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Abstract

Recent studies on extractive text summariza-
tion formulate it as a combinatorial optimiza-
tion problem such as a Knapsack Problem, a
Maximum Coverage Problem or a Budgeted
Median Problem. These methods successfully
improved summarization quality, but they did
not consider the rhetorical relations between
the textual units of a source document. Thus,
summaries generated by these methods may
lack logical coherence. This paper proposes a
single document summarization method based
on the trimming of a discourse tree. This is
a two-fold process. First, we propose rules
for transforming a rhetorical structure theory-
based discourse tree into a dependency-based
discourse tree, which allows us to take a tree-
trimming approach to summarization. Sec-
ond, we formulate the problem of trimming
a dependency-based discourse tree as a Tree
Knapsack Problem, then solve it with integer
linear programming (ILP). Evaluation results
showed that our method improved ROUGE
scores.

1 Introduction

State-of-the-art extractive text summarization meth-
ods regard a document (or a document set) as a set
of textual units (e.g. sentences, clauses, phrases)
and formulate summarization as a combinatorial op-
timization problem, i.e. selecting a subset of the set
of textual units that maximizes an objective with-
out violating a length constraint. For example, Mc-
Donald (2007) formulated text summarization as a
Knapsack Problem, where he selects a set of textual
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units that maximize the sum of significance scores
of each unit. Filatova et al. (2004) proposed a
summarization method based on a Maximum Cov-
erage Problem, in which they select a set of textual
units that maximizes the weighted sum of the con-
ceptual units (e.g. unigrams) contained in the set.
Although, their greedy solution is only an approxi-
mation, Takamura et al. (2009a) extended it to ob-
tain the exact solution. More recently, Takamura et
al. (2009b) regarded summarization as a Budgeted
Median Problem and obtain exact solutions with in-
teger linear programming.

These methods successfully improved ROUGE
(Lin, 2004) scores, but they still have one critical
shortcoming. Since these methods are based on sub-
set selection, the summaries they generate cannot
preserve the rhetorical structure of the textual units
of a source document. Thus, the resulting summary
may lack coherence and may not include significant
textual units from a source document.

One powerful and potential way to overcome the
problem is to include discourse tree constraints in
the summarization procedure. Marcu (1998) re-
garded a document as a Rhetorical Structure The-
ory (RST) (William Charles, Mann and Sandra An-
near, Thompson, 1988)-based discourse tree (RST-
DT) and selected textual units according to a prefer-
ence ranking derived from the tree structure to make
a summary. Daumé et al. (2002) proposed a docu-
ment compression method that directly models the
probability of a summary given an RST-DT by us-
ing a noisy-channel model. These methods generate
well-organized summaries, however, since they do
not formulate summarizations as combinatorial op-
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Figure 1: Example RST-DT from (Marcu, 1998).

timization problems, the optimality of the generated
summaries is not guaranteed.

In this paper, we propose a single document sum-
marization method based on the trimming of a dis-
course tree based on the Tree Knapsack Problem. If
a discourse tree explicitly represents parent-child re-
lationships between textual units, we can apply the
well-known tree-trimming approach to a discourse
tree and reap the benefit of combinatorial optimiza-
tion methods. In other words, to apply the tree-
trimming approach, we need a tree whose all nodes
represent textual units. Unfortunately, the RST-DT
does not allow it, because textual units in the RST-
DT are located only on leaf nodes and parent-child
relationship between textual units are represented
implicitly at higher positions in a tree. Therefore, we
first propose rules that transform an RST-DT into a
dependency-based discourse tree (DEP-DT) that ex-
plicitly defines the parent-child relationships. Sec-
ond, we treat it as a rooted subtree selection, in other
words, a Tree Knapsack Problem and formulate the
problem as an ILP.

2 From RST-DT to DEP-DT
2.1 RST-DT

According to RST, a document is represented as an
RST-DT whose terminal nodes correspond to ele-
mentary discourse units (EDU)s' and whose non-
terminal nodes indicate the role of the contiguous

"EDUs roughly correspond to clauses.
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Figure 2: Heads of non-terminal nodes.

