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Abstract

Topic segmentation classically relies on one
of two criteria, either finding areas with co-
herent vocabulary use or detecting discontinu-
ities. In this paper, we propose a segmenta-
tion criterion combining both lexical cohesion
and disruption, enabling a trade-off between
the two. We provide the mathematical formu-
lation of the criterion and an efficient graph
based decoding algorithm for topic segmenta-
tion. Experimental results on standard textual
data sets and on a more challenging corpus
of automatically transcribed broadcast news
shows demonstrate the benefit of such a com-
bination. Gains were observed in all condi-
tions, with segments of either regular or vary-
ing length and abrupt or smooth topic shifts.
Long segments benefit more than short seg-
ments. However the algorithm has proven ro-
bust on automatic transcripts with short seg-
ments and limited vocabulary reoccurrences.

1 Introduction

Topic segmentation consists in evidentiating the se-
mantic structure of a document: Algorithms devel-
oped for this task aim at automatically detecting
frontiers which define topically coherent segments
in a text.

Various methods for topic segmentation of tex-
tual data are described in the literature, e.g., (Rey-
nar, 1994; Hearst, 1997; Ferret et al., 1998; Choi,
2000; Moens and Busser, 2001; Utiyama and Isa-
hara, 2001), most of them relying on the notion of
lexical cohesion, i.e., identifying segments with a
consistent use of vocabulary, either based on words

or on semantic relations between words. Reoccur-
rences of words or related words and lexical chains
are two popular methods to evidence lexical cohe-
sion. This general principle of lexical cohesion is
further exploited for topic segmentation with two
radically different strategies. On the one hand, a
measure of the lexical cohesion can be used to deter-
mine coherent segments (Reynar, 1994; Moens and
Busser, 2001; Utiyama and Isahara, 2001). On the
other hand, shifts in the use of vocabulary can be
searched for to directly identify the segment fron-
tiers by measuring the lexical disruption (Hearst,
1997).

Techniques based on the first strategy yield more
accurate segmentation results, but face a problem of
over-segmentation which can, up to now, only be
solved by providing prior information regarding the
distribution of segment length or the expected num-
ber of segments. In this paper, we propose a segmen-
tation criterion combining both cohesion and dis-
ruption along with the corresponding algorithm for
topic segmentation. Such a criterion ensures a co-
herent use of vocabulary within each resulting seg-
ment, as well as a significant difference of vocabu-
lary between neighboring segments. Moreover, the
combination of these two strategies enables regular-
izing the number of segments found without resort-
ing to prior knowledge.

This piece of work uses the algorithm of Utiyama
and Isahara (2001) as a starting point, a versatile and
performing topic segmentation algorithm cast in a
statistical framework. Among the benefits of this al-
gorithm are its independency to any particular do-
main and its ability to cope with thematic segments
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of highly varying lengths, two interesting features
to obtain a generic solution to the problem of topic
segmentation. Moreover, the algorithm has proven
to be up to the state of the art in several studies, with
no need of a priori information about the number of
segments (contrary to algorithms in (Malioutov and
Barzilay, 2006; Eisenstein and Barzilay, 2008) that
can attain a higher segmentation accuracy). It also
provides an efficient graph based implementation of
which we take advantage.

To account both for cohesion and disruption, we
extend the formalism of Isahara and Utiyama using
a Markovian assumption between segments in place
of the independence assumption of the original algo-
rithm. Keeping unchanged their probabilistic mea-
sure of lexical cohesion, the Markovian assumption
enables to introduce the disruption between two con-
secutive segments. We propose an extended graph
based decoding strategy, which is both optimal and
efficient, exploiting the notion of generalized seg-
ment model or semi hidden Markov models. Tests
are performed on standard textual data sets and on
a more challenging corpus of automatically tran-
scribed broadcast news shows.

