C™* = arg maxqec (¢(d)0)
W*={d:de W; 3ce C*st. ¢(c)f — ¢p(d)f <)}
If|IC*|>0A|W*| >0:
6 =0+ e e B0) — ey Tocn- 6(6)

Figure 5: Parameter estimation from Q/A pairs.

7.2 Features

The feature vector ¢(d) introduced in Section 6.2
decomposes over each of the derivation steps in d.

CCG Parse Features Each lexical item in 1I has
three indicator features. The first indicates the num-
ber of times each underspecified category is used.
For example, the parse in Figure 3a uses the under-
specified category N : Az.p(x) twice. The second
feature indicates (word, category) pairings — e.g.
that N : Az.p(x) is paired with ‘library’ and ‘pub-
lic’ once each in Figure 3a. The final lexical feature
indicates (part-of-speech, category) pairings for all
parts of speech associated with the word.

Structural Features The structure matching op-
erators (Section 5.2.1) in M generate new under-
specified constants that define the types of constants
in the output logical form y. These operators are
scored using features that indicate the type of each
complex-typed constant present in y and the iden-
tity of domain-independent functional constants in
y. The logical form y generated in Figure 3 contains
one complex typed constant with type (7, (e, t)) and
no domain-independent functional constants. Struc-
tural features allow the model to adapt to different
knowledge bases K. They allow it to determine, for
example, whether a numeric quantity such as ‘pop-
ulation’ is likely to be explicitly listed in C or if it
should be computed with the count function.

Lexical Features Each constant replacement op-
erator (Section 5.2.2) in M replaces an underspec-

ified constant ¢, with a constant ¢p from . The
underspecified constant ¢, is associated with the se-
quence of words w, used in the CCG lexical en-
tries that introduced it in II. We assume that each
of the constants cp in O is associated with a string
label Wo. This allows us to introduce five domain-
independent features that measure the similarity of
W, and Wp.

The feature ¢, (cy, co) signals the replacement
of an entity-typed constant c,, with entity co that has
label w,. For the second example in Figure 1 this
feature indicates the replacement of the underspeci-
fied constant associated with the word ‘mozart’ with
the Freebase entity mozart. Stem and synonymy
features @gtem (cu, co) and @gyn(cy, co) signal the
existence of words w, € w, and w, € wo that
share a stem or synonym respectively. Stems are
computed with the Porter stemmer and synonyms
are extracted from Wiktionary. A single Freebase
specific feature ¢ fp.stem(Cus co) indicates a word
stem match between w,, € w, and the word filling
the most specific position in w;, under Freebase’s hi-
erarchical naming schema.

A final feature ¢¢;(cy,co) calculates the overlap
between Wiktionary definitions for wy, and wp. Let
g1(w) be the Wiktionary definition for w. Then:

2-|gl(wp)Ngl(we)|
[wo - Twul-lgl(wo)l+gl(we)l

2

wy EWy ;WO EWH

(ngl(cu’ CO) =

Domain-indepedent lexical features allow the
model to reason about the meaning of unseen words.
In small domains, however, the majority of word us-
ages may be covered by training data. We make use
of this fact in the GeoQuery domain with features
®dm(cu, co) that indicate the pairing of w;, with co.

Knowledge Base Features Guided by the obser-
vation that we generally want to create queries y
which have answers in knowledge base K, we de-
fine features to signal whether each operation could
build a logical form y with an answer in /C.

If a predicate-argument relation in y does not
exist in /C, then the execution of y against C
will not return an answer. Two features indicate
whether predicate-argument relations in y exist in .
Odirect (Y, K) indicates predicate-argument applica-
tions in y that exists in . For example, if the appli-
cation of dedicated_by to mozart in Figure 1 ex-
ists in Freebase, @girect (v, K) will fire. ¢oin(y, KC)

1552

indicates entities separated from a predicate by one
joinin y, such as mozart and dedicated_to in Fig-
ure 1, that exist in the same relationship in K.