EDUs namely, ‘nucleus (N)’ or ‘satellite (S)’. A nu-
cleus is more important than a satellite in terms of
the writer’s purpose. That is, a satellite is a child of
a nucleus in the RST-DT. Some discourse relations
such as ‘Elaboration’, ‘Contrast’ and ‘Evidence’ be-
tween a nucleus and a satellite or two nuclei are de-
fined. Figure 1 shows an example of an RST-DT.

2.2 DEP-DT

An RST-DT is not suitable for tree trimming because
it does not always explicitly define parent-child re-
lationships between textual units. For example, if
we consider how to trim the RST-DT in Figure 1,
when we drop eg, we have to drop e7 because of the
parent-child relationship defined between e; and es,
i.e. e7 is a satellite (child) of the nucleus (parent)
eg. On the other hand, we cannot judge whether we
have to drop eg or ey because the parent-child rela-
tionships are not explicitly defined between eg and
€9, eg and ejg. This view motivates us to produce a
discourse tree that explicitly defines parent-child re-
lationships and whose root node represents the most
important EDU in a source document. If we can ob-
tain such a tree, it is easy to formulate summariza-
tion as a Tree Knapsack Problem.

To construct a discourse tree that represents
the parent-child relationships between EDUs, we
propose rules for transforming an RST-DT to a
dependency-based discourse tree (DEP-DT). The
procedure is defined as follows:

1. For each non-terminal node excluding the par-
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Figure 3: The DEP-DT obtained from the RST-DT in Fig-
ure 1.

ent of an EDU in the RST-DT, we define a
‘head’. Here, a ‘head’ of a non-terminal node
is the leftmost descendant EDU whose parent is
N. In Figure 2, ‘H’ indicates the ‘head’ of each
node.

2. For each EDU whose parent is N, we pick the
nearest S with a ‘head’ from the EDU’s ances-
tors and we add the EDU to the DEP-DT as a
child of the head of the S’s parent. If there is no
nearest S, the EDU is the root of the DEP-DT.
For example, in Figure 2, the nearest S to ej
that has a head is node 5 and the head of node
5’s parent is ea. Thus, e3 is a child of es.

3. For each EDU whose parent is S, we pick the
nearest non-terminal with a ‘head’ from the an-
cestors and we add the EDU to the DEP-DT as
a child of the head of the non-terminal node.
For example, the nearest non-terminal node of
eg that has a head is node 16 and the head of
node 16 is eqg. Thus, eg is a child of eq.

Figure 3 shows the DEP-DT obtained from the
RST-DT in Figure 1. The DEP-DT expresses the
parent-child relationship between the EDUs. There-
fore, we have to drop ey, eg and e;p when we drop
es. Note that, by applying the rules, discourse rela-
tions defined between non-terminals of an RST-DT
are eliminated. However, we believe that these re-
lations are no needed for the summarization that we
are attempting to realize.

1517

3 Tree Knapsack Model for
Single-Document Summarization

3.1 Formalization

We denote 1" as a set of all possible rooted subtrees
obtained from a DEP-DT. F'(t) is the significance
score for a rooted subtree t € 1" and L is the maxi-
mum number of words allowed in a summary. The
optimal subtree t* is defined as follows:

t* = argmaxF(t) (D
teT
s.t. Length(t) < L. (2)
Here, we define F'(t) as
_ Wle)
F(t) = Z Depth(e)’ ©)

e€E(t)

E(t) is the set of EDUs contained in ¢, Depth(e)
is the depth of an EDU e within the DEP-DT. For
example, Depth(ez) = 1, Depth(eg) = 4 for the
DEP-DT of Figure 3. WW(e) is defined as follows:

> tf(w, D).

weW (e)

W(e) €

W (e) is the set of words contained in e and
tf(w, D) is the term frequency of word w in a docu-
ment D.

3.2 1ILP Formulation

We formulate the optimization problem in the pre-
vious section as a Tree Knapsack Problem, which is
a kind of Precedence-Constrained Knapsack Prob-
lem (Samphaiboon and Yamada, 2000) and we can
obtain the optimal rooted subtree by solving the fol-
lowing ILP problem?:

N

. Wi(e;)
max;cmlze ; mwz &)
N
s.t. Z&xz S L (6)
i=1
Vi : Lparent(7) > X (7
Vi:ax; €{0,1}, ()

2A similar approach has been applied to sentence compres-
sion (Filippova and Strube, 2008).



