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Abstract

This paper presents a novel approach to deter-
mine textual similarity. A layered methodol-
ogy to transform text into logic forms is pro-
posed, and semantic features are derived from
a logic prover. Experimental results show that
incorporating the semantic structure of sen-
tences is beneficial. When training data is
unavailable, scores obtained from the logic
prover in an unsupervised manner outperform
supervised methods.

1 Introduction

The task of Semantic Textual Similarity (Agirre et
al., 2012) measures the degree of semantic equiv-
alence between two sentences. Unlike textual en-
tailment (Giampiccolo et al., 2007), textual similar-
ity is symmetric, and unlike both textual entailment
and paraphrasing (Dolan and Brockett, 2005), tex-
tual similarity is modeled using a graded score rather
than a binary decision. For example, sentence pair
(1) below is very similar [5 out of 5], (2) is some-
what similar [3 out of 5] and (3) is not similar at all
[0 out of 5]:

1. Someone is removing the scales from the fish.
A person is descaling a fish.

2. A woman is chopping an herb.
A man is finely chopping a green substance.

3. A cat is playing with a watermelon on a floor.
A man is pouring oil into a pan.

State-of-the-art systems to determine textual sim-
ilarity (Bär et al., 2012; Šarić et al., 2012; Banea
et al., 2012) do not account for the semantic struc-
ture of sentences, and mostly rely on word pair-
ings and knowledge derived from large corpora, e.g.,
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dd
THEME
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Figure 1: Semantic representation of 1(a) A man is hold-
ing a leaf and 1(b) A monkey is fighting a man.

Wikipedia. Regardless of details, each word in sent1
is paired with the word in sent2 that is most simi-
lar according to some similarity measure. Then, all
similarities are added and normalized by the length
of sent1 to obtain the similarity score from sent1 to
sent2. The process is repeated to obtain the simi-
larity score from sent2 to sent1, and both scores are
then averaged to determine the overall textual sim-
ilarity. Several word-to-word similarity measures
are often combined with other shallow features, e.g.,
n-gram overlap, syntactic dependencies, to obtain
the final similarity score.

Consider sentences 1(a) A man is holding a leaf
and 1(b) A monkey is fighting a man. These two
sentences are very dissimilar, the only commonal-
ity is the concept ‘man’. Any approach that blindly
searches for the word in 1(b) that is the most similar
to word ‘man’ in 1(a) will find ‘man’ from 1(b) to
be a perfect match. One of three content words is a
match and thus the estimated similarity will be much
higher than it actually is.

Consider now the semantic representations for
sentences 1(a) and 1(b) in Figure 1. ‘man’ plays the
role of AGENT in 1(a), and THEME in 1(b). While
in both sentences the word ‘man’ encodes the same
concept, their semantic functions with respect to
other concepts are different. Intuitively, it seems rea-
sonable to penalize the similarity score based on the
role discrepancy.
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Figure 2: Semantic representations of 2(a) The man used a sword to slice a plastic bottle, 2(b) A man sliced a plastic
bottle with a sword, 2(c) A woman is applying cosmetics to her face, 2(d) A woman is putting on makeup, 2(e) A
woman is dancing in the rain, and 2(f) A woman dances in the rain outside. Pairs (a, b), (c, d) and (e, f) are highly
similar even though concepts and relations only match partially.

This paper proposes a novel approach to deter-
mine textual similarity. Semantic representations
of sentences are exploited, syntactic features omit-
ted and the only external resource used in WordNet
(Miller, 1995). The main novelties of our approach
are: it (1) derives semantic features from a logic
prover to be used in a machine learning framework;
(2) uses three logic form transformations capturing
different levels of knowledge; and (3) incorporates
semantic representations extracted automatically.

