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Abstract

Feature computation and exhaustive search
have significantly restricted the speed of
graph-based dependency parsing. We propose
a faster framework of dynamic feature selec-
tion, where features are added sequentially as
needed, edges are pruned early, and decisions
are made online for each sentence. We model
this as a sequential decision-making problem
and solve it by imitation learning techniques.
We test our method on 7 languages. Our dy-
namic parser can achieve accuracies compara-
ble or even superior to parsers using a full set
of features, while computing fewer than 30%
of the feature templates.

1 Introduction

Graph-based dependency parsing usually consists of
two stages. In the scoring stage, we score all pos-
sible edges (or other small substructures) using a
learned function; in the decoding stage, we use com-
binatorial optimization to find the dependency tree
with the highest total score.

Generally linear edge-scoring functions are used
for speed. But they use a large set of features, de-
rived from feature templates that consider different
conjunctions of the edge’s attributes. As a result,
parsing time is dominated by the scoring stage—
computing edge attributes, using them to instanti-
ate feature templates, and looking up the weights of
the resulting features in a hash table. For example,
McDonald et al. (2005a) used on average about 120
first-order feature templates on each edge, built from
attributes such as the edge direction and length, the

two words connected by the edge, and the parts of
speech of these and nearby words.

We therefore ask the question: can we use fewer
features to score the edges, while maintaining the ef-
fect that the true dependency tree still gets a higher
score? Motivated by recent progress on dynamic
feature selection (Benbouzid et al., 2012; He et al.,
2012), we propose to add features one group at a
time to the dependency graph, and to use these fea-
tures together with interactions among edges (as de-
termined by intermediate parsing results) to make
hard decisions on some edges before all their fea-
tures have been seen. Our approach has a similar
flavor to cascaded classifiers (Viola and Jones, 2004;
Weiss and Taskar, 2010) in that we make decisions
for each edge at every stage. However, in place of
relatively simple heuristics such as a global relative
pruning threshold, we learn a featurized decision-
making policy of a more complex form. Since each
decision can affect later stages, or later decisions in
the same stage, we model this problem as a sequen-
tial decision-making process and solve it by Dataset
Aggregation (DAgger) (Ross et al., 2011), a recent
iterative imitation learning technique for structured
prediction.

Previous work has made much progress on the
complementary problem: speeding up the decoding
stage by pruning the search space of tree structures.
In Roark and Hollingshead (2008) and Bergsma and
Cherry (2010), pruning decisions are made locally
as a preprocessing step. In the recent vine prun-
ing approach (Rush and Petrov, 2012), significant
speedup is gained by leveraging structured infor-
mation via a coarse-to-fine projective parsing cas-
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cade (Charniak et al., 2006). These approaches
do not directly tackle the feature selection problem.
Although pruned edges do not require further fea-
ture computation, the pruning step must itself com-
pute similar high-dimensional features just to de-
cide which edges to prune. For this reason, Rush
and Petrov (2012) restrict the pruning models to a
smaller feature set for time efficiency. We aim to do
feature selection and edge pruning dynamically, bal-
ancing speed and accuracy by using only as many
features as needed.

In this paper, we first explore standard static fea-
ture selection methods for dependency parsing, and
show that even a few feature templates can give de-
cent accuracy (Section 3.2). We then propose a
novel way to dynamically select features for each
edge while keeping the overhead of decision mak-
ing low (Section 4). Our present experiments use the
Maximum Spanning Tree (MST) parsing algorithm
(McDonald et al., 2005a; McDonald and Pereira,
2006). However, our approach applies to other
graph-based dependency parsers as well—including
non-projective parsing, higher-order parsing, or ap-
proximations to higher-order parsing that use stack-
ing (Martins et al., 2008), belief propagation (Smith
and Eisner, 2008), or structured boosting (Wang et
al., 2007).

2 Graph-based Dependency Parsing

In graph-based dependency parsing of an n-word in-
put sentence, we must construct a tree y whose ver-
tices 0, 1, . . . n correspond to the root node (namely
0) and the ordered words of the sentence. Each di-
rected edge of this tree points from a head (parent)
to one of its modifiers (child).

Following a common approach to structured pre-
diction problems, the score of a tree y is defined
as a sum of local scores. That is, sθ(y) = θ ·∑

E∈y φ(E) =
∑

E∈y θ · φ(E), where E ranges
over small connected subgraphs of y that can be
scored individually. Here φ(E) extracts a high-
dimensional feature vector from E together with the
input sentence, and θ denotes a weight vector that
has typically been learned from data.

