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Abstract

It has recently been shown that different NLP
models can be effectively combined using
dual decomposition. In this paper we demon-
strate that PCFG-LA parsing models are suit-
able for combination in this way. We exper-
iment with the different models which result
from alternative methods of extracting a gram-
mar from a treebank (retaining or discarding
function labels, left binarization versus right
binarization) and achieve a labeled Parseval
F-score of 92.4 on Wall Street Journal Sec-
tion 23 — this represents an absolute improve-
ment of 0.7 and an error reduction rate of 7%
over a strong PCFG-LA product-model base-
line. Although we experiment only with bina-
rization and function labels in this study, there
is much scope for applying this approach to
other grammar extraction strategies.

1 Introduction

Because of the large amount of possibly contra-
dictory information contained in a treebank, learn-
ing a phrase-structure-based parser implies making
several choices regarding the prevalent annotations
which have to be kept — or discarded — in order to
guide the learning algorithm. These choices, which
include whether to keep function labels and empty
nodes, how to binarize the trees and whether to alter
the granularity of the tagset, are often motivated em-
pirically by parsing performance rather than by the
different aspects of the language they may be able to
capture.

Recently Rush et al. (2010), Martins et al. (2011)
and Koo et al. (2010) have shown that Dual De-
composition or Lagrangian Relaxation is an elegant
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Figure 1: Binarization with markovization

framework for combining different types of NLP
tasks or for building parsers from simple slave pro-
cesses that only check partial well-formedness. Here
we propose to follow this idea, but with a different
objective. We want to mix different parsers trained
on different versions of a treebank each of which
makes some annotation choices in order to learn
more specific or richer information. We will use
state-of-the-art unlexicalized probabilistic context-
free grammars with latent annotations (PCFG-LA)
in order to compare our approach with a strong base-
line of high-quality parses. Dual Decomposition is
used to mix several systems (between two and four)
that may in turn be combinations of grammars, here
products of PCFG-LAs (Petrov, 2010). The systems
being combined make different choices with regard
to i) function labels and ii) grammar binarization.
Common sense would suggest that information in
the form of function labels — syntactic labels such as
SBJ and PRD and semantic labels such as TMP and
LOC — might help in obtaining a fine-grained anal-
ysis. On the other hand, the independence hypothe-
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sis on which CFGs rely and on which most popular
parsers are based may be too strong to learn the de-
pendencies between functions across the parse trees.
Also, the number of parameters increases with the
use of function labels and this can affect the learn-
ing process.

At first glance, binarization need not be an is-
sue, as CFGs admit a binarized form recognizing
exactly the same language. But binarization can be
associated with horizontal markovization and in this
case the recognized language will differ. Further-
more this can impose an unwanted emphasis on what
frontier information is more relevant to learning (be-
ginning or end of constituents). In the toy exam-
ple of Figure 1, the original grammar consisting of a
unique rule extracted from one tree only recognizes
the string bcde £, while the grammar learned from
the left binarized and markovized tree recognizes
(among others) bcdef and bdcef and the gram-
mar learned from the right binarized and markovized
tree recognizes (among others) bcde f and bcedf.

We find that i) retaining the function labels in non-
terminal categories loses its negative impact on pars-
ing as the number of grammars increases in PCFG-
LA product models, ii) the function labels them-
selves can be recovered with near state-of-the-art-
accuracy, iii) combining grammars with and without
function labels using dual decomposition is bene-
ficial, iv) combining left and right-binarized gram-
mars using dual decomposition also leads to bet-
ter trees and, v) our best results (a Parseval la-
beled F-score of 92.4, a Stanford labeled attach-
ment score (LAS) of 93.0 and a penn2malt unla-
beled attachment score (UAS) of 94.3 on Section 23
of the Wall Street Journal) are obtained by combin-
ing three grammars which encode different function
label/binarization decisions.

The paper is organized as follows. § 2 reviews
related work. § 3 presents approximate PCFG-LA
parsers as linear models, while § 4 shows how we
can use dual decomposition to derive an algorithm
for combining these models. Experimental results
are presented and discussed in § 5.

2 Related Work

Parser Model Combination It is well known that
improved parsing performance can be achieved by
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leveraging the alternative perspectives provided by
several parsing models rather than relying on just
one. Examples are parser co-training (Steedman
et al., 2003; Sagae and Tsujii, 2007), voting over
phrase structure constituents or dependency arcs
(Henderson and Brill, 1999; Sagae and Tsujii, 2007;
Surdeanu and Manning, 2010), dependency pars-
ing stacking (Nivre and McDonald, 2008), product
model PCFG-LA parsing (Petrov, 2010), using dual
decomposition to combine dependency and phrase
structure models (Rush et al., 2010) or several non-
projective dependency parsing models (Koo et al.,
2010; Martins et al., 2011), and using expecta-
tion propagation, a related approach to dual decom-
position, to combine lexicalized, unlexicalized and
PCFG-LA models (Hall and Klein, 2012). In this
last example, the models must factor in the same
way: in other words, the grammars must use the
same binarization scheme. In our study, we employ
PCFG-LA product models with dual decomposition,
and we relax the constraints on factorization, as we
require only a loose coupling of the models.