1.1 Matching Semantic Representations and
Determining Textual Similarity

Throughout this paper, the semantic representation
of a sentence comprises the concepts in it, semantic
relations linking those concepts and named entities
qualifying them. First, we note that existing tools to
extract semantic relations and named entities are not
perfect, thus any system relying on them will suffer
from incomplete and incorrect representations. Sec-
ond, even if flawless representations were readily
available, the problem of determining textual simi-
larity cannot be reduced to matching semantic repre-
sentations: partial matches may correspond to com-
pletely similar sentences. The rest of this section
illustrates this point with the examples in Figure 2.
Our approach (Section 3) copes with the inherent er-
rors made by tools used to obtain semantic represen-
tations and learns which parts of a representation are
important to determine textual similarity.

Consider sentences 2(a) The man used a sword to
slice a plastic bottle and 2(b) A man sliced a plastic

bottle with a sword. Both sentences have high simi-
larity [5 out of 5], and yet their semantic representa-
tions only match partially. In this example, the verb
‘used ’ in 2(a) and its semantic links are somewhat
semantically superfluous. Note that in other cases,
missing a semantic relation signals lower similarity,
e.g., I had fun [at the party]LOCATION and I had fun,
while similar, do not convey the same meaning.

Sentence 2(c) A woman is applying cosmetics to
her face and 2(d) A woman is putting on makeup are
highly similar even though the latter specifies neither
the LOCATION where the ‘makeup’ is applied nor
the fact that a PART of the ‘woman’ is her ‘face’.
Similarly, sentences 2(e) A woman is dancing in the
rain and 2(f) A woman dances in the rain outside
are semantically equivalent since ‘rain’ always has
LOCATION ‘outside’: missing this information does
not carry loss of meaning.

2 Related Work

Determining similarity between text snippets is rele-
vant to information retrieval (Hatzivassiloglou et al.,
1999), paraphrase recognition (Madnani and Dorr,
2010), grading answers to questions (Mohler et al.,
2011) and many others. We focus on recent work
and emphasize the differences from our approach.

The SemEval 2012 Task 6: A Pilot on Semantic
Textual Similarity (Agirre et al., 2012) brought to-
gether 35 teams that competed against each other.
The top 3 performers (Bär et al., 2012; Šarić et
al., 2012; Banea et al., 2012), followed a ma-
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Figure 3: Main components of our system to determine textual similarity.

chine learning approach with features that do not
take into account the semantic structure of sen-
tences, e.g., n-grams, word overlap, evaluation mea-
sures for machine translation, pairwise word similar-
ities, syntactic dependencies. All three used Word-
Net, Wikipedia and other large corpora. In partic-
ular, Banea et al. (2012) obtained models from 6
million Wikipedia articles and more than 9.5 mil-
lion hyperlinks; Bär et al. (2012) used Wiktionary1,
which contains over 3 million entries; and Šarić et
al. (2012) used The New York Times Annotated
Corpus (Sandhaus, 2008), which contains over 1.8
million news articles, and Google n-grams (Lin et
al., 2012), which consists of approximately 24GB
of compressed text files. Our approach only uses
WordNet, by far the smallest external resource with
less than 120,000 synsets.

Participants that incorporated information about
the semantic structure of sentences (Glinos, 2012;
Rios et al., 2012)2 did not perform at the top. Out
of 88 runs, they were ranked 16, 36 and 64. We be-
lieve this is because they use semantic relations to
calculate some ad-hoc similarity score. In contrast,
our approach derives features from semantic repre-
sentations encoded using logic, and combine these
features using machine learning. Moreover, we use
three logic form transformations capturing different
levels of knowledge, from only content words to se-
mantic structure. In turn, this allows us to boost
performance by relying on semantics when simpler
shallow methods fail.

A few logic-based approaches to recognize tex-
tual entailment are similar to the work presented
here. Bos and Markert (2006) extract semantic rep-
resentations with Boxer (Bos et al., 2004) and in-
corporate background knowledge from external re-

1http://www.wiktionary.org/
2A third team, spirin2, submitted results but a description

paper could not be found in the ACL anthology.

sources. They use a standard theorem prover and
extract 8 features that are later combined using ma-
chine learning. Raina et al. (2005) use a logic form
transformation derived from dependency parses and
named entities. They use abductive reasoning and
define an assumption cost model to account for par-
tial entailments. Unlike them, we define three logic
from transformations, use a modified resolution step
and extract hundreds of features from the proofs.
Tatu and Moldovan (2005) use a modified logic
prover that drops predicates when a proof cannot
be found. Unlike us, they do not drop unbound
predicates and use a single logic form transforma-
tion. Another key difference is that they assign fixed
weights to predicates a priori instead of using ma-
chine learning to determine them.