The first-order model decomposes the tree into
edges E of the form 〈h,m〉, where h ∈ [0, n] and
m ∈ [1, n] (with h 6= m) are a head token and one

of its modifiers. Finding the best tree requires first
computing θ·φ(E) for each of the n2 possible edges.

Since scoring the edges independently in this way
restricts the parser to a local view of the depen-
dency structure, higher-order models can achieve
better accuracy. For example, in the second-order
model of McDonald and Pereira (2006), each local
subgraph E is a triple that includes the head and
two modifiers of the head, which are adjacent to
each other. Other methods that use triples include
grandparent-parent-child triples (Koo and Collins,
2010), or non-adjacent siblings (Carreras, 2007).
Third-order models (Koo and Collins, 2010) use
quadruples, employing grand-sibling and tri-sibling
information.

The usual inference problem is to find the high-
est scoring tree for the input sentence. Note that in
a valid tree, each token 1, . . . , n must be attached
to exactly one parent (either another token or the
root 0). We can further require the tree to be pro-
jective, meaning that edges are not allowed to cross
each other. It is well known that dynamic program-
ming can be used to find the best projective depen-
dency tree in O(n3) time, much as in CKY, for first-
order models and some higher-order models (Eis-
ner, 1996; McDonald and Pereira, 2006).1 When
the projectivity restriction is lifted, McDonald et al.
(2005b) pointed out that the best tree can be found in
O(n2) time using a minimum directed spanning tree
algorithm (Chu and Liu, 1965; Edmonds, 1967; Tar-
jan, 1977), though only for first-order models.2 We
will make use of this fast non-projective algorithm
as a subroutine in early stages of our system.

3 Dynamic Feature Selection

Unlike typical feature selection methods that fix a
subset of selected features and use it throughout test-
ing, in dynamic feature selection we choose features
adaptively for each instance. We briefly introduce
this framework below and motivate our algorithm
from empirical results on MST dependency parsing.

1Although the third-order model of Koo and Collins (2010),
for example, takes O(n4) time.

2The non-projective parsing problem becomes NP-hard for
higher-order models. One approximate solution (McDonald
and Pereira, 2006) works by doing projective parsing and then
rearranging edges.
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Figure 1: Dynamic feature selection for dependency parsing. (a) Start with all possible edges except those filtered
by the length dictionary. (b) – (e) Add the next group of feature templates and parse using the non-projective parser.
Predicted trees are shown as blue and red edges, where red indicates the edges that we then decide to lock. Dashed
edges are pruned because of having the same child as a locked edge; 2-dot-3-dash edges are pruned because of crossing
with a locked edge; fine-dashed edges are pruned because of forming a cycle with a locked edge; and 2-dot-1-dash
edges are pruned since the root has already been locked with one child. (f) Final projective parsing.

3.1 Sequential Decision Making

Our work is motivated by recent progress on dy-
namic feature selection (Benbouzid et al., 2012; He
et al., 2012; Grubb and Bagnell, 2012), where fea-
tures are added sequentially to a test instance based
on previously acquired features and intermediate
prediction results. This requires sequential decision
making. Abstractly, when the system is in some state
s ∈ S, it chooses an action a = π(s) from the ac-
tion setA using its policy π, and transitions to a new
state s′, inducing some cost. In the specific case of
dynamic feature selection, when the system is in a
given state, it decides whether to add some more
features or to stop and make a prediction based on
the features added so far. Usually the sequential de-
cision making problem is solved by reinforcement
learning (Sutton and Barto, 1998) or imitation learn-
ing (Abbeel and Ng, 2004; Ratliff et al., 2004).

The dynamic feature selection framework has
been successfully applied to supervised classifica-
tion and ranking problems (Benbouzid et al., 2012;
He et al., 2012; Gao and Koller, 2010). Below, we
design a version that avoids overhead in our struc-
tured prediction setting. As there are n2 possible
edges on a sentence of length n, we wish to avoid
the overhead of making many individual decisions
about specific features on specific edges, with each
decision considering the current scores of all other
edges. Instead we will batch the work of dynamic

feature selection into a smaller number of coarse-
grained steps.