If two predicates that share a variable in y
do not share an argument in that position in K
then the execution of y against X will fail. The
predicate-predicate ¢y, (y, K) feature indicates pairs
of predicates that share a variable in y but can-
not occur in this relationship in K. For ex-
ample, since the subject of the Freebase prop-
erty date_of birth does not take arguments of
type location, ¢p,(y,K) will fire if y con-
tains the logical form Az \y.date_of birth(z,y)A
location(x).

Both the predicate-argument and predicate-
predicate features operate on subexpressions of y.
We also define the execution features: ¢, (y, K) to
signal an empty answer for y in K; ¢o(y, K) to sig-
nal a zero-valued answer created by counting over
an empty set; and ¢ (y, K) to signal a one-valued
answer created by counting over a singleton set.

As with the lexical cues, we use knowledge base
features as soft constraints since it is possible for
natural language queries to refer to concepts that do
not exist in K.

8 Experimental Setup

Data We evaluate performance on the benchmark
GeoQuery dataset (Zelle and Mooney, 1996), and a
newly introduced Freebase Query (FQ) dataset (Cai
and Yates, 2013a). FQ contains 917 questions la-
beled with logical form meaning representations for
querying Freebase. We gathered question answer la-
bels by executing the logical forms against Freebase,
and manually correcting any inconsistencies.

Freebase (Bollacker et al., 2008) is a large, col-
laboratively authored database containing almost 40
million entities and two billion facts, covering more
than 100 domains. We filter Freebase to cover the
domains contained in the FQ dataset resulting in a
database containing 18 million entities, 2072 rela-
tions, 635 types, 135 million facts and 81 domains,
including for example film, sports, and business. We
use this schema to define our target domain, allow-
ing for a wider variety of queries than could be en-
coded with the 635 collapsed relations previously
used to label the FQ data.

We report two different experiments on the FQ
data: test results on the existing 642/275 train/test
split and domain adaptation results where the data is
split three ways, partitioning the topics so that the
logical meaning expressions do not share any sym-
bols across folds. We report on the standard 600/280
training/test split for GeoQuery.

Parameter Initialization and Training We ini-
tialize weights for ¢,,;, and @gircc+ to 10, and weights
for @stem and @join to 5. This promotes the use of
entities and relations named in sentences. We ini-
tialize weights for ¢, and ¢¢p,, to -1 to favour log-
ical forms that have an interpretation in the knowl-
edge base . All other feature weights are initial-
ized to 0. We run the training algorithm for one it-
eration on the Freebase data, at which point perfor-
mance on the development set had converged. This
fast convergence is due to the very small number of
matching parameters used (5 lexical features and 8
KC features). For GeoQuery, we include the larger
domain specific feature set introduced in Section 7.2
and train for 10 iterations. We set the pruning pa-
rameters from Section 6.1 as follows: k& = 5 for
Freebase, k£ = 30 for GeoQuery, N = 50, 7 = 10.

Comparison Systems We compare performance
to state-of-the-art systems in both domains. On
GeoQuery, we report results from DCS (Liang
etal., 2011) without special initialization (DCS) and
with an small hand-engineered lexicon (DCS with
L™). We also include results for the FUBL algo-
rithm (Kwiatkowski et al., 2011), the CCG learning
approach that is most closely related to our work. On
FQ, we compare to Cai and Yates (2013a) (CY13).

Evaluation We evaluate by comparing the pro-
duced question answers to the labeled ones, with no
partial credit. Because the parser can fail to pro-
duce a complete query, we report recall, the percent
of total questions answered correctly, and precision,
the percentage of produced queries with correct an-
swers. CY13 and FUBL report fully correct logical
forms, which is a close proxy to our numbers.