3 Approach

Our approach to determine textual similarity (Fig-
ure 3) is grounded on using semantic features de-
rived from a logic prover that are later combined
in a standard supervised machine learning frame-
work. First, sentences are transformed into logic
forms (lft1, lft2). Then, a modified logic prover is
used to find a proof in both directions (lft1 to lft2
and lft2 to lft1). The prover yields similarity scores
based on the number of predicates dropped and fea-
tures characterizing the proofs. Additional similar-
ity scores are obtained using standard pairwise word
similarity measures. Finally, all scores and features
are combined using machine learning to yield the fi-
nal textual similarity score.

If training data is unavailable, only the LFT-based
and individual pairwise word similarity scores ap-
ply, the machine learning component is the only one
supervised. The rest of this section details each
component and exemplifies it with 2(e) A woman is
dancing in the rain and 2(f) A woman dances in the
rain outside.
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sent1: A woman is dancing in the rain.
semantic relations extracted: AGENT(dancing, woman), LOCATION(dancing, rain)

Basic woman N(x1) & dance V(x2) & rain N(x3)

SemRels woman N(x1) & dance V(x2) & AGENT SR(x2, x1) & rain N(x3) & LOCATION SR(x2, x3)

Full woman N(x1) & dance V(x2) & AGENT SR(x2, x1) & rain N(x3) & LOCATION SR(x2, x3)

sent2: A woman dances in the rain outside.
semantic relations extracted: AGENT(dances, woman), LOCATION(dances, rain)

Basic woman N(x1) & dance V(x2) & rain N(x3) & outside M(x4)

SemRels woman N(x1) & dance V(x2) & AGENT SR(x2, x1) & rain N(x3) & LOCATION SR(x2, x3)

Full woman N(x1) & dance V(x2) & AGENT SR(x2, x1) & rain N(x3) & LOCATION SR(x2, x3) &

outside M(x4)

Table 1: Examples of logic from transformation using modes Basic, SemRels and Full.

3.1 Logic Form Transformation
The logic form transformation (LFT) of a sentence
is derived from the concepts in it, the semantic
relations linking them and named entities. Un-
like other LFT proposals (Zettlemoyer and Collins,
2005; Poon and Domingos, 2009), transforming
sentences into logic forms is a straightforward step,
the quality of the logic forms is determined by the
output of standard NLP tools.

We distinguish six types of predicates:

• N for nouns, e.g., woman: woman N(x1).
• V for verbs, e.g., dances: dance V(x2).
• M for adjectives and adverbs, e.g., outside:
outside M(x3).
• O for concepts encoded by other POS tags.
• NE for named entities, e.g., guitar:
guitar N(x4) & instrument NE(x4).
• SR for semantic relations, e.g., A woman

dances: woman N(x1) & dance V(x2) &

AGENT SR(x2, x1).

In order to overcome semantic relation extraction
errors, we have experimented with three logic form
transformation modes. Each mode captures different
levels of knowledge:

Basic generates predicates for all nouns, verbs,
modifiers and named entities. This logic form
is parallel to accounting for content words,
their POS tags and named entity types.

SemRels generates predicates for all semantic rela-
tions, concepts that are arguments of relations
and named entities qualifying those concepts.
This mode ignores concepts not linked to other
concepts through a relation and might miss key

concepts if some relations are missing. If no
semantic relations are found, this mode backs
off to Basic to avoid empty logic forms.

Full generates predicates for all concepts, all se-
mantic relations and all named entities. It is
equivalent to SemRels after adding predicates
for concepts that are not arguments of a seman-
tic relation.