3.2 Strategy

To speed up graph-based dependency parsing, we
first investigate time usage in the parsing process
on our development set, section 22 of the Penn
Treebank (PTB) (Marcus et al., 1993). In Fig-
ure 2, we observe that (a) feature computation took
more than 80% of the total time; (b) even though
non-projective decoding time grows quadratically in
terms of the sentence length, in practice it is al-
most negligible compared to the projective decoding
time, with an average of 0.23 ms; (c) the second-
order projective model is significantly slower due
to higher asymptotic complexity in both the scoring
and decoding stages.

At each stage of our algorithm, we need to de-
cide whether to use additional features to refine the
edge scores. As making this decision separately for
each of the n2 possible edges is expensive, we in-
stead propose a version that reduces the number of
decisions needed. We show the process for one short
sentence in Figure 1. The first step is to parse us-
ing the current features. We use the fast first-order
non-projective parser for this purpose, since given
observations (b) and (c), we cannot afford to run
projective parsing multiple times. The single result-
ing tree (blue and red edges in Figure 1) has only
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Figure 2: Time comparison of scoring time and decoding
time on English PTB section 22.

n edges, and we use a classifier to decide which
of these edges are reliable enough that we should
“lock” them—i.e., commit to including them in the
final tree. This is the only decision that our policy
π must make. Locked (red) edges are definitely in
the final tree. We also do constraint propagation: we
rule out all edges that conflict with the locked edges,
barring them from appearing in the final tree.3 Con-
flicts are defined as violation of the projective pars-
ing constraints:

• Each word has exactly one parent
• Edges cannot cross each other4

• The directed graph is non-cyclic
• Only one word is attached to the root

For example, in Figure 1(d), the dashed edges are
removed because they have the same child as one of
the locked (red) edges. The 2-dot-3-dash edge time
← firms is removed because it crosses the locked
edge (comma)← were (whereas we ultimately seek
a projective parse). The fine dashed edge were ←
(period) is removed because it forms a cycle with
were → (period). In Figure 1(e), the 2-dot-1-dash
edge (root) → time is removed since we allow the
root to have only one modifier.

3Constraint propagation also automatically locks an edge
when all other edges with the same child have been ruled out.

4A reviewer asks about the cost of finding edges that cross a
locked edge. Naively this is O(n2). But at most n edges will be
locked during the entire algorithm, for a total O(n3) runtime—
the same as one call to projective parsing, and far faster in prac-
tice. With cleverness this can even be reduced to O(n2 log n).

Once constraint propagation has finished, we visit
all edges (gray) whose fate is still unknown, and up-
date their scores in parallel by adding the next group
of features.

As a result, most edges will be locked in or ruled
out without needing to look up all of their features.
Some edges may still remain uncertain even after in-
cluding all features. If so, a final iteration (Figure 1
(f)) uses the slower projective parser to resolve the
status of these maximally uncertain edges. In our
example, the parser does not figure out the correct
parent of time until this final step. This final, accu-
rate parser can use its own set of weighted features,
including higher-order features, as well as the pro-
jectivity constraint. But since it only needs to re-
solve the few uncertain edges, both scoring and de-
coding are fast.

If we wanted our parser to be able to produce non-
projective trees, then we would skip this final step
or have it use a higher-order non-projective parser.
Also, at earlier steps we would not prune edges
crossing the locked edges.

4 Methods

Our goal is to produce a faster dependency parser by
reducing the feature computation time. We assume
that we are given three increasingly accurate but in-
creasingly slow parsers that can be called as sub-
routines: a first-order non-projective parser, a first-
order projective parser, and a second-order projec-
tive parser. In all cases, their feature weights have
already been trained using the full set of features,
and we will not change these weights. In general
we will return the output of one of the projective
parsers. But at early iterations, the non-projective
parser helps us rapidly consider interactions among
edges that may be relevant to our dynamic decisions.

4.1 Feature Template Ranking

We first rank the 268 first-order feature templates by
forward selection. We start with an empty list of fea-
ture templates, and at each step we greedily add the
one whose addition most improves the parsing ac-
curacy on a development set. Since some features
may be slower than others (for example, the ”be-
tween” feature templates require checking all tokens
in-between the head and the modifier), we could in-
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Figure 3: Forward feature selection result using the non-
projective model on English PTB section 22.

stead select the feature template with the highest ra-
tio of accuracy improvement to runtime. However,
for simplicity we do not consider this: after group-
ing (see below), minor changes of the ranks within a
group have no effect. The accuracy is evaluated by
running the first-order non-projective parser, since
we will use it to make most of the decisions. The
112 second-order feature templates are then ranked
by adding them in a similar greedy fashion (given
that all first-order features have already been added),
evaluating with the second-order projective parser.