Function Label Parsing Although function labels
have been available in the Penn Treebank (PTB) for
almost twenty years (Marcus et al., 1994), they have
been to a large extent overlooked in English parsing
research — most studies that report parsing results
on Section 23 of the Wall Street Journal (WSJ) use
parsing models that are trained on a version of the
WSJ trees where the function labels have been re-
moved. Notable exceptions are Merlo and Musillo
(2005) and Gabbard et al. (2006) who each trained
a parsing model on a version of the PTB with func-
tion labels intact. Gabbard et al. (2006) found that
parsing accuracy was not affected by keeping the
function labels. There have also been attempts to
use machine learning to recover the function labels
post-parsing (Blaheta and Charniak, 2000; Chrupala
et al., 2007). We recover function labels as part of
the parsing process, and use dual decomposition to
combine parsing models with and without function
labels. We are not aware of any other work that
leverages the benefits of both types of models.

Grammar Binarization Matsuzaki et al. (2005)
compare binarization strategies for PCFG-LA pars-
ing, and conclude that the differences between them
have a minor effect on parsing accuracy as the num-



ber of latent annotations increases beyond two. Hall
and Klein (2012) are forced to use head binarization
when combining their lexicalized and unlexicalized
parsers. Dual decomposition allows us to combine
models with different binarization schemes.

3 Approximation of PCFG-LAs as Linear
Models

In this section, we explain how we can use PCFG-
LAs to devise linear models suitable for the dual de-
composition framework.

3.1 PCFG-LA

Let us recall that PCFG-LAs are defined as tuples
G = (N7 T7 H’ RH? S? p) Where:

e N\ is a set of observed non-terminals, among
which S is the distinguished initial symbol,

e 7 is a set of terminals (words),
e H is aset of latent annotations or hidden states,

e Ry is a set of annotated rules, of the form
alhi] — b[ha] c[hs] for internal rules' and
a[h1] — w for lexical rules. Here a,b,c € N
are non-terminals, w € 7 is a terminal and
h1, hs, hg € H are latent annotations. Follow-
ing Cohen et al. (2012) we also define the set of
skeletal rules R, in other words, rules without
hidden states, of the forma — bcora — w.

® p: Ry — Ry>q defines the probabilities asso-
ciated with rules conditioned on their left-hand
side. Like Petrov and Klein (2007), we impose
that the initial symbol S has only one latent an-
notation. In other words, among rules with S
on the left-hand side, only those of the form
S[0] — ~ are in Ry.

With such a grammar G we can define probabil-
ities over trees in the following way. We will con-
sider two types of trees, annotated trees and skeletal
trees. An annotated tree is a sequence of rules from
R, while a skeletal tree is a sequence of skeletal
rules from R. An annotated tree 7% is obtained by
left-most derivation from S[0]. Its probability is:

'For brevity and without loss of generality, we omit unary
and n-ary rules, as PCFG-LA admit a Chomsky normal form.
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p(Tw) = [ »(r) 1)
We define a projection p from annotated trees to
skeletal trees. p(T%) is a tree T isomorphic to T
with the same terminal and non-terminal symbols la-
beling nodes, without hidden states. The probability
of a skeletal tree 7" is a sum of the probabilities of
all annotated trees that admit 7" as their projection.

> II e )

THEp_l(T) TETH

p(T) =

PCFG-LA parsing amounts to, given a sequence
of words, finding the most probable skeletal tree
with this sequence as its yield according to a gram-
mar G:

P | G )

Trep~(T) r€TH

T* = arg max

Because of this alternation of sum and products,
the parsing problem is intractable. Moreover, the
PCFG-LAs do not belong to the family of linear
models that are assumed in the Lagrangian frame-
work of (Rush and Collins, 2012). We now turn to
approximations for the parsing problem in order to
address both issues.

3.2 Variational Inference and MaxRule

Variational inference is a common technique to ap-
proximate a probability distribution p with a cruder
one ¢, as close as possible to the original one,
by minimizing the Kullback-Liebler divergence be-
tween the two — see for instance (Smith, 2011),
chapter 5 for an introduction. Matsuzaki et al.
(2005) showed that one can easily find such a cruder
distribution for PCFG-LAs and demonstrated exper-
imentally that this approximation gives good results.
More precisely, they find a PCFG that only rec-
ognizes the input sentence where the probabilities
q(rs) of the rules are set according to their marginal
probabilities in the original PCFG-LA parse forest.
The parameters r are skeletal rules with span infor-
mation. Distribution g is defined in Figure 2.

Other approximations are possible. In particu-
lar, Petrov and Klein (2007) found that normaliz-
ing by the forest probability (in other words the in-
side probability of the root node) give better exper-
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Figure 2: Variational Inference for PCFG-LA. P;, and P,,; denote inside and outside probabilities.

imental results although its interpretation as varia-
tional inference is still unclear. This approximation
is called MaxRule-Product and amounts to replacing
the norm function (see Figure 2).

