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Abstract

In this paper, we propose a walk-based graph
kernel that generalizes the notion of tree-
kernels to continuous spaces. Our proposed
approach subsumes a general framework for
word-similarity, and in particular, provides a
flexible way to incorporate distributed repre-
sentations. Using vector representations, such
an approach captures both distributional se-
mantic similarities among words as well as the
structural relations between them (encoded as
the structure of the parse tree). We show an ef-
ficient formulation to compute this kernel us-
ing simple matrix operations. We present our
results on three diverse NLP tasks, showing
state-of-the-art results.

1 Introduction
Capturing semantic similarity between sentences

is a fundamental issue in NLP, with applications in
a wide range of tasks. Previously, tree kernels based
on common substructures have been used to model
similarity between parse trees (Collins and Duffy,
2002; Moschitti, 2004; Moschitti, 2006b). These
kernels encode a high number of latent syntactic
features within a concise representation, and com-
pute the similarity between two parse trees based
on the matching of node-labels (words, POS tags,
etc.), as well as the overlap of tree structures. While
this is sufficient to capture syntactic similarity, it
does not capture semantic similarity very well, even
when using discrete semantic types as node labels.
This constrains the utility of many traditional
tree kernels in two ways: i) two sentences that
are syntactically identical, but have no semantic
similarity can receive a high matching score (see
Table 1, top) while ii) two sentences with only local

syntactic overlap, but high semantic similarity can
receive low scores (see Table 1, bottom).

tree pairs semantic syntactic score

✓ high

✓ low

love

we toys

crush

they puppies

kissed

she cat

gave

she

her

kiss

a

friend

feline

green little

her

Table 1: Traditional tree kernels do not capture se-
mantic similarity

In contrast, distributional vector representations
of words have been successful in capturing fine-
grained semantics, but lack syntactic knowledge.
Resources such as Wordnet, dictionaries and on-
tologies that encode different semantic perspectives
can also provide additional knowledge infusion.

In this paper, we describe a generic walk-based
graph kernel for dependency parse trees that sub-
sumes general notions of word-similarity, while
focusing on vector representations of words to
capture lexical semantics. Through a convolutional
framework, our approach takes into account the
distributional semantic similarities between words
in a sentence as well as the structure of the parse
tree. Our main contributions are:

1. We present a new graph kernel for NLP that ex-
tends to distributed word representations, and
diverse word similarity measures.

2. Our proposed approach provides a flexible
framework for incorporating both syntax and
semantics of sentence level constructions.

3. Our generic kernel shows state-of-the-art per-
formance on three eclectic NLP tasks.
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2 Related Work

Tree kernels in NLP Tree kernels have been ex-
tensively used to capture syntactic information about
parse trees in tasks such as parsing (Collins and
Duffy, 2002), NER (Wang et al., 2010; Cumby and
Roth, 2003), SRL (Moschitti et al., 2008) and rela-
tion extraction (Qian et al., 2008). These kernels are
based on the paradigm that parse trees are similar if
they contain many common substructures, consist-
ing of nodes with identical labels (Vishwanathan and
Smola, 2003; Collins and Duffy, 2002). Moschitti
(2006a) proposed a partial tree kernel that adds flex-
ibility in matching tree substructures. Croce et al.
(2011) introduce a lexical semantic tree kernel that
incorporates continuous similarity values between
node labels, albeit with a different focus than ours
and would not match words with different POS. This
would miss the similarity of “feline friend” and “cat”
in our examples, as it requires matching the adjective
“feline” with “cat”, and verb “kissed” with “kiss”.