We then divide this ordered list of feature tem-
plates into K groups: {T1, T2, . . . , TK}. Our parser
adds an entire group of feature templates at each
step, since adding one template at a time would re-
quire too many decisions and obviate speedups. The
simplest grouping method would be to put an equal
number of feature templates in each group. From
Figure 3 we can see that the accuracy increases sig-
nificantly with the first few templates and gradually
levels off as we add less valuable templates. Thus,
a more cost-efficient method is to split the ranked
list into several groups so that the accuracy increases
by roughly the same amount after each group is
added. In this case, earlier stages are fast because
they tend to have many fewer feature templates than
later stages. For example, for English, we use 7
groups of first-order feature templates and 4 groups
of second-order feature templates. The sequence of
group sizes is 1, 4, 10, 12, 47, 33, 161 and 35, 29, 31,
17 for first- and second-order parsing respectively.

4.2 Sequential Feature Selection

Similar to the length dictionary filter of Rush and
Petrov (2012), for each test sentence, we first de-
terministically remove edges longer than the maxi-
mum length of edges in the training set that have the
same head POS tag, modifier POS tag, and direction.
This simple step prunes around 40% of the non-gold
edges in our Penn Treebank development set (Sec-
tion 6.1) at a cost of less than 0.1% in accuracy.

Given a test sentence of length n, we start with
a complete directed graph G(V, E), where E =
{〈h,m〉 : h ∈ [0, n], m ∈ [1, n]}. After the length
dictionary pruning step, we compute T1 for all re-
maining edges to obtain a pruned weighted directed
graph. We predict a parse tree using the features so
far (other features are treated as absent, with value
0). Then for each edge in this intermediate tree, we
use a binary linear classifier to choose between two
actions: A = {lock, add}. The lock action ensures
that 〈h,m〉 appears in the final parse tree by prun-
ing edges that conflict with 〈h,m〉.5 If the classi-
fier is not confident enough about the parent of m,
it decides to add to gather more information. The
add action computes the next group of features for
〈h,m〉 and all other competing edges with child m.

(Since we classify the edges one at a time, deci-
sions on one edge may affect later edges. To im-
prove efficiency and reduce cascaded error, we sort
the edges in the predicted tree and process them as
above in descending order of their scores.)

Now we can continue with the second iteration of
parsing. Overall, our method runs up to K = K1 +
K2 iterations on a given sentence, where we have
K1 groups of first-order features and K2 groups of
second-order features. We run K1 − 1 iterations
of non-projective first-order parsing (adding groups
T1, . . . , TK1−1), then 1 iteration of projective first-
order parsing (adding group TK1), and finally K2 it-
erations of projective second-order parsing (adding
groups TK1+1, . . . TK).

Before each iteration, we use the result of the pre-
vious iteration (as explained above) to prune some
edges and add a new group of features to the rest. We

5If the conflicting edge is in the current predicted parse tree
(which can happen because of non-projectivity), we forbid the
model to prune it. Otherwise in rare cases the non-projective
parser at the next stage may fail to find a tree.
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then run the relevant parser. Each of the three parsers
has a different set of feature weights, so when we
switch parsers on rounds K1 and K1 + 1, we must
also change the weights of the previously added fea-
tures to those specified by the new parsing model.

In practice, we can stop as soon as the fate of all
edges is known. Also, if no projective parse tree
can be constructed at round K1 using the available
unpruned edges, then we immediately fall back to
returning the non-projective parse tree from round
K1 − 1. This FAIL case rarely occurs in our experi-
ments (fewer than 1% of sentences).

We report results both for a first-order system
where K2 = 0 (shown in Figure 1 and Algorithm 1)
and for a second-order system where K2 > 0.