The seminal idea of this paper was partially pub-
lished in (Simon et al., 2013) in the French language.
The current paper significantly elaborates on the lat-
ter, with a more detailed description of the algo-
rithm and additional contrastive experiments includ-
ing more data sets. In particular, new experiments
clearly demonstrate the benefit of the method in a
realistic setting with statistically significant gains.

The organization of the article is as follows. Ex-
isting work on topic segmentation is presented in
Section 2, emphasizing the motivations of the model
we propose. Section 3 details the baseline method
of Utiyama and Isahara before introducing our algo-
rithm. Experimental protocol and results are given
in Section 4. Section 5 summarizes the finding and
concludes with a discussion of future work.

2 Related work

Defining the concept of theme precisely is not trivial
and a large number of definitions have been given by
linguists. Brown and Yule (1983) discuss at length
the difficulty of defining a topic and note: ”The
notion of ’topic’ is clearly an intuitively satisfac-

tory way of describing the unifying principle which
makes one stretch of discourse ’about’ something
and the next stretch ’about’ something else, for it
is appealed to very frequently in the discourse anal-
ysis literature. Yet the basis for the identification of
’topic’ is rarely made explicit”. To skirt the issue of
defining a topic, they suggest to focus on topic-shift
markers and to identify topic changes, what most
current topic segmentation methods do.

Various characteristics can be exploited to iden-
tify thematic changes in text data. The most popular
ones rely either on the lexical distribution informa-
tion to measure lexical cohesion (i.e., word reoccur-
rences, lexical chains) or on linguistic markers such
as discourse markers which indicate continuity or
discontinuity (Grosz and Sidner, 1986; Litman and
Passonneau, 1995). Linguistic markers are however
often specific to a type of text and cannot be consid-
ered in a versatile approach as the one we are target-
ing, where versatility is achieved relying on the sole
lexical cohesion.

The key point with lexical cohesion is that a sig-
nificant change in the use of vocabulary is consid-
ered to be a sign of topic shift. This general idea
translates into two families of methods, local ones
targeting a local detection of lexical disruptions and
global ones relying on a measure of the lexical cohe-
sion to globally find segments exhibiting coherence
in their lexical distribution.

Local methods (Hearst, 1997; Ferret et al., 1998;
Hernandez and Grau, 2002; Claveau and Lefèvre,
2011) locally compare adjacent fixed size regions,
claiming a boundary when the similarity between
the adjacent regions is small enough, thus identify-
ing points of high lexical disruption. In the seminal
work of Hearst (1997), a fixed size window divided
into two adjacent blocks is used, consecutively cen-
tered at each potential boundary. Similarity between
the adjacent blocks is computed at each point, the re-
sulting similarity profile being analyzed to find sig-
nificant valleys which are considered as topic bound-
aries.

On the contrary, global methods (Reynar, 1994;
Choi, 2000; Utiyama and Isahara, 2001; Ji and Zha,
2003; Malioutov and Barzilay, 2006; Misra et al.,
2009) seek to maximize the value of the lexical co-
hesion on each segment resulting from the segmen-
tation globally on the text. Several approaches have
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been taken relying on self-similarity matrices, such
as dot plots, or on graphs. A typical and state-of-the-
art algorithm is that of Utiyama and Isahara (2001)
whose principle is to search globally for the best
path in a graph representing all possible segmenta-
tions and where edges are valued according to the
lexical cohesion measured in a probabilistic way.

When the lengths of the respective topic segments
in a text (or between two texts) are very differ-
ent from one another, local methods are challenged.
Finding out an appropriate window size and extract-
ing boundaries become critical with segments of
varying length, in particular when short segments
are present. Short windows will render compari-
son of adjacent blocks difficult and unreliable while
long windows cannot handle short segments. The
lack of a global vision also makes it difficult to nor-
malize properly the similarities between blocks and
to deal with statistics on segment length. While
global methods override these drawbacks, they face
the problem of over-segmentation due to the fact that
they mainly rely on the sole lexical cohesion. Short
segments are therefore very likely to be coherent
which calls for regularization introduced as priors
on the segments length.