Walk based kernels Kernels for structured data
derive from the seminal Convolution Kernel for-
malism by Haussler (1999) for designing kernels
for structured objects through local decompositions.
Our proposed kernel for parse trees is most closely
associated with the random walk-based kernels de-
fined by Gartner et al. (2003) and Kashima et al.
(2003). The walk-based graph kernels proposed by
Gartner et al. (2003) count the common walks be-
tween two input graphs, using the adjacency matrix
of the product graph. This work extends to graphs
with a finite set of edge and node labels by appro-
priately modifying the adjacency matrix. Our kernel
differs from these kernels in two significant ways: (i)
Our method extends beyond label matching to con-
tinuous similarity metrics (this conforms with the
very general formalism for graph kernels in Vish-
wanathan et al. (2010)). (ii) Rather than using the
adjacency matrix to model edge-strengths, we mod-
ify the product graph and the corresponding adja-
cency matrix to model node similarities.

3 Vector Tree Kernels

In this section, we describe our kernel and an al-
gorithm to compute it as a simple matrix multiplica-
tion formulation.

3.1 Kernel description
The similarity kernel K between two dependency

trees can be defined as:

K(T1, T2) =
∑

h1⊆T1,h2⊆T2

len(h1)=len(h2)

k(h1, h2)

where the summation is over pairs of equal length
walks h1 and h2 on the trees T1 and T2 respec-
tively. The similarity between two n length walks,
k(h1, h2), is in turn given by the pairwise similari-
ties of the corresponding nodes vih in the respective
walks, measured via the node similarity kernel κ:

k(h1, h2) =

n∏
i:1

κ(vh1
i , v

h2
i )

In the context of parse trees, nodes vh1
i and vh2

i cor-
respond to words in the two parse trees, and thus can
often be conveniently represented as vectors over
distributional/dependency contexts. The vector rep-
resentation allows us several choices for the node
kernel function κ. In particular, we consider:

1. Gaussian : κ(v1, v2) = exp
(
− ‖v1−v2‖

2

2σ2

)
2. Positive-Linear: κ(v1, v2) = max(vT1 v2, 0)

3. Sigmoid: κ(v1, v2) =
(
1 + tanh(αvT1 v2)

)
/2

We note that the kernels above take strictly non-
negative values in [0, 1] (assuming word vector rep-
resentations are normalized). Non-negativity is nec-
essary, since we define the walk kernel to be the
product of the individual kernels. As walk kernels
are products of individual node-kernels, bounded-
ness by 1 ensures that the kernel contribution does
not grow arbitrarily for longer length walks.

The kernel function K puts a high similarity
weight between parse trees if they contain com-
mon walks with semantically similar words in corre-
sponding positions. Apart from the Gaussian kernel,
the other two kernels are based on the dot-product
of the word vector representations. We observe that
the positive-linear kernel defined above is not a Mer-
cer kernel, since the max operation makes it non-
positive semidefinite (PSD). However, this formu-
lation has desirable properties, most significant be-
ing that all walks with one or more node-pair mis-
matches are strictly penalized and add no score to
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the tree-kernel. This is a more selective condition
than the other two kernels, where mediocre walk
combinations could also add small contributions to
the score. The sigmoid kernel is also non-PSD, but
is known to work well empirically (Boughorbel et
al., 2005). We also observe while the summation in
the kernel is over equal length walks, the formalism
can allow comparisons over different length paths by
including self-loops at nodes in the tree.

With a notion of similarity between words that
defines the local node kernels, we need computa-
tional machinery to enumerate all pairs of walks
between two trees, and compute the summation
over products in the kernel K(T1, T2) efficiently.
We now show a convenient way to compute this as
a matrix geometric series.

3.2 Matrix Formulation for Kernel
Computation

Walk-based kernels compute the number of com-
mon walks using the adjacency matrix of the prod-
uct graph (Gartner et al., 2003). In our case, this
computation is complicated by the fact that instead
of counting common walks, we need to compute a
product of node-similarities for each walk. Since
we compute similarity scores over nodes, rather than
edges, the product for a walk of length n involves
n+ 1 factors.