ROUGE-1 ROUGE-2
F R F R

TKP(G) 310K 321GHKL T 108 1127
TKP(H) 281H .284H .092  .093
Marcu(G) | .291H 2728 101 .093
Marcu(H) | .236 219 .073  .068
MCP 279 2950 .073  .077
KP 251 266M .071 .075
LEAD 255 .240 .092 .086

Table 1: ROUGE scores of the RST discourse treebank
dataset. In the table, ™I indicate a method sta-
tistically significant against Marcu(G), Marcu(H), KP,
LEAD, respectively.

where x is an N-dimensional binary vector that
represents the summary, i.e. x;=1 denotes that the ¢-
th EDU is included in the summary. NV is the number
of EDUs in a document, ¢; is the length (the number
of words) of the i-th EDU, and parent(z) indicates
the ID of the parent of the ¢-th EDU in the DEP-DT.
Constraint (6) ensures that the length of a summary
is less than limit L. Constraint (7) ensures that a
summary is a rooted subtree of the DEP-DT. Thus,
Tparent(s) 18 always 1 when the i-th EDU is included
in the summary.

In general, the Tree Knapsack Problem is NP-
hard, but fortunately we can obtain the optimal solu-
tion in a feasible time by using ILP solvers for doc-
uments of practical tree size. In addition, bottom-
up DP (Lukes, 1974) and depth-first DP algorithms
(Cho and Shaw, 1997) are known to find the optimal
solution efficiently.

4 Experimental Evaluation

4.1 Settings

We conducted an experimental evaluation on the test
collection for single document summarization eval-
uation contained in the RST Discourse Treebank
(RST-DTB)(Carlson et al., 2001) distributed by the
Linguistic Data Consortium (LDC)3. The RST-DTB
Corpus includes 385 Wall Street Journal articles
with RST annotation, and 30 of these documents
also have one human-made reference summary. The
average length of the reference summaries corre-
sponds to about 10 % of the words in the source

*http://www.ldc.upenn.edu/Catalog/
CatalogEntry.jsp?catalogId=LDC2002T07
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document.

We compared our method (TKP) with Marcu’s
method (Marcu) (Marcu, 1998), a simple knapsack
model (KP), a maximum coverage model (MCP)
and a lead method (LEAD). MCP is known to be a
state-of-the-art method for multiple document sum-
marization and we believe that MCP also performs
well in terms of single document summarization.
LEAD is also a widely used summarizer that simply
takes the first K textual units of the document. Al-
though this is a simple heuristic rule, it is known as
a state-of-the-art summarizer (Nenkova and McKe-
own, 2011).

For our method, we examined two types of
DEP-DT. One was obtained from the gold RST-
DT. The other was obtained from the RST-DT pro-
duced by a state-of-the-art RST parser, HILDA (du-
Verle and Prendinger, 2009; Hernault et al., 2010).
For Marcu’s method, we examined both the gold
RST-DT and HILDA’s RST-DT. We re-implemented
HILDA and re-trained it on the RST-DT Corpus ex-
cluding the 30 documents used in the evaluation.
The F-score of the parser was around 0.5. For KP,
we exclude constraint (7) from the ILP formulation
of TKP and set the depth of all EDUs in equations
(3) and (5) at 1. For MCP, we use tf (equation (4))
as the word weight.

We evaluated the summarization systems with
ROUGE version 1.5.5 #. Performance metrics were
the recall (R) and F-score (F) of ROUGE-1,2.

4.2 Results and Discussion

Table 1 shows the evaluation results. In the ta-
ble, TKP(G) and TKP(H) denote methods with the
DEP-DT obtained from the gold RST-DT and from
HILDA, respectively. Marcu(G) and Marcu(H) de-
note Marcu’s method described in (Marcu, 1998)
with gold RST-DT and with HILDA, respectively.
We performed a multiple comparison test for the dif-
ferences among ROUGE scores, we calculated the p-
values between systems with the Wilcoxon signed-
rank test (Wilcoxon, 1945) and used the False Dis-
covery Rate (FDR) (Benjamini and Hochberg, 1995)
to calculate adjusted p-values, in order to limit false
positive rate to 5%.