These considerations naturally lead to the idea of
methods combining lexical cohesion and disruption
to make the best of both worlds. While the two cri-
teria rely on the same underlying principle of lex-
ical coherence (Grosz et al., 1995) and might ap-
pear as redundant, the resulting algorithms are quite
different in their philosophy. A first (and, to the
best of our knowledge, unique) attempt at captur-
ing a global view of the local dissimilarities is de-
scribed in Malioutov and Barzilay (2006). However,
this method assumes that the number of segments to
find is known beforehand which makes it difficult
for real-world usage.

3 Combining lexical cohesion and
disruption

We extend the graph-based formalism of Utiyama
and Isahara to jointly account for lexical cohesion
and disruption in a global approach. Clearly, other
formalisms than the graph-based one could have
been considered. However, graph-based probabilis-
tic topic segmentation has proven very accurate and

versatile, relying on very minimal prior knowledge
on the texts to segment. Good results at the state-of-
the-art have also been reported in difficult conditions
with this approach (Misra et al., 2009; Claveau and
Lefèvre, 2011; Guinaudeau et al., 2012).

We briefly recall the principle of probabilistic
graph-based segmentation before detailing a Marko-
vian extension to account for disruption.

3.1 Probabilistic graph-based segmentation
The idea of the probabilistic graph-based segmen-
tation algorithm is to find the segmentation into the
most coherent segments constrained by a prior dis-
tribution on segments length. This problem is cast
into finding the most probable segmentation of a se-
quence of t basic units (i.e., sentences or utterances
composed of words) W = ut

1 among all possible
segmentations, i.e.,

Ŝ = arg max
S

P [W |S]P [S] . (1)

Assuming that segments are mutually independent
and assuming that basic units within a segment are
also independent, the probability of a text W for a
segmentation S = Sm

1 is given by

P [W |Sm
1 ] =

m∏
i=1

ni∏
j=1

P [wi
j |Si] , (2)

where ni is the number of words in the segment
Si, wi

j is the jth word in Si and m the number of
segments. The probability P [wi

j |Si] is given by a
Laplace law where the parameters are estimated on
Si, i.e.,

P [wi
j |Si] =

fi(wi
j) + 1

ni + k
, (3)

where fi(wi
j) is the number of occurrences of wi

j

in Si and k is the total number of distinct words in
W , i.e., the size of the vocabulary V . This probabil-
ity favors segments that are homogeneous, increas-
ing when words are repeated and decreasing consis-
tently when they are different. The prior distribu-
tion on segment length is given by a simple model,
P [Sm

1 ] = n−m, where n is the total number of
words, exhibiting a large value for a small number
of segments and conversely.

The optimization of Eq. 1 can be efficiently im-
plemented as the search for the best path in a
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weighted graph which represents all the possible
segmentations. Each node in the graph corresponds
to a possible frontier placed between two utterances
(i.e., we have a node between each pair of utter-
ances), the arc between nodes i and j representing a
segment containing utterances ui+1 to uj . The cor-
responding arc weight is the generalized probability
of the words within segment Si→j according to

v(i, j) =
j∑

k=i+1

ln(P [uk|Si→j ])− αln(n)

where the probability is given as in Eq. 3. The factor
α is introduced to control the trade-off between the
segments length and the lexical cohesion.