Algorithm 1 DynFS(G(V, E), π)
E ← {〈h,m〉 : |h−m| ≤ lenDict(h,m)}
Add T1 to all edges in E
ŷ ← non-projective decoding
for i = 2 to K do
Esort ← sort unlocked edges {E : E ∈ ŷ} in

descending order of their scores
for 〈h,m〉 ∈ Esort do

if π(ψ(〈h,m〉)) == lock then
E ← E \ {{〈h′,m〉 ∈ E : h′ 6= h}

⋃
{〈h′,m′〉 ∈ E : crosses 〈h,m〉}

⋃
{〈h′,m′〉 ∈ E : cycle with 〈h,m〉}}
if h == 0 then
E ← E \ {〈0,m′〉 ∈ E : m′ 6= m}

end if
else

Add Ti to {〈h′,m′〉 ∈ E : m′ == m}
end if

end for
if i == K then
ŷ ← projective decoding

else if i 6= K or FAIL then
ŷ ← non-projective decoding

end if
end for
return ŷ

5 Policy Training

We cast this problem as an imitation learning task
and use Dataset Aggregation (DAgger) Ross et al.
(2011) to train the policy iteratively.

5.1 Imitation Learning

In imitation learning (also called apprenticeship
learning) (Abbeel and Ng, 2004; Ratliff et al., 2004),
instead of exploring the environment directed by its
feedback (reward) as in typical reinforcement learn-
ing problems, the learner observes expert demon-
strations and aims to mimic the expert’s behavior.
The expert demonstration can be represented as tra-
jectories of state-action pairs, {(st, at)} where t is
the time step. A typical approach to imitation learn-
ing is to collect supervised data from the expert’s
trajectories to learn a policy (multiclass classifier),
where the input is ψ(s), a feature representation of
the current state (we call these policy features to
avoid confusion with the parsing features), and the
output is the predicted action (label) for that state.

In the sequential feature selection framework, it is
hard to directly apply standard reinforcement learn-
ing algorithms, as we cannot assign credit to certain
features until the policy decides to stop and let us
evaluate the prediction result. On the other hand,
knowing the gold parse tree makes it easy to ob-
tain expert demonstrations, which enables imitation
learning.

5.2 DAgger

Since the above approach collects training data only
from the expert’s trajectories, it ignores the fact that
the distribution of states at training time and that at
test time are different. If the learned policy can-
not mimic the expert perfectly, one wrong step may
lead to states never visited by the expert due to cu-
mulative errors. This problem of insufficient explo-
ration can be alleviated by iteratively learning a pol-
icy trained under states visited by both the expert
and the learner (Ross et al., 2011; Daumé III et al.,
2009; Kääriäinen, 2006).

Ross et al. (2011) proposed to train the policy iter-
atively and aggregate data collected from the previ-
ous learned policy. Let π∗ denote the expert’s policy
and sπi denote states visited by executing πi. In its
simplest parameter-free form, in each iteration, we
first run the most recently learned policy πi; then for
each state sπi on the trajectory, we collect a training
example (ψ(sπi), π

∗(sπi)) by labeling the state with
the expert’s action. Intuitively, this step intends to
correct the learner’s mistakes and pull it back to the
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expert’s trajectory. Thus we can obtain a policy that
performs well under its own induced state distribu-
tion.

5.3 DAgger for Feature Selection

In our case, the expert’s decision is rather straight-
forward. Replace the policy π in Algorithm 1 by
an expert. If the edge under consideration is a gold
edge, it executes lock; otherwise, it executes add.
Basically the expert “cheats” by knowing the true
tree and always making the right decision. On our
PTB dev set, it can get 96.47% accuracy6 with only
2.9% of the first-order features. This is an upper
bound on our performance.

We present the training procedure in Algorithm
2. We begin by partitioning the training set into
N folds. To simulate parsing results at test time,
when collecting examples on T i, similar to cross-
validation, we use parsers trained on T̄ i = T \ T i.
Also note that we show only one pass over training
sentences in Algorithm 2; however, multiple passes
are possible in practice, especially when the training
data is limited.

Algorithm 2 DAgger(T , π∗)
Split the training sentences T into N folds
T 1, T 2, . . . , T N
Initialize D ← ∅, π1 ← π∗

for i = 1 to N do
for G(V, E) ∈ T i do

Sample trajectories {(sπi , πi(sπi))} by
DynFS(G(V, E), πi)
D ← D

⋃
{(ψ(s), π∗(s)}

end for
end for
Train policy πi+1 on D
return Best πi evaluated on development set

5.4 Policy Features

Our linear edge classifier uses a feature vector ψ that
concatenates all previously acquired parsing fea-
tures together with “meta-features” that reflect con-
fidence in the edge. The classifier’s weights are fixed

6The imperfect performance is because the accuracy is mea-
sured with respect to the gold parse trees. The expert only
makes optimal pruning decisions but the performance depends
on the pre-trained parser as well.