However, we can still compute the tree kernel K
as a simple sum of matrix products. Given two trees
T (V,E) and T ′(V ′, E′), we define a modified prod-
uct graph G(Vp, Ep) with an additional ghost node
u added to the vertex set. The vertex and edge sets
for the modified product graph are given as:

Vp := {(vi1, vj1′) : vi1 ∈ V, vj1′ ∈ V ′} ∪ u

Ep := {((vi1, vj1′), (vi2, vj2′)) : (vi1, vi2) ∈ E,
(vj1

′, vj2
′)) ∈ E′}⋃

{(u, (vi1, vj1′)) : vi1 ∈ V, vj1′ ∈ V ′}

The modified product graph thus has additional
edges connecting u to all other nodes. In our for-
mulation, u now serves as a starting location for all
random walks on G, and a k + 1 length walk of G
corresponds to a pair of k length walks on T and T ′.
We now define the weighted adjacency matrixW for
G, which incorporates the local node kernels.

W(vi1,vj1
′),(vi2,vj2

′) =

{
0 : ((vi1,vj1

′),(vi2,vj2
′)) /∈ Ep

κ(vi2, vj2
′) : otherwise

Wu,(vi1,vj1
′) = κ(vi1, vj1

′)
W(v,u) = 0 ∀ v ∈ Vp

There is a straightforward bijective mapping from
walks on G starting from u to pairs of walks on T
and T ′. Restricting ourselves to the case when the
first node of a k + 1 length walk is u, the next k
steps allow us to efficiently compute the products of
the node similarities along the k nodes in the corre-
sponding k length walks in T and T ′. Given this ad-
jacency matrix for G, the sum of values of k length
walk kernels is given by the uth row of the (k+1)th

exponent of the weighted adjacency matrix (denoted
asW k+1). This corresponds to k+1 length walks on
G starting from u and ending at any node. Specif-
ically, Wu,(vi,v′j)

corresponds to the sum of similar-
ities of all common walks of length n in T and T ′

that end in vi in T and v′j in T ′. The kernel K for
walks upto length N can now be calculated as :

K(T, T ′) =

|Vp|∑
i

Su,i

where
S = W +W 2 + ...WN+1

We note that in out formulation, longer walks are
naturally discounted, since they involve products of
more factors (generally all less than unity).

The above kernel provides a similarity measure
between any two pairs of dependency parse-trees.
Depending on whether we consider directional re-
lations in the parse tree, the edge set Ep changes,
while the procedure for the kernel computation re-
mains the same. Finally, to avoid larger trees yield-
ing larger values for the kernel, we normalize the
kernel by the number of edges in the product graph.

4 Experiments
We evaluate the Vector Tree Kernel (VTK) on

three NLP tasks. We create dependency trees using
the FANSE parser (Tratz and Hovy, 2011), and
use distribution-based SENNA word embeddings
by Collobert et al. (2011) as word representations.
These embeddings provide low-dimensional vector
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representations of words, while encoding distribu-
tional semantic characteristics. We use LibSVM for
classification. For sake of brevity, we only report
results for the best performing kernel.

We first consider the Cornell Sentence Polarity
dataset by Pang and Lee (2005). The task is to
identify the polarity of a given sentence. The
data consists of 5331 sentences from positive and
negative movie reviews. Many phrases denoting
sentiments are lexically ambiguous (cf. “terribly
entertaining” vs “terribly written”), so simple lexi-
cal approaches are not expected to work well here,
while syntactic context could help disambiguation.

Next, we try our approach on the MSR paraphrase
corpus. The data contains a training set of 4077
pairs of sentences, annotated as paraphrases and
non-paraphrases, and a test-set of 1726 sentence
pairs. Each instance consists of a pair of sentences,
so the VTK cannot be directly used by a kernel
machine for classification. Instead, we generate
16 kernel values based for each pair on different
parameter settings of the kernel, and feed these as
features to a linear SVM.