Table 1 exemplifies the three logic form modes.
If perfect semantic relations were always available,
SemRels would be the preferred mode. However,
this is often not the case and combining the three
logic forms yields better performance (Section 4).
Note that since relation LOCATION(rain, outside) is
not extracted from sent2, predicate outside M(x4)

is not present in mode SemRels.

3.2 Modified Logic Prover
Textual similarity is symmetric and therefore we
find proofs in both directions (from lft1 to lft2 and
from lft2 to lft1). The logic prover uses a modified
resolution procedure to calculate a similarity score
and features derived from the proof. The rest of this
section exemplifies one direction, lft1 to lft2. The
logic prover is a modification of OTTER3 (McCune
and Wos, 1997), an automated theorem prover for
first-order logic. For the textual similarity task, we
load lft1 and ¬lft2 to the set of support and lexical
chain axioms to the usable list. Then, the logic
prover begins its search for a proof. Two scenar-
ios are possible: (1) a contradiction is found, i.e.,
a proof is found; or (2) a contradiction cannot be
found. The modifications to the standard resolution

3http://www.cs.unm.edu/˜mccune/otter/
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sent1: A woman plays an electric guitar sent2: A man is cutting a potato
lft1: woman N(x1) & play V(x2) & AGENT SR(x2, x1) & electric M(x3) & guitar N(x4) &

instrument NE(x4) & VALUE SR(x4, x3) & THEME SR(x2, x4)

¬lft2: ¬man N(x1) ∨ ¬cut V(x2) ∨ ¬AGENT SR(x2, x1) ∨ ¬potato N(x3) ∨ ¬THEME SR(x2, x3)

Step Predicate dropped (regular) Score Predicate dropped (unbound) Score
1 woman N(x1) 0.875 n/a 0.875
2 play V(x2) 0.750 AGENT SR(x2, x1) 0.625
3 electric M(x3) 0.500 n/a 0.500
4 guitar N(x4) 0.375 instrument NE(x4), VALUE SR(x4, x3),

THEME SR(x2, x4)

0.000

Table 2: Example of predicate dropping step by step. Predicates AGENT SR(x2, x1) and THEME SR(x2, x4) would not
be dropped if unbound predicates were not dropped, yielding a score of 0.250 instead of 0.000.

procedure are used in scenario (2), when a proof
cannot be found. In this case, predicates from lft1 are
dropped until a proof is found. The worst case oc-
curs when all predicates in lft1 are dropped. The goal
of the dropping mechanism is to force the prover to
always find a proof, and penalize partial proofs ac-
cordingly.

Lexical chain axioms are extracted from WordNet.
Assuming each word w in sent1 has the first sense,
axioms w → c, where c is at most distance 2 in
the WordNet hierarchy are generated. For exam-
ple, axioms derived from woman include woman→
female, woman → mistress, woman → widow and
woman→ madam. Although simple, this WordNet
expansion proved useful in our experiments.

3.2.1 Predicate Dropping Criteria

When a proof cannot be found, individual predi-
cates from lft1 not present in lft2 are dropped. A
greedy algorithm was implemented for this step: out
of all predicates from lft1 not present in lft2, drop
whichever occurs first.

Dropping a predicate is not done in isolation. Af-
ter dropping a predicate, all predicates that become
unbound are dropped as well. With our current logic
form transformation, dropping a noun, verb or modi-
fier may make a semantic relation ( SR) or named en-
tity ( NE) predicate unbound. To avoid determining
high similarity between sentences with a common
semantic structure but unrelated concepts instantiat-
ing this structure, predicates encoding semantic rela-
tions and named entities are automatically dropped
when they become unbound.

3.2.2 Proof Scoring Criterion
The score assigned to the proof from lft1 to lft2

is calculated as the ratio of number of predicates in
lft1 not dropped to find the proof over the original
number of predicates in lft1.