across iterations, but ψ(edge) changes per iteration.
We standardize the edge scores by a sigmoid func-

tion. Let ṡ denote the normalized score, defined
by ṡθ(〈h,m〉) = 1/(1 + exp{−sθ(〈h,m〉)}). Our
meta-features for 〈h,m〉 include

• current normalized score, and normalized score
before adding the current feature group
• margin to the highest scoring competing edges,

i.e., ṡ(w, 〈h,m〉)−maxh′ ṡ(w, 〈h′,m〉)
where h′ ∈ [0, n] and h′ 6= h

• index of the next feature group to be added

We also tried more complex meta-features, for ex-
ample, mean and variance of the scores of compet-
ing edges, and structured features such as whether
the head of e is locked and how many locked chil-
dren it currently has. It turns out that given all the
parsing features, the margin is the most discrimi-
native meta-feature. When it is present, other meta-
features we added do not help much, Thus we do not
include them in our experiments due to overhead.

6 Experiment

6.1 Setup
We generate dependency structures from the PTB
constituency trees using the head rules of Yamada
and Matsumoto (2003). Following convention, we
use sections 02–21 for training, section 22 for de-
velopment and section 23 for testing. We also re-
port results on six languages from the CoNLL-X
shared task (Buchholz and Marsi, 2006) as sug-
gested in (Rush and Petrov, 2012), which cover a
variety of language families. We follow the stan-
dard training/test split specified in the CoNLL-X
data and tune parameters by cross validation when
training the classifiers (policies). The PTB test data
is tagged by a Stanford part-of-speech (POS) tagger
(Toutanova et al., 2003) trained on sections 02–21.
We use the provided gold POS tags for the CoNLL
test data. All results are evaluated by the unlabeled
attachment score (UAS). For fair comparison with
previous work, punctuation is included when com-
puting parsing accuracy of all CoNLL-X languages
but not English (PTB).

For policy training, we train a linear SVM classi-
fier using Liblinear (Fan et al., 2008). For all lan-
guages, we run DAgger for 20 iterations and se-
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Language Method First-order Second-order
Speedup Cost(%) UAS(D) UAS(F) Speedup Cost(%) UAS(D) UAS(F)

Bulgarian DYNFS 3.44 34.6 91.1 91.3 4.73 16.3 91.6 92.0
VINEP 3.25 - 90.5 90.7 7.91 - 91.6 92.0

Chinese DYNFS 2.12 42.7 91.0 91.3 2.36 31.6 91.6 91.9
VINEP 1.02 - 89.3 89.5 2.03 - 90.3 90.5

English DYNFS 5.58 24.8 91.7 91.9 5.27 49.1 92.5 92.7
VINEP 5.23 - 91.0 91.2 11.88 - 92.2 92.4

German DYNFS 4.71 21.0 89.2 89.3 6.02 36.6 89.7 89.9
VINEP 3.37 - 89.0 89.2 7.38 - 90.1 90.3

Japanese DYNFS 4.80 15.6 93.7 93.6 8.49 7.53 93.9 93.9
VINEP 4.60 - 91.7 92.0 14.90 - 92.1 92.0

Portuguese DYNFS 4.36 32.9 87.3 87.1 6.84 40.4 88.0 88.2
VINEP 4.47 - 90.0 90.1 12.32 - 90.9 91.2

Swedish DYNFS 3.60 37.8 88.8 89.0 5.04 22.1 89.5 89.8
VINEP 4.64 - 88.3 88.5 13.89 - 89.4 89.7

Table 1: Comparison of speedup and accuracy with the vine pruning cascade approach for six languages. In the setup,
DYNFS means our dynamic feature selection model, VINEP means the vine pruning cascade model, UAS(D) and
UAS(F) refer to the unlabeled attachment score of the dynamic model (D) and the full-feature model (F) respectively.
For each language, the speedup is relative to its corresponding first- or second-order model using the full set of features.
Results for the vine pruning cascade model are taken from Rush and Petrov (2012). The cost is the percentage of
feature templates used per sentence on edges that are not pruned by the dictionary filter.

lect the best policy evaluated on the development set
among the 20 policies obtained from each iteration.

6.2 Baseline Models

We use the publicly available implementation of
MSTParser7 (with modifications to the feature com-
putation) and its default settings, so the feature
weights of the projective and non-projective parsers
are trained by the MIRA algorithm (Crammer and
Singer, 2003; Crammer et al., 2006).