3.2 Introduction of the lexical disruption

Eq. 2 derives from the assumption that each segment
Si is independent from the others, which makes it
impossible to consider disruption between two con-
secutive segments. To do so, the weight of an arc
corresponding to a segment Si should take into ac-
count how different this segment is from Si−1. This
is typically handled using a Markovian assumption
of order 1. Under this assumption, Eq. 2 is reformu-
lated as

P [W |Sm
1 ] = P [W |S1]

m∏
i=2

P [W |Si, Si−1] ,

where the notion of disruption can be embedded in
the term P [W |Si, Si−1] which explicitly mentions
both segments. Formally, P [W |Si, Si−1] is defined
as a probability. However, arbitrary scores which do
not correspond to probabilities can be used instead
as the search for the best path in the graph of possi-
ble segmentations makes no use of probability the-
ory. In this study, we define the score of a segment
Si given Si−1 as

lnP [W |Si, Si−1] = lnP [Wi|Si]− λ∆(Wi,Wi−1)
(4)

where Wi designates the set of utterances in Si

and the rightmost part reflects the disruption be-
tween the content of Si and of Si−1. Eq. 4 clearly
combines the measure of lexical cohesion with a
measure of the disruption between consecutive seg-
ments: ∆(Wi,Wi−1) > 0 measures the coherence

between Si and Si−1, the substraction thus account-
ing for disruption by penalizing consecutive coher-
ent segments. The underlying assumption is that the
bigger ∆(Wi,Wi−1), the weaker the disruption be-
tween the two segments. Parameter λ controls the
respective contributions of cohesion and disruption.

We initially adopted a probabilistic measure
of disruption based on cross probabilities, i.e.,
P [Wi|Si−1] and P [Wi−1|Si], which proved to have
limited impact on the segmentation. We therefore
prefer to rely on a cosine similarity measure be-
tween the word vectors representing two adjacent
segments, building upon a classical strategy of lo-
cal methods such as TextTiling (Hearst, 1997). The
cosine similarity measure is calculated between vec-
tors representing the content of resp. Si and Si−1,
denoted vi and vi−1, where vi is a vector contain-
ing the (tf-idf) weight of each term of V in Si. The
cosine similarity is classically defined as

cos(vi−1,vi) =

∑
v∈V

vi−1(v) vi(v)√ ∑
v∈V

v2
i−1(v)

∑
v∈V

v2
i (v)

. (5)

∆(Wi,Wi−1) is calculated from the cosine similar-
ity measure as

∆(Wi,Wi−1) = (1− cos(vi−1,vi))
−1 , (6)

thus yielding a small penalty in Eq. 4 for highly dis-
rupting boundaries, i.e., corresponding to low simi-
larity measure.

Given the quantities defined above, the algorithm
boils down to finding the best scoring segmentation
as given by

Ŝ = arg max
S

m∑
i=1

ln(P [Wi|Si])−

λ

m∑
i=2

∆(Wi,Wi−1)− αmln(n) . (7)

3.3 Segmentation algorithm
Translating Eq. 7 into an efficient algorithm is not
straightforward since all possible combinations of
adjacent segments need be considered. To do so in a
graph based approach, one needs to keep separated
the paths of different lengths ending in a given node.
In other words, only paths of the same length ending
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at a given point, with different predecessors, should
be recombined so that disruption can be considered
properly in subsequent steps of the algorithm. Note
that, in standard decoding as in Utiyama and Isa-
hara’s algorithm, only one of such paths, the best
scoring one, would be retained. We employ a strat-
egy inspired from the decoding strategy of segment
models or semi-hidden Markov model with explicit
duration model (Ostendorf et al., 1996; Delakis et
al., 2008).

Search is performed through a lattice L =
{V,E}, with V the set of nodes representing poten-
tial boundaries and E the set of edges representing
segments, i.e., a set of consecutive utterances. The
set V is defined as

V = {nij |0 ≤ i, j ≤ N} ,

where nij represents a boundary after utterance ui

reached by a segment of length j utterances and
N = t+1. In the lattice example of Fig. 1, it is trivial
to see that for a given node, all incoming edges cover
the same segment. For example, the node n42 is po-
sitioned after u4 and all incoming segments contain
the two utterances u3 and u4. Edges are defined as

E = {eip,jl|0 ≤ i, p, j, l ≤ N ;
i < j; i = j − l;Lmin ≤ l ≤ Lmax} ,

where eip,jl connects nip and njl with the constraint
that l = j − i and Lmin ≤ l ≤ Lmax. Thus, an edge
eip,jl represents a segment of length l containing ut-
terances from ui+1 to uj , denoted Si→j . In Fig. 1,
e01,33 represents a segment of length 3 from n01 to
n33, covering utterances u1 to u3. To avoid explo-
sion of the lattice, a maximum segment length Lmax

is defined. Symmetrically, a minimum segment size
can be used.