9 Results

Quantitative Analysis For FQ, we report results
on the test set and in the cross-domain setting, as de-
fined in Section 8. Figure 6 shows both results. Our

1553

Setting | System R P F1
Test Our Approach | 68.0 76.7 72.1
CY13 59 67 63
Cross | Our Approach | 67.9 73.5 71.5
Domain | CY13 60 69 65
Figure 6: Results on the FQ dataset.
R P F1
All Features 68.6 72.0 703
Without Wiktionary | 67.2 70.7 68.9
Without K Features | 61.8 62.5 62.1

Figure 7: Ablation Results

approach outperforms the previous state of the art,
achieving a nine point improvement in test recall,
while not requiring labeled logical forms in train-
ing. We also see consistent improvements on both
scenarios, indicating that our approach is generaliz-
ing well across topic domains. The learned ontology
matching model is able to reason about previously
unseen ontological subdomains as well as if it was
provided explicit, in-domain training data.

We also performed feature ablations with 5-fold
cross validation on the training set, as seen in Fig-
ure 7. Both the Wiktionary features and knowledge
base features were helpful. Without the Wiktionary
features, the model must rely on word stem matches
which, in combination with graph constraints, can
still recover many of the correct queries. However,
without the knowledge base constraints, the model
produces many queries that return empty answers,
and significantly impacts overall performance.

For GeoQuery, we report test results in Figure 8.
Our approach outperforms the most closely related
CCG model (FUBL) and DCS without initialization,
but falls short of DCS with a small hand-built initial
lexicon. Given the small size of the test set, it is fair
to say that all algorithms are performing at state-of-
the-art levels. This result demonstrates that our ap-

Recall
FUBL 88.6
DCS 87.9
DCS with LT | 91.1
Our Approach | 89.0

Figure 8: GeoQuery Results

Parse Failures (20%)

1. Query

in what year did motorola have the most revenue

2 Query

on how many projects was james walker a design engineer

Structural Matching Failure (30%)

Query how many children does jerry seinfeld have
3. Labeled Ax.eq(x, count(\y.people.person.children(jerry_seinfeld, y)))
Predicted | Ax.eq(x, count(Ay.people.person.children(y,jerry_seinfeld)))

Incomplete Database (10%)

Predicted

Query how many countries participated in the 2006 winter olympics
4. Labeled Ay.olympics.olympic_games.number_of_countries(2006_winter_olympics,y)
Predicted | Ay.eq(y, count(Ay.olympic_participation_country.olympics_participated-in(x,2006_winter_olympics)))
Query what programming languages were used for aol instant messenger
5. Labeled Ay.computer.software.languages_used(aol_instant_messenger,y)
Predicted | Ay.computer.software.languages_used(aol_instant messenger,y) A computer.programming language(y)
Lexical Ambiguity (35%)
Query when was the frida kahlo exhibit at the philadelphia art museum
Labeled Ay.Jx.exhibition run.exhibition(x, frida_kahlo)A

6. exhibition_venue.exhibitions_at(philadelphia art museum,x) A exhibition run.opened_on(x,y)
Ay.Jx.exhibition run.exhibition(x,frida_kahlo)A
exhibition_venue.exhibitions_at(philadelphia art museum,x) A exhibition_run.closed-on(x,y)

Figure 9: Example error cases, with associated frequencies, illustrating system output and gold standard
references. 5% of the cases were miscellaneous or otherwise difficult to categorize.

proach can handle the high degree of lexical ambi-
guity in the FQ data, without sacrificing the ability
to understanding the rich, compositional phenomena
that are common in the GeoQuery data.

Qualitative Analysis We also did a qualitative
analysis of errors in the FQ domain. The model
learns to correctly produce complex forms that join
multiple relations. However, there are a number of
systematic error cases, grouped into four categories
as seen in Figure 9.

The first and second examples show parse fail-
ures, where the underspecified CCG grammar did
not have sufficient coverage. The third shows a
failed structural match, where all of the correct logi-
cal constants are selected, but the argument order is
reversed for one of the literals. The fourth and fifth
examples demonstrate a failures due to database in-
completeness. In both cases, the predicted queries
would have returned the same answers as the gold-
truth ones if Freebase contained all of the required
facts. Developing models that are robust to database
incompleteness is a challenging problem for future
work. Finally, the last example demonstrates a lex-
ical ambiguity, where the system was unable to de-
termine if the query should include the opening date
or the closing date for the exhibit.