Note that the dropping mechanism, and in par-
ticular whether predicates that become unbound
are automatically dropped, greatly impact the proof
obtained and its score (Table 2). If predi-
cates that become unbound were not automati-
cally dropped in each step, instrument NE(x4) and
VALUE SR(x4, x3) would be dropped in steps 5 and
6, AGENT SR(x2, x1) and THEME SR(x2, x4) would not
be dropped, and the final score would be 0.250 in-
stead of 0.000. In plain English, dropping unbound
predicates avoids matching semantic structures in-
stantiated by unrelated concepts.

3.2.3 Feature Selection
While the proof score can be used directly as an es-
timator of the similarity between lft1 and lft2, ad-
ditional features are extracted from the proof itself.
Namely, for each predicate type (N, V, M, O, SR,
NE), we count the number of predicates present in
lft1, the number of predicates dropped to find a proof
for lft2 and the ratio of the two counts. These three
counts are also calculated for each specific seman-
tic relation predicate (AGENT SR, LOCATION SR, etc.).
An example of score and feature calculation in both
directions is shown in Table 3.

The LFT-based scores and features are fed to a
machine learning algorithm. Specifically, there are
477 features derived from the logic prover:
• 9 LFT-based scores (3 × 3; three scores (2 di-

rections and average), three LFT modes)
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lft1: woman N(x1) & dance V(x2) & AGENT SR(x2, x1) & rain N(x3) & LOCATION SR(x2, x3)

lft2: woman N(x1)&dance V(x2)&AGENT SR(x2, x1)&rain N(x3)&LOCATION SR(x2, x3)&outside M(x4)

lft1 to lft2

pred. dropped none
score 1

features nt nd nr vt vd vr mt md mr net ned ner srt srd srr

2 0 0 1 0 0 0 0 0 0 0 0 2 0 0

lft2 to lft1

pred. dropped outside M(x4)

score 5/6 = 0.833

features nt nd nr vt vd vr mt md mr net ned ner srt srd srr

2 0 0 1 0 0 1 1 1 0 0 0 2 0 0

Table 3: Two logic forms and output of logic prover in both directions. For each predicate type (n, v, m, o, ne, sr)
and semantic relation type (AGENT, LOCATION, etc.) features indicate the total number of predicates, the number of
predicates dropped until a proof is found and ratio of the two counts (t, d and r respectively). We omit the features for
predicate O and individual semantic relations because of space constraints.

• 108 features for predicates (3 × 6 × 3 × 2 =
108; three features for each of the six predicate
types, three LFT modes, two directions)

• 360 features specific to a semantic relation (3×
20×3×2 = 360; three features for each of the
20 semantic relations types, three LFT modes,
two directions)

3.3 Pairwise Word Similarities

Pairwise word similarity measures between con-
cepts have been long studied, and they have been
used for the task of textual similarity before (Mihal-
cea et al., 2006). We incorporate scores derived us-
ing these measures for comparison purposes and to
improve robustness in our approach.

Basically, each open-class word in sent1 is paired
with the open-class word in sent2 that is most sim-
ilar according to some similarity measure. All these
individual similarities are summed and normalized
by the length of sent1 to find the similarity be-
tween sent1 and sent2. The process is repeated
from sent2 to sent1 to obtain the similarity between
sent2 and sent1, and both overall similarities are av-
eraged to determine the final similarity score.

We have experimented with measures Path
(distance in a taxonomy), LCH (Leacock and
Chodorow, 1998), Lesk (Lesk, 1986), WUP (Wu
and Palmer, 1994), Resnik (Resnik, 1995), Lin (Lin,
1998) and JCN (Jiang and Conrath, 1997), and use
the WordNet::Similarity package4.

4http://wn-similarity.sourceforge.net/

3.4 Machine Learning Algorithm

We follow a standard supervised machine learning
framework. Instances from the training split are
used to create a model that is later tested with test
instances not seen during training. The model was
tuned using 10-fold cross-validation over the train-
ing instances. As a learning algorithm, we use bag-
ging with M5P decision trees (Quinlan, 1992; Wang
and Witten, 1997) as implemented in the Weka soft-
ware package (Hall et al., 2009).