The property of this lattice, where, by construc-
tion, all edges out of a node have the same segment
as a predecessor, makes it possible to weight each
edge in the lattice according to Eq. 4. Consider a
node nij for which all incoming edges encompass
utterances ui−j to ui. For each edge out of nij ,
whatever the target node (i.e., the edge length), one
can therefore easily determine the lexical cohesion
as defined by the generalized probability of Eq. 3
and the disruption with respect to the previous seg-
ment as defined by Eq. 6.

Algorithm 1 Maximum probability segmentation
Step 0. Initialization
q[0][j] = 0 ∀j ∈ [Lmin, Lmax]
q[i][j] = −∞ ∀i ∈ [1, N ], j ∈ [Lmin, Lmax]

Step 1. Assign best score to each node
for i = 0→ t do

for j = Lmin → Lmax do
for k = Lmin → Lmax do

/* extend path ending after ui with a
segment of length j with an arc of length k */

q[i+k][k] = max


q[i+ k][k],
q[i][j]+
Cohesion(ui+1 → ui+k)−
λ∆(ui−j → ui;ui+1 → ui+k)

end for
end for

end for

Step 2. Backtrack from nNj with best score
q[N ][j]

Given the weighted decoding graph, the solution
to Eq. 7 is obtained by finding out the best path in
the decoding lattice, which can be done straightfor-
wardly by scanning nodes in topological order. The
decoding algorithm is summarized in Algorithm 1
with an efficient implementation in o(NL2

max) which
does not require explicit construction of the lattice.

4 Experiments

Experiments are performed on three distinct corpora
which exhibit different characteristics, two contain-
ing textual data and one spoken data. We first
present the corpora before presenting and discussing
results on each.

4.1 Corpora
The artificial data set of Choi (2000) is widely used
in the literature and enables comparison of a new
segmentation method with existing ones. Choi’s
data set consist of 700 documents, each created by
concatenating the first z sentences of 10 articles ran-
domly chosen from the Brown corpus, assuming
each article is on a different topic. Table 1 provides
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Figure 1: An example of a lattice L.

z = 3–11 3–5 6–8 9–11
# samples 400 100 100 100

Table 1: Number of documents in Choi’s corpus (Choi,
2000).

the corpus statistics, where z=3–11 means z is ran-
domly chosen in the range [3, 11]. Hence, Choi’s
corpus is adapted to test the ability of our model
to deal with variable segments length, z=3–11 be-
ing the most difficult condition. Moreover, Choi’s
corpus provides a direct comparison with results re-
ported in the literature.

One of the main criticism of Choi’s data set is the
presence of abrupt topic changes due to the artifi-
cial construction of the corpus. We therefore re-
port results on a textual corpus with more natural
topic changes, also used in (Eisenstein and Barzi-
lay, 2008). The data set consists of 277 chapters
selected from (Walker et al., 1990), a medical text-
book, where each chapter—considered here as a
document—was divided by its author into themat-
ically coherent sections. The data set has a total of
1,136 segments with an average of 5 segments per
document and an average of 28 sentences per seg-
ment. This data set is used to study the impact of
smooth, natural, topic changes.