1554

10 Conclusion

We considered the problem of learning domain-
independent semantic parsers, with application to
QA against large knowledge bases. We introduced
a new approach for learning a two-stage semantic
parser that enables scalable, on-the-fly ontological
matching. Experiments demonstrated state-of-the-
art performance on benchmark datasets, including
effective generalization to previously unseen words.

We would like to investigate more nuanced no-
tions of semantic correctness, for example to support
many of the essentially equivalent meaning repre-
sentations we found in the error analysis. Although
we focused exclusively on QA applications, the gen-
eral two-stage analysis approach should allow for
the reuse of learned grammars across a number of
different domains, including robotics or dialog ap-
plications, where data is more challenging to gather.

11 Acknowledgements

This research was supported in part by DARPA un-
der the DEFT program through the AFRL (FA8750-
13-2-0019) and the CSSG (N11AP20020), the ARO
(W911NF-12-1-0197), the NSF (IIS-1115966), and
by a gift from Google. The authors thank Anthony
Fader, Nicholas FitzGerald, Adrienne Wang, Daniel
Weld, and the anonymous reviewers for their helpful
comments and feedback.

References

Alshawi, H. (1992). The core language engine. The
MIT Press.

Artzi, Y. and Zettlemoyer, L. (2011). Bootstrapping
semantic parsers from conversations. In Proceed-
ings of the Conference on Empirical Methods in
Natural Language Processing.

Artzi, Y. and Zettlemoyer, L. (2013). Weakly super-
vised learning of semantic parsers for mapping in-
structions to actions. Transactions of the Associ-
ation for Computational Linguistics, 1(1):49-62.

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and
Taylor, J. (2008). Freebase: a collaboratively cre-
ated graph database for structuring human knowl-
edge. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data.

Bos, J. (2008). Wide-coverage semantic analysis
with boxer. In Proceedings of the Conference on
Semantics in Text Processing.

Cai, Q. and Yates, A. (2013a). Large-scale semantic
parsing via schema matching and lexicon exten-
sion. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics.

Cai, Q. and Yates, A. (2013b). Semantic parsing
freebase: Towards open-domain semantic pars-
ing. In Proceedings of the Joint Conference on
Lexical and Computational Semantics.

Chen, D. and Mooney, R. (2011). Learning to inter-
pret natural language navigation instructions from
observations. In Proceedings of the National Con-
ference on Artificial Intelligence.

Clark, S. and Curran, J. (2007). Wide-coverage ef-
ficient statistical parsing with CCG and log-linear
models. Computational Linguistics, 33(4):493—
552.

Clarke, J., Goldwasser, D., Chang, M., and Roth,
D. (2010). Driving semantic parsing from the
world’s response. In Proceedings of the Confer-
ence on Computational Natural Language Learn-
ing.

Davidson, D. (1967). The logical form of action sen-
tences. Essays on actions and events, pages 105—
148.

1555

Doan, A., Madhavan, J., Domingos, P., and Halevy,
A. (2004). Ontology matching: A machine
learning approach. In Handbook on ontologies.
Springer.

Euzenat, J., Euzenat, J., Shvaiko, P., et al. (2007).
Ontology matching. Springer.

Fader, A., Zettlemoyer, L., and Etzioni, O. (2013).
Paraphrase-driven learning for open question an-
swering. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics.

Goldwasser, D. and Roth, D. (2011). Learning from
natural instructions. In Proceedings of the In-
ternational Joint Conference on Artificial Intelli-
gence.

Grosz, B. J., Appelt, D. E., Martin, P. A., and
Pereira, F. (1987). TEAM: An experiment in
the design of transportable natural language inter-
faces. Artificial Intelligence, 32(2):173-243.

Hobbs, J. R. (1985). Ontological promiscuity. In
Proceedings of the Annual Meeting on Associa-
tion for Computational Linguistics.