4 Experiments and Results

Logic forms are derived from the output of state-
of-the-art NLP tools developed previously and not
tuned in any way to the current task or corpora. Our
approach is not tied to any tool, set of named enti-
ties or relations. Any other semantic representation
could be used; the only required modification would
be the LFT component (Figure 3) so that it accounts
for the subtleties of the representation of choice.

The named entity recognizer extracts 35 fine-
grained types organized in a taxonomy (date, lan-
guage, city, instrument, etc.) and was first developed
for a question answering system (Moldovan et al.,
2002). The implementation uses publicly available
gazetteers as well as machine learning.

Semantic relations are extracted with Polaris
(Moldovan and Blanco, 2012), a semantic parser
that given text extracts semantic relations. Polaris
is trained using FrameNet (Baker et al., 1998), Prop-
Bank (Palmer et al., 2005), NomBank (Meyers et al.,
2004), several SemEval corpora (Girju et al., 2007;
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Score Sentence Pair Notes
MSRpar
(36/35) [750/750]

2.600 The unions also staged a five-day strike in March
that forced all but one of Yale’s dining halls to close.

Long sentences, difficult to
parse; often several details
are missing in one sentence
but the pair is similar

The unions also staged a five-day strike in March;
strikes have preceded eight of the last 10 contracts.

MSRvid 0.000 A woman is swimming underwater. Short sentences, easy to
parse(13/13), [750/750] A man is slicing some carrots.

SMTeuroparl 4.250 Then perhaps we could have avoided a catastrophe. One sentence often
ungrammatical (SMT)(56/21), [734/459] We would perhaps then able prevent a disaster.

surprise.OnWN 1.500 the alleviation of distress WN glosses, difficult to
parse with standard tools(–/16), [–/750] a change for the better.

surprise.SMTnews 3.000 He did, but the initiative did not get very far One sentence often
ungrammatical (SMT)(–/24), [–/399] What he has done without the initiative goes too far.

Table 4: Examples of sentence pairs belonging to the five sources. The numbers between round (square) parenthesis
indicate the average number of tokens per sentence pair (number of instances) in the train and test splits.

Pustejovsky and Verhagen, 2009; Hendrickx et al.,
2010) and in-house annotations.

4.1 Corpora
We use the corpora released by SemEval 2012
Task 06: A Pilot on Semantic Textual Similarity5

(Agirre et al., 2012). These corpora consist of pairs
of sentences labeled with their semantic similar-
ity score, ranging from 0.0 to 5.0. Sentence pairs
come from five sources: (1) MSRpar, a corpus of
paraphrases; (2) MSRvid, short video descriptions;
(3) SMTeuroparl, output of machine translation sys-
tems and reference translations; (4) surprise.OnWN,
OntoNotes (Hovy et al., 2006) and WordNet (Miller,
1995) glosses; and (5) surprise.SMTnews, output of
machine translation systems in the news domain and
gold translations. Examples can be found in Table 4,
for more details refer to the aforementioned citation.

4.2 Results and Error Analysis
Results are reported using the same train and test
splits provided by the organization of SemEval 2012
Task 6. For surprise.OnWn and surprise.SMTnews,
only test data is available and supervised machine
learning is not an option.

Table 5 shows results obtained with the test split
not dropping and dropping unbound predicates. For
comparison purposes, results of the top-3 perform-
ers and participants using the semantic structure of
sentences are also shown. LFT-score systems output

5http://www.cs.york.ac.uk/semeval-2012/
task6/

the score (average of both directions) obtained with
the corresponding logic form transformation (Basic,
SemRels or Full) and are unsupervised: training data
with textual similarity scores is not used. The other
three systems presented are supervised. LFT-scores
+ features combines the 9 LFT-scores and 468 fea-
tures derived from the logic proof. WN-scores uses
as features the 7 scores derived using pairwise word
similarity measures. Finally, All combines the full
set of 484 features. We indicate that the performance
of one of our systems with respect to LFT score Ba-
sic not dropping unbound predicates is significant
with ∗ (confidence 99%) and † (confidence 95%).