Finally, results are reported on a corpus of au-
tomatic transcripts of TV news spoken data. The
data set consists of 56 news programs (≈1/2 hour

each), broadcasted in February and March 2007 on
the French television channel France 2, and tran-
scribed by two different automatic speech recogni-
tion (ASR) systems, namely IRENE (Huet et al.,
2010) and LIMSI (Gauvain et al., 2002), with re-
spective word error rates (WER) around 36 % and
30 %. Each news program consists of successive
reports of short duration (2-3 min), possibly with
consecutive reports on different facets of the same
news. The reference segmentation was established
by associating a topic with each report, i.e., plac-
ing a boundary at the beginning of a report’s in-
troduction (and hence at the end of the closing re-
marks). The TV transcript data set, which corre-
sponds to some real-world use cases in the multi-
media field, is very challenging for several reasons.
On the one hand, segments are short, with a reduced
number of repetitions, synonyms being frequently
employed. Moreover, smooth topic shifts can be
found, in particular at the beginning of each pro-
gram with different reports dedicated to the head-
line. On the other hand, transcripts significantly dif-
fer from written texts: no punctuation signs or capi-
tal letters; no sentence structure but rather utterances
which are only loosely syntactically motivated; pres-
ence of transcription errors which may imply an ac-
centuated lack of word repetitions.

All data were preprocessed in the same way:
Words were tagged and lemmatized with TreeTag-
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ger1 and only the nouns, non modal verbs and adjec-
tives were retained for segmentation. Inverse docu-
ment frequencies used to measure similarity in Eq. 5
are obtained on a per document basis, referring to
the number of sentences in textual data and of utter-
ances in spoken data.

4.2 Results
Performance is measured by comparison of hypoth-
esized frontiers with reference ones. Alignment as-
sumes a tolerance of 1 sentence on texts and of 10
seconds on transcripts, which corresponds to stan-
dard values in the literature. Results are reported us-
ing recall, precision and F1-measure. Recall refers
to the proportion of reference frontiers correctly de-
tected; Precision corresponds to the ratio of hypoth-
esized frontiers that belong to the reference seg-
mentation; F1-measure combines recall and preci-
sion in a single value. These evaluation measures
were selected because recall and precision are not
sensitive to variations of segment length contrary
to the Pk measure (Beeferman et al., 1997) and
do not favor segmentations with a few number of
frontiers as WindowDiff (Pevzner and Hearst, 2002)
(see (Niekrasz and Moore, 2010) for a rigorous an-
alytical explanation of the biases of Pk and Win-
dowDiff ).

Several configurations were considered in the ex-
periments; due to space constraints, only the most
salient experiments are presented here. In Eq. 7, the
parameter α, which controls the contribution of the
prior model with respect to the lexical cohesion and
disruption, allows for different trade-offs between
precision and recall. For any given value of λ, α
is thus varied, providing the range of recall/precision
values attainable. Results are compared to a baseline
system corresponding to the application of the orig-
inal algorithm of Utiyama and Isahara (i.e., setting
λ = 0). This baseline has been shown to be a high-
performance algorithm, in particular with respect to
local methods that exploit lexical disruption. Differ-
ences in F1-measure between this baseline and our
system presented below are all statistically signifi-
cant at the level of p < 0.01 (paired t-test).

Choi’s corpus. Figure 2 reports results obtained
on Choi’s data set, each graphic corresponding to

1http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger

z τ
F1 Confidence interval 95 %

gain UI Combined
3-5 0 -0.2 [66.6,74.26] [75.23,78.08]
3-5 1 0.7 [72.25,83.4] [87.88,92.13]
3-11 1 0.23 [68.5,79.3] [86.6,87.43]
6-8 1 0.4 [68.48,80.99] [76.9,85.17]
9-11 0 1.6 [64.35,75.16] [81.31,84.86]
9-11 1 1.4 [68.39,80.39] [84.37,88.9]

Table 2: Gain in F1-measure for Choi’s corpus when us-
ing lexical cohesion and disruption, and the correspond-
ing 95 % confidence intervals for the F1-measure. Re-
sults are reported for different tolerance τ . UI denotes
the baseline and Combined the proposed model.