We finally look at the annotated Metaphor corpus
by (Hovy et al., 2013). The dataset consists of sen-
tences with specified target phrases. The task here is
to classify the target use as literal or metaphorical.
We focus on target phrases by upweighting walks
that pass through target nodes. This is done by
simply multiplying the corresponding entries in the
adjacency matrix by a constant factor.

5 Results
5.1 Sentence Polarity Dataset

Prec Rec F1 Acc
Albornoz et al 0.63 – – 0.63
WNA+synsets 0.61 – – 0.61
WNA 0.53 – – 0.51
DSM 0.54 0.55 0.55 0.54
SSTK 0.49 0.48 0.48 0.49
VTK 0.65 0.58 0.62 0.67

Table 2: Results on Sentence Polarity dataset
On the polarity data set, Vector Tree Kernel

(VTK) significantly outperforms the state-of-the-art
method by Carrillo de Albornoz et al. (2010), who
use a hybrid model incorporating databases of af-
fective lexicons, and also explicitly model the ef-
fect of negation and quantifiers (see Table 2). Lex-
ical approaches using pairwise semantic similarity

of SENNA embeddings (DSM), as well as Word-
net Affective Database-based (WNA) labels perform
poorly (Carrillo de Albornoz et al., 2010), showing
the importance of syntax for this particular problem.
On the other hand, a syntactic tree kernel (SSTK)
that ignores distributional semantic similarity be-
tween words, fails as expected.

5.2 MSR Paraphrase Dataset
Prec Rec F1 Acc

BASE 0.72 0.86 0.79 0.69
Zhang et al 0.74 0.88 0.81 0.72
Qiu et al 0.73 0.93 0.82 0.72
Malakasiotis 0.74 0.94 0.83 0.74
Finch 0.77 0.90 0.83 0.75
VTK 0.72 0.95 0.82 0.72

Table 3: Results on MSR Paraphrase corpus

On the MSR paraphrase corpus, VTK performs
competitively against state-of-the-art-methods. We
expected paraphrasing to be challenging to our
method, since it can involve little syntactic overlap.
However, data analysis reveals that the corpus gener-
ally contains sentence pairs with high syntactic sim-
ilarity. Results for this task are encouraging since
ours is a general approach, while other systems use
multiple task-specific features like semantic role la-
bels, active-passive voice conversion, and synonymy
resolution. In the future, incorporating such features
to VTK should further improve results for this task .

5.3 Metaphor Identification
Acc P R F1

CRF 0.69 0.74 0.50 0.59
SVM+DSM 0.70 0.63 0.80 0.71
SSTK 0.75 0.70 0.80 0.75
VTK 0.76 0.67 0.87 0.76

Table 4: Results on Metaphor dataset
On the Metaphor corpus, VTK improves the pre-

vious score by Hovy et al. (2013), whose approach
uses an conjunction of lexical and syntactic tree ker-
nels (Moschitti, 2006b), and distributional vectors.
VTK identified several templates of metaphor usage
such as “warm heart” and “cold shoulder”. We look
towards approaches for automatedly mining such
metaphor patterns from a corpus.

6 Conclusion
We present a general formalism for walk-based

kernels to evaluate similarity of dependency trees.
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Our method generalizes tree kernels to take dis-
tributed representations of nodes as input, and cap-
ture both lexical semantics and syntactic structures
of parse trees. Our approach has tunable parame-
ters to look for larger or smaller syntactic constructs.
Our experiments shows state-of-the-art performance
on three diverse NLP tasks. The approach can gen-
eralize to any task involving structural and local sim-
ilarity, and arbitrary node similarity measures.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of Machine Learning Research, 12:2493–
2537.

Danilo Croce, Alessandro Moschitti, and Roberto Basili.
2011. Structured lexical similarity via convolution
kernels on dependency trees. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1034–1046. Association for
Computational Linguistics.

Chad Cumby and Dan Roth. 2003. On kernel methods
for relational learning. In In Proc. of the International
Conference on Machine Learning, pages 107–114.