Overall, systems that drop unbound predicates
perform better than systems that do not drop them.
The only noticeable exception is LFT-score with
sentences from SMTeuroparl. However, best results
for SMTeuroparl are obtained dropping unbound
predicates and using All features. Henceforth, we
comment on results dropping unbound predicates as
they are higher.

Regarding logic form transformations, one can
see a trend depending on the source of sen-
tences. Polaris, the semantic parser, and the syn-
tactic parser Polaris relies on are mostly trained in
the news domain, and thus semantic representations
have higher quality in that domain. For SMTeu-
roparl and SMTnews, the two corpora closest to the
news domain, Full obtains better results than Ba-
sic and SemRels. The difference is most noticeable
in SMTnews, where Basic yields 0.4616, SemRels
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System MSRpar MSRvid SMTeuroparl OnWN SMTnews

not
dropping
unbound
predicates

no
M

L

LFT score
Basic 0.4963 0.8198 0.5101 0.6103 0.4588
SemRels ∗0.3952 ∗0.6753 0.4920 ∗0.5055 0.4477
Full 0.4525 ∗0.7024 0.5183 0.5895 0.4956

M
L

LFT scores + features ∗0.5750 0.8466 0.4725 n/a n/a
WN scores 0.4978 0.8495 0.5217 n/a n/a
All ∗0.5992 †0.8660 0.5194 n/a n/a

dropping
unbound
predicates

no
M

L

LFT score
Basic †0.5552 0.8234 0.4994 0.6120 0.4616
SemRels 0.4556 ∗0.7388 0.4871 ∗0.5113 0.4796
Full 0.5250 ∗0.7672 0.5130 0.5895 †0.5291

M
L

LFT scores + features ∗0.5770 0.8440 0.5277 n/a n/a
WN scores 0.4977 0.8495 0.5217 n/a n/a
All ∗0.6157 ∗0.8709 †0.5745 n/a n/a

Top
performer

(Bär et al., 2012) 0.6830 0.8739 0.5280 0.6641 0.4937
(Šarić et al., 2012) 0.6985 0.8620 0.3612 0.7049 0.4683
(Banea et al., 2012) 0.5353 0.8750 0.4203 0.6715 0.4033

Team w/
semantic
structure

spirin2 0.5769 0.8203 0.4667 0.5835 0.4945
(Rios et al., 2012) 0.3628 0.6426 0.3074 0.2806 0.2082
(Glinos, 2012) 0.2312 0.6595 0.1504 0.2735 0.1426

Table 5: Correlations obtained with the test split using our approach (not dropping and dropping unbound predicates),
and results obtained by the top-3 performers and teams that included in their models features derived from the semantic
structure of sentences. Statistically significant differences in performance between our systems and LFT score Basic
not dropping unbound predicates are indicated with ∗ (confidence 99%) and † (confidence 95%).

0.4796 (+0.0180) and Full 0.5291 (+0.0675 and
+0.0495 respectively).

Outside the news domain (MSRpar, MSRvid,
OnWN), Basic performs better than SemRels and
Full, and Full performs better than SemRels. This
leads to the conclusion that several semantic rela-
tions are often missing, and thus considering con-
cepts even if they are not linked to other concepts
via a semantic relation (Full) is more sound than ig-
noring them (SemRels).

When training data is available (MSRpar,
MSRvid, SMTeuroparl), LFT-scores + features al-
ways outperforms the scores obtained with a single
logic form transformation in an unsupervised man-
ner. In other words, combining the scores obtained
with the three logic form transformations and in-
corporating the additional features derived from the
proofs improves performance. These results demon-
strate that while a shallow logic form transforma-
tion (Basic) offers a strong baseline, it can be suc-
cessfully complemented with logic form transfor-
mations that consider the semantic structure of sen-

tences (SemRels, Full) and additional features char-
acterizing the proofs. The improvements LFT-scores
+ features brings over the LFT-score obtained with
Basic are substantial: 0.0218 (3.9%) for MSRpar,
0.0206 (2.5%) for MSRvid and 0.0283 (5.7%) for
SMTeuroparl.