a specific variation in the size of the thematic seg-
ments forming the documents (e.g., 9 to 11 sen-
tences for the top left graphic). Results are provided
for different values of λ in terms of F1-measure
boxplots, i.e., variations of the F1-measure when α
varies (same range of variation for α considered for
each plot), where the leftmost boxplot, denoted by
UI , corresponds to the baseline. Box and whisker
plots graphically depicts the distribution of the F1-
measures that can be attained by varying α, plotting
the median value, the first and third quartile and the
extrema.

Figure 2 shows that, whatever the segments
length, results globally improve according to the im-
portance given to the disruption (λ variable). More-
over, the variation in F1-measure diminishes when
disruption is considered, thus indicating the influ-
ence of the prior model diminishes. When the seg-
ments size decreases (see Figs. 2(b), 2(c), 2(d)), the
difference in the maximum F1-measure between our
results and that of the baseline lowers, however still
in favor of our model. This can be explained by the
fact that our approach is based on the distribution of
words, thus more words better help discriminate be-
tween potential thematic frontiers. Finally, using too
large values for λ can lead to under-segmentation, as
can be seen in Fig. 2(d) where, for λ = 3, the varia-
tion of F1-measure increases and the distribution be-
comes negatively skewed (i.e., the median is closer
to the third quartile than to the first).

These results are confirmed by Table 2 which
presents the gain in F1-measure (i.e., the differ-
ence between the highest F1-measure obtained when
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(a) (b)

(c) (d)

Figure 2: F1-measure variation obtained on Choi’s corpus. In each graphic, the leftmost boxplot UI corresponds to
results obtained by using the sole lexical cohesion (baseline), while the λ value is the importance given to the lexical
disruption in our approach. Results are provided for the same range of variation of factor α, allowing a tolerance of 1
sentence between the hypothesized and reference frontiers.

combining lexical cohesion and disruption and the
highest value for the baseline) for each of the four
sets of documents in Choi’s corpus, together with
the 95 % confidence intervals: The effect of using
the disruption is higher when segment size is longer,
whether evaluation allows or not for a tolerance τ
between the hypothesized frontiers and the reference
ones. A qualitative analysis of the segmentations
obtained confirmed that employing disruption helps
eliminate wrong hypothesis and shift hypothesized
frontiers closer to the reference ones (explaining the
higher gain at tolerance 0 for 9-11 data set). When
smaller segments—thus few word repetitions—and
no tolerance are considered (e.g., 3–5), disruption
cannot improve segmentation. Our model is glob-
ally stable with respect to segment length, with rel-
atively similar gain for 3–11 and 6–8 data sets in
which the average number of words (distinct or re-
peated) is close.

Results discussed up to now are optimistic as they
correspond to the best F1 value attainable computed
a posteriori. Stability of the results was confirmed

z = 3–5 3–11 6–8 9–11
UI 91.9 87.0 93.1 92.8

Combined 92.9 87.5 93.5 94.0

Table 3: F1 results using cross-validation on Choi’s data
set.

using cross-validation with 5 folds (10 folds for
z=3–11): Parameters λ and α maximizing the F1-
measure are determined on all but one fold, this last
fold being used for evaluation. Results, averaged
over all folds, are reported in Tab. 3 for the baseline
and the method combining cohesion and disruption.

Medical textbook corpus. The medical textbook
corpus was previously used for topic segmentation
by Eisenstein and Barzilay (2008) with their algo-
rithm BayesSeg2. We thus compare our results with
those obtained by BayesSeg and by the baseline.
When considering the best F1-measure (i.e., the best
F1-measure which can be achieved by varying α and

2The code and the data set are available at
http://groups.csail.mit.edu/rbg/code/bayesseg/
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(a) (b)

Figure 3: Boxplots showing F1-measure variation on transcripts obtained using IRENE and LIMSI automatic speech
recognition systems.