Our feature set contains most features proposed
in the literature (McDonald et al., 2005a; Koo and
Collins, 2010). The basic feature components in-
clude lexical features (token, prefix, suffix), POS
features (coarse and fine), edge length and direction.
The feature templates consists of different conjunc-
tions of these components. Other than features on
the head word and the child word, we include fea-
tures on in-between words and surrounding words as
well. For PTB, our first-order model has 268 feature
templates and 76,287,848 features; the second-order
model has 380 feature templates and 95,796,140 fea-
tures. The accuracy of our full-feature models is

7http://www.seas.upenn.edu/˜strctlrn/
MSTParser/MSTParser.html

comparable or superior to previous results.

6.3 Results

0 1 2 3 4 5 6
Feature selection stage

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e/
A

cc
ur

ac
y/

E
dg

e
Pe

rc
en

ta
ge

runtime %
UAS %
remaining edge %
locked edge %
pruned edge %

Figure 4: System dynamics on English PTB section 23.
Time and accuracy are relative to those of the baseline
model using full features. Red (locked), gray (unde-
cided), dashed gray (pruned) lines correspond to edges
shown in Figure 1.

In Table 1, we compare the dynamic parsing mod-
els with the full-feature models and the vine prun-
ing cascade models for first-order and second-order
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Figure 5: Pareto curves for the dynamic and static ap-
proaches on English PTB section 23.

parsing. The speedup for each language is defined as
the speed relative to its full-feature baseline model.
We take results reported by Rush and Petrov (2012)
for the vine pruning model. As speed comparison
for parsing largely relies on implementation, we also
report the percentage of feature templates chosen for
each sentence. The cost column shows the average
number of feature templates computed for each sen-
tence, expressed as a percentage of the number of
feature templates if we had only pruned using the
length dictionary filter.

From the table we notice that our first-order
model’s performance is comparable or superior to
the vine pruning model, both in terms of speedup
and accuracy. In some cases, the model with fewer
features even achieves higher accuracy than the
model with full features. The second-order model,
however, does not work as well. In our experi-
ments, the second-order model is more sensitive to
false negatives, i.e. pruning of gold edges, due to
larger error propagation than the first-order model.
Therefore, to maintain parsing accuracy, the policy
must make high-precision pruning decisions and be-
comes conservative. We could mitigate this by train-
ing the original parsing feature weights in conjunc-
tion with our policy feature weights. In addition,
there is larger overhead during when checking non-
projective edges and cycles.

We demonstrate the dynamics of our system in
Figure 4 on PTB section 23. We show how the run-
time, accuracy, number of locked edges and unde-
cided edges change over the iterations in our first-

order dynamic projective parsing. From iterations
1 to 6, we obtain parsing results from the non-
projective parser; in iteration 7, we run the projective
parser. The plot shows relative numbers (percent-
age) to the baseline model with full features. The
number of remaining edges drops quickly after the
second iteration. From Figure 3, however, we notice
that even with the first feature group which only con-
tains one feature template, the non-projective parser
can almost achieve 50% accuracy. Thus, ideally, our
policy should have locked that many edges after the
first iteration. The learned policy does not imitate
the expert perfectly, either because our policy fea-
tures are not discriminative enough, or because a lin-
ear classifier is not powerful enough for this task.

Finally, to show the advantage of making dynamic
decisions that consider the interaction among edges
on the given input sentence, we compare our results
with a static feature selection approach on PTB sec-
tion 23. The static algorithm does no pruning except
by the length dictionary at the start. In each iteration,
instead of running a fast parser and making deci-
sions online, it simply adds the next group of feature
templates to all edges. By forcing both algorithms
to stop after each stage, we get the Pareto curves
shown in Figure 5. For a given level of high accu-
racy, our dynamic approach (black) is much faster
than its static counterpart (blue).

7 Conclusion

In this paper we present a dynamic feature selec-
tion algorithm for graph-based dependency parsing.
We show that choosing feature templates adaptively
for each edge in the dependency graph greatly re-
duces feature computation time and in some cases
improves parsing accuracy. Our model also makes
it practical to use an even larger feature set, since
features are computed only when needed. In future,
we are interested in training parsers favoring the dy-
namic feature selection setting, for example, parsers
that are robust to missing features, or parsers opti-
mized for different stages.
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