From the table, TKP(G) and Marcu(G) achieved

*Options used: -n 2 -s -m -x



Reference:

The Fuji apple may one day replace the Red Delicious as the number one U.S. apple. Since the Red Delicious has been
over-planted and prices have dropped to new lows, the apple industry seems ready for change. Along with growers, supermarkets
are also trying different varieties of apples. Although the Fuji is smaller and not as perfectly shaped as the Red Delicious, it is

much sweeter, less mealy and has a longer shelf life.
TKP(G):

We’ll still have mom and apple pie. A Japanese apple called the Fuji. Some fruit visionaries say the Fuji could someday tumble
the Red Delicious from the top of America’s apple heap. It has a long shelf life. Now, even more radical changes seem afoot. The
Delicious hegemony won’t end anytime soon. New apple trees grow slowly. But the apple industry is ripe for change. There’s a

Fuji apple cult.
Marcu(G):

We’ll still have mom and apple pie. On second thought, make that just mom. The Fuji could someday tumble the Red Delicious
from the top of America’s apple heap. Now, even more radical changes seem afoot. The Delicious hegemony won’t end anytime
soon. More than twice as many Red Delicious apples are grown as the Golden variety, America’s No. 2 apple. But the apple

industry is ripe for change.
MCP:

Called the Fuji. It has a long shelf life. New apple trees grow slowly. Its roots are patriotic. I'm going to have to get another job
this year. Scowls. They still buy apples mainly for big, red good looks. Japanese researchers have bred dozens of strains of Fujis.
Mr. Auvil, the Washington grower, says. Stores sell in summer. The “ big boss ™ at a supermarket chain even rejected his Red

Delicious recently. Many growers employ.
LEAD:

Soichiro Honda’s picture now hangs with Henry Ford’s in the U.S. Automotive Hall of Fame, and the game-show * Jeopardy ” is
soon to be Sony-owned. But no matter how much Japan gets under our skin, we’ll still have mom and apple pie. On second
thought, make that just mom. A Japanese apple called the Fuji is cropping up in orchards the way Hondas did on U.S. roads.

Figure 4: Summaries obtained from wsj_1128.

better results than MCP, KP and LEAD, although
some of the comparisons are not significant. In par-
ticular, TKP(G) achieved the highest ROUGE scores
on all measures. On ROUGE-1 Recall, TKP(G) sig-
nificantly outperformed Marcu(G), Marcu(H), KP
and LEAD. These results support the effectiveness
of our method that utilizes the discourse structure.
Comparing TKP(H) with Marcu(H), the former
achieved higher scores with statistical significance
on ROUGE-1. In addition, Marcu(H) was outper-
formed by MCP, KP and LEAD. The results confirm
the effectiveness of our summarization model and
trimming proposal for DEP-DT. Moreover, the dif-
ference between TKP(G) and TKP(H) was smaller
than that between Marcu(G) and Marcu(H). This
implies that our method is more robust against dis-
course parser error than Marcu’s method.

Figure 4 shows the example summaries gener-
ated by TKP(G), Marcu(G), MCP and LEAD, re-
spectively for an article, wsj_1128. Since TKP(G)
and Marcu(G) utilize a discourse tree, the summary
generated by TKP(G) is similar to that generated by
Marcu(G) but it is different from those generated by
MCP and LEAD.
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5 Conclusion

This paper proposed rules for transforming an RST-
DT to a DEP-DT to obtain the parent-child relation-
ships between EDUs. We treated a single document
summarization method as a Tree Knapsack Problem,
i.e. the summarizer selects the best rooted subtree
from a DEP-DT. To demonstrate the effectiveness of
our method, we conducted an experimental evalua-
tion using 30 documents selected from the RST Dis-
course Treebank Corpus. The results showed that
our method achieved the highest ROUGE-1,2 scores.
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