Jones, B. K., Johnson, M., and Goldwater, S. (2012).
Semantic parsing with bayesian tree transducers.
In Proceedings of the 50th Annual Meeting of the
Association of Computational Linguistics.

Kate, R. and Mooney, R. (2006). Using string-
kernels for learning semantic parsers. In Pro-
ceedings of the Conference of the Association for
Computational Linguistics.

Krishnamurthy, J. and Kollar, T. (2013). Jointly
learning to parse and perceive: Connecting nat-
ural language to the physical world. Transactions

of the Association for Computational Linguistics,
1(2).

Krishnamurthy, J. and Mitchell, T. (2012). Weakly
supervised training of semantic parsers. In Pro-
ceedings of the Joint Conference on Empirical
Methods in Natural Language Processing and
Computational Natural Language Learning.

Kushman, N. and Barzilay, R. (2013). Using se-
mantic unification to generate regular expressions
from natural language. In Proceedings of the Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics.

Kwiatkowski, T., Goldwater, S., Zettlemoyer, L.,
and Steedman, M. (2012). A probabilistic model
of syntactic and semantic acquisition from child-
directed utterances and their meanings. Proceed-
ings of the Conference of the European Chapter
of the Association of Computational Linguistics.

Kwiatkowski, T., Zettlemoyer, L., Goldwater, S.,
and Steedman, M. (2010). Inducing probabilis-
tic CCG grammars from logical form with higher-
order unification. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language
Processing.

Kwiatkowski, T., Zettlemoyer, L., Goldwater, S.,
and Steedman, M. (2011). Lexical generalization
in CCG grammar induction for semantic parsing.
In Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

Liang, P., Jordan, M., and Klein, D. (2011). Learn-
ing dependency-based compositional semantics.
In Proceedings of the Conference of the Associ-
ation for Computational Linguistics.

Matuszek, C., FitzGerald, N., Zettlemoyer, L., Bo,
L., and Fox, D. (2012). A joint model of language
and perception for grounded attribute learning. In
Proceedings of the International Conference on
Machine Learning.

Muresan, S. (2011). Learning for deep language un-
derstanding. In Proceedings of the International
Joint Conference on Artificial Intelligence.

Steedman, M. (1996). Surface Structure and Inter-
pretation. The MIT Press.

Steedman, M. (2000). The Syntactic Process. The
MIT Press.

Unger, C., Biihmann, L., Lehmann, 1],
Ngonga Ngomo, A., Gerber, D., and Cimiano, P.
(2012). Template-based question answering over
RDF data. In Proceedings of the International
Conference on World Wide Web.

Wong, Y. and Mooney, R. (2007). Learning syn-
chronous grammars for semantic parsing with
lambda calculus. In Proceedings of the Confer-
ence of the Association for Computational Lin-
guistics.

Yahya, M., Berberich, K., Elbassuoni, S., Ramanath,
M., Tresp, V., and Weikum, G. (2012). Natural

1556

language questions for the web of data. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing.

Zelle, J. and Mooney, R. (1996). Learning to parse
database queries using inductive logic program-
ming. In Proceedings of the National Conference
on Artificial Intelligence.

Zettlemoyer, L. and Collins, M. (2005). Learning
to map sentences to logical form: Structured clas-
sification with probabilistic categorial grammars.
In Proceedings of the Conference on Uncertainty
in Artificial Intelligence.

Zettlemoyer, L. and Collins, M. (2007). Online
learning of relaxed CCG grammars for parsing to
logical form. In Proceedings of the Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning.

Zettlemoyer, L. and Collins, M. (2009). Learn-
ing context-dependent mappings from sentences
to logical form. In Proceedings of the Joint Con-
ference of the Association for Computational Lin-
guistics and International Joint Conference on
Natural Language Processing.

Zhang, C., Hoffmann, R., and Weld, D. S. (2012).
Ontological smoothing for relation extraction
with minimal supervision. In Proceeds of the
Conference on Artificial Intelligence.