WN scores, which only uses as features the
scores derived from pairwise word similarity mea-
sures, performs astonishingly well for some cor-
pora. Namely, the differences in performance be-
tween LFT scores + features and WN scores in
MSRvid and SMTeuroparl are minimal (−0.0055
and +0.0060). We believe this is due to the charac-
teristics of these two corpora. Sentence pairs from
MSRvid are very short with 13 tokens on average
(Table 4), i.e., 6.5 tokens per sentence, and SMTeu-
roparl pairs are hard to parse: at least one comes
from a machine translation system and is often un-
grammatical.

Finally, dropping unbound predicates and using
All features outperforms any other system. While
both LFT scores + features and WN scores yield
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good performance, the combination of the two out-
performs them. Features extracted successfully
complement each other for all corpora.

4.2.1 A Look at the ML Model
A benefit of decision trees is that one can inspect
them. This section briefly gives insight about the
most predictive features for All system.

The best features, i.e., features used in decisions
closer to the root, are the LFT-scores calculated us-
ing Basic and Full. The LFT-score obtained us-
ing SemRels is used only when the other two can-
not discriminate. Sorted by impact, the features ex-
tracted for verbs, nouns, semantic relations, named
entities and modifiers follow. Towards the bottom
of the tree, features for specific semantic relations
(AGENT SR, LOCATION SR, etc.) are used. All three
sources (MSRpar, MSRvid and SMTeuroparl) use
features for THEME, LOCATION, AGENT and QUAN-
TIFICATION. MSRpar also benefits from features for
TIME and only SMTeuroparl benefits from TOPIC

and MANNER.

4.2.2 Comparison with Previous Work
The semantic logic-based approach presented in this
paper either outperforms other systems or performs
in the top-3 (Table 5). Moreover, it clearly outper-
forms any other proposal that takes into account the
semantic structure of sentences. These results lead
to the conclusion that the semantic structure of sen-
tences is worth considering and more effort should
be devoted to deeper approaches.

When using sentences in the news domain (SM-
Teuroparl and SMTnews), i.e., when text is closer
to the domain in which the NLP tools are trained,
our semantic approach yields the best results known
to date. For MSRvid, the system presented here
performs as well as systems that use external
knowledge (Section 2), the differences are mini-
mal (+0.0030, −0.0089, +0.0041) and not statis-
tically significant (confidence 99%). For MSRpar,
the system performs amongst the top-3 even though
two of these systems clearly obtained better results
(+0.0673, +0.0828); both differences are statisti-
cally significant (confidence 99%).

Performance using surprise.OnWN deserves spe-
cial comment. This corpus contains definitions, not
sentences (Table 4). Lin’s similarity measure alone

yields a correlation of 0.6787, beating all systems in
Table 5 except one of the top-3 performers (Šarić et
al., 2012). Our semantic approach is not success-
ful because we cannot extract valid representations,
glosses are rarely a full sentence and are hard to
parse with generic NLP tools like the ones we use.

5 Conclusions

This paper presents a novel approach to determine
textual similarity that employs a logic prover to ex-
tract semantic features. A layered methodology to
transform text into logic forms using three logic
form transformations modes is presented. Each
mode captures different levels of knowledge, from
only content words to semantic representations auto-
matically extracted. Best results are obtained when
features derived from the logic prover are comple-
mented with simpler pairwise word similarity mea-
sures. Features that account for the semantic struc-
ture of sentences are incorporated when needed, as
the results obtained with systems All, LFT scores
and WN scores show.

Our approach is heavily dependent on the qual-
ity of semantic representations, and unlike current
top performers, does not require knowledge derived
from Wikipedia or other large corpora. State-of-
the-art NLP tools to extract semantic representations
from text, which are far from perfect, yield promis-
ing results. Indeed, the approach outperforms previ-
ous work when the source text is relatively familiar
to the tools, i.e., within the news domain, and per-
forms in the top-3 otherwise.
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