Andrew Finch. 2005. Using machine translation evalu-
ation techniques to determine sentence-level semantic
equivalence. In In IWP2005.

Thomas Gartner, Peter Flach, and Stefan Wrobel. 2003.
On graph kernels: Hardness results and efficient al-
ternatives. In Proceedings of the Annual Conference
on Computational Learning Theory, pages 129–143.
Springer.

David Haussler. 1999. Convolution kernels on discrete
structures. Technical Report Technical Report UCS-
CRL-99-10, UC Santa Cruz.

Dirk Hovy, Shashank Srivastava, Sujay Kumar Jauhar,
Mrinmaya Sachan, Kartik Goyal, Huiying Li, Whit-
ney Sanders, and Eduard Hovy. 2013. Identifying
metaphorical word use with tree kernels. In Proceed-
ings of NAACL HLT, Meta4NLP Workshop.

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi.
2003. Marginalized kernels between labeled graphs.
In Proceedings of the Twentieth International Con-
ference on Machine Learning, pages 321–328. AAAI
Press.

Prodromos Malakasiotis. 2009. Paraphrase recognition
using machine learning to combine similarity mea-
sures. In Proceedings of the ACL-IJCNLP 2009 Stu-
dent Research Workshop, ACLstudent ’09, pages 27–
35, Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Alessandro Moschitti, Daniele Pighin, and Roberto
Basili. 2008. Tree kernels for semantic role labeling.
Computational Linguistics, 34(2):193–224.

Alessandro Moschitti. 2004. A study on convolution
kernels for shallow semantic parsing. In Proceedings
of the 42nd Annual Meeting on Association for Com-
putational Linguistics, pages 335–es. Association for
Computational Linguistics.

Alessandro Moschitti. 2006a. Efficient convolution ker-
nels for dependency and constituent syntactic trees.
In Machine Learning: ECML 2006, pages 318–329.
Springer.

Alessandro Moschitti. 2006b. Making Tree Kernels
Practical for Natural Language Learning. In In Pro-
ceedings of the 11th Conference of the European
Chapter of the Association for Computational Linguis-
tics.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proceedings of the ACL.

Longhua Qian, Guodong Zhou, Fang Kong, Qiaoming
Zhu, and Peide Qian. 2008. Exploiting constituent
dependencies for tree kernel-based semantic relation
extraction. In Proceedings of the 22nd International
Conference on Computational Linguistics-Volume 1,
pages 697–704. Association for Computational Lin-
guistics.

Long Qiu, Min-Yen Kan, and Tat-Seng Chua. 2006.
Paraphrase recognition via dissimilarity significance
classification. In Proceedings of the 2006 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP ’06, pages 18–26, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Chris Quirk, Chris Brockett, and William Dolan. 2004.
Monolingual machine translation for paraphrase gen-
eration. In In Proceedings of the 2004 Conference on
Empirical Methods in Natural Language Processing,
pages 142–149.

1415



Stephen Tratz and Eduard Hovy. 2011. A fast, accu-
rate, non-projective, semantically-enriched parser. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, EMNLP ’11, pages
1257–1268, Stroudsburg, PA, USA. Association for
Computational Linguistics.

S. V. N. Vishwanathan and Alexander J. Smola. 2003.
Fast kernels for string and tree matching. In Advances
In Neural Information Processing Systems 15, pages
569–576. MIT Press.

S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kon-
dor, and Karsten M. Borgwardt. 2010. Graph kernels.
J. Mach. Learn. Res., 99:1201–1242, August.

Xinglong Wang, Jun’ichi Tsujii, and Sophia Ananiadou.
2010. Disambiguating the species of biomedical
named entities using natural language parsers. Bioin-
formatics, 26(5):661–667.

Yitao Zhang and Jon Patrick. 2005. Paraphrase identi-
fication by text canonicalization. In In Proceedings
of the Australasian Language Technology Workshop
2005.

1416