λ), we achieved an improvement of 2.2 with respect
to BayesSeg when no tolerance is allowed, and of
0.5 when the tolerance is of 1 sentence. The corre-
sponding figures with respect to the baseline are 0.6
and 0.4. When considering the F1-measure value
for which the number of hypothesized frontiers is
the closest to the number of reference boundaries,
improvement is of resp. 1.5 and 0.5 with respect to
BayesSeg, -0.1 and 0.4 with respect to the baseline.
These results show that our model combining lexi-
cal cohesion and disruption is also able to deal with
topic segmentation of corpora from a homogeneous
domain, with smooth topic changes and segments of
regular size.

One can argue that the higher number of free pa-
rameters in our method explains most of the gain
with respect to BayesSeg. While BayesSeg has only
one free parameter (as opposed to two in our case),
the number of segments is assumed to be provided
as prior knowledge. This assumption can be seen
as an additional free parameter, i.e., the number of
segments, and is a much stronger constraint than we
are using. Moreover, cross-validation experiments
on the Choi data set show that improvement is not
due to over-fitting of the development data thanks to
an additional parameter. Gains on development set
with parameters tuned on the development set itself
and with parameters tuned on a held-out set in cross-
validation experiments are in the same range.

TV news transcripts corpus Figure 3 provides
results, in terms of F1-measure variation, for TV
news transcripts obtained with the two ASR sys-

tems. On this highly challenging corpus, with short
segments, wrongly transcribed spoken words, and
thus few word repetitions, the capabilities of our
model to overcome the baseline system are reduced.
Yet, an improvement of the quality of the segmen-
tation of these noisy data is still observed, and
general conclusions are quite similar—though a bit
weaker—to those already made for Choi’s corpus.
Results are confirmed in Table 4 which presents the
gain in F1-measure of our model together with the
95 % confidence interval, where F1-measure values
correspond to that of segmentations with a num-
ber of hypothesized frontiers the closest to the ref-
erence. The two first lines show that the gain is
smaller for IRENE transcripts which have a higher
WER, thus fewer words available to discriminate be-
tween segments belonging to different topics. The
impact of transcription errors is illustrated in the
last three lines, when segmenting six TV news for
which manual reference transcripts were available
(line 3), where the higher the WER, the smaller the
F1-measure gain.

5 Conclusions

We have proposed a method to combine lexical co-
hesion and disruption for topic segmentation. Ex-
perimental results on various data sets with various
characteristics demonstrate the impact of taking into
account disruption in addition to lexical cohesion.
We observed gains both on data sets with segments
of regular length and on data sets exhibiting seg-
ments of highly varying length within a document.
Unsurprisingly, bigger gains were observed on doc-
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Corpus
F1 Confidence interval 95 %

gain UI Combined
IRENE 0.3 [54.4,57.6] [56.92,59]
LIMSI 0.86 [56.7,60.2] [59.44,61.95]
MANUAL (6) 0.77 [70.39,72.29] [71.7,73.29]
IRENE (6) 0.2 [56.81,60.94] [59.51,63.43]
LIMSI (6) 0.5 [64.27,68.64] [67.7,71.56]

Table 4: Gain in F1-measure for TV news corpus auto-
matic and manual transcripts when using lexical cohesion
and disruption, and the corresponding 95 % confidence
intervals. Last three rows report results on only 6 shows
for which manual reference transcripts are available.

uments containing relatively long segments. How-
ever the segmentation algorithm has proven to be
robust on automatic transcripts with short segments
and limited vocabulary reoccurrences. Finally, we
tested both abrupt topic changes and smooth ones
with good results on both. Further work can be con-
sidered to improve segmentation of documents char-
acterized by small segments and few words repe-
titions, such as using semantic relations or vector-
ization techniques to better exploit implicit relations
not considered by lexical reoccurrence.
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