In both cases, the probability of a skeletal tree
now becomes a simple product of parameters asso-
ciated with anchored skeletal rules. For our purpose,
the consequence is twofold:

1. The parsing problem becomes tractable by ap-
plying standard PCFG algorithms relying on
dynamic programming (CKY for example).

2. Equivalent to probability, a score o can be de-
fined as the logarithm of the probability. The

parsing problem becomes?:

arg max H q(rs)
rs€T

= argmax Z log q(rs)
rs€T
= argmax Z wy, - H{rs € T}
rs€F
= argmaxo(7T)
T

Thus, from a PCFG-LA we are able to de-
fine a linear model whose parameters are the log-
probabilities of the rules in distribution gq.

2We denote the parse forest of a sentence by F and the char-
acteristic function of a set by 1.
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3.3 Products of PCFG-LAs

Although PCFG-LA training is beyond the scope
of this paper, it is worthwhile mentioning that the
most common way to learn their parameters relies
on Expectation-Maximization which is not guaran-
teed to find the optimal estimation. Fortunately, this
can be partly overcome by combining grammars that
only differ on the initial parameterization of the EM
algorithm. The probability of a skeletal tree is the
product of the probabilities assigned by each single
grammar Gj.

T = (T 4
arg;naxHqc,( ) e

i=1

Since grammars only differ by their numerical pa-
rameters (i.e. skeletal rules are the same), inference
can be efficiently implemented using dynamic pro-
gramming (Petrov, 2010).

Scoring with n such grammars now becomes:

T = argmaxZZloqu (5)
= ITET

= argmaxZZloqu (6)
reT =1

The distributions g, still have to be computed in-
dependently — and possibly in parallel — but the final
decoding can be performed jointly. This is still a
linear model for PCFG-LA parsing, but restricted to
grammars that share the same skeletal rules.



4 Dual Decomposition

In this section, we show how we derive an algorithm
to work out the best parse according to a set of n
grammars that do not share the exact same skele-
tal rules. As such, the grammars’ product cannot
be easily conducted inside the parser to produce and
score a same and unique best tree, and we now con-
sider a c(ompound)-parse as a tuple (T3 ...T,) of
n compatible trees. Each grammar G; is responsi-
ble for scoring tree 7;, and we seek to obtain the
c-parse that maximizes the sum of the scores of its
different trees. For a c-parse to be consistent, we
have to precisely define the parts on which the trees
must agree to be compatible with each other, so that
we can model these as agreement constraints.

4.1 Compound Parse Consistency

Let us suppose we have a set of phrase-structure
parsers trained on different versions of the same
treebank. Hence, some elements in the charts will
either be the same or can be mapped to each other
provided an equivalence relation and we define con-
sensus between parsers on these elements.

When the grammar is not functionally annotated,
phrase-structure trees can be decomposed into a set
of anchored (syntactical) categories X, asserting
that a category X is in the tree at position® s. Thus,
such a tree 1" can be described by means of a boolean
vector z(7T') indexed by anchored labels X, where
2(T)x, = 1if X, isin T and 0 otherwise.

We will differentiate the set of natural non-
terminals that occur in the treebanks from the set
of artificial non-terminals that do not occur in the
treebank and are the results of a binarization with
markovization. As these artificial non-terminals dis-
appear after reversing binarization in solution trees,
they do not play any role in the consensus between
parsers, and we only consider natural non-terminals
in the set of anchored labels.

When the grammar is functionally annotated,
each label X in a tree is a pair (X, F), where X
is a syntactical category and F' is a function label.
In this case, in order to manage the consensus with

3The anchor s of a label is composed of the span (i, j), de-
noting that the label covers terminals of the input sentence from
index ¢ to index j. In case the grammar contains unary non-
lexical rules, the anchor also discriminates the different posi-
tions in a sequence of unary rules.
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non-functional grammars, we decompose such a tree
into two sets: a set of anchored categories X and a
set of anchored function labels F. Thus, a tree T'
can be described by means of two boolean vectors:

e 2(T) indexed by anchored categories Xs,
2(T)x, = 1 if there exists a function label F’
so that (X, F')5 is in T, and 0 otherwise;

e ((T) indexed by anchored function labels F,
¢(T)p, = 1if there exists a category X so that
(X, F)sisin T, and 0 otherwise.

In the present work, a compound parse (77 ... T),)
is said to be consistent iff every tree shares the same
set of anchored categories, i.e. iff:

V(Z,j) € [[1’”]]27 Z<TZ) = Z(T?)

4.2 Combining Parsers through Dual
Decomposition

Like previous applications, we base our reasoning
on the assumption that computing the optimal score
with each grammar G; can be efficiently calculated,
which is the case for approximate PCFG-LA pars-
ing. We follow the presentation of the decomposi-
tion from (Martins et al., 2011) to explain how we
can combine several PCFG-LA parsers together.
For a sentence s, we want to obtain the best con-
sistent compound parse from a set of n parsers:

(P): find argmax Zap(Tp) 7
(Tl...Tn)EC p=1

st V(i, j) € [L,n]?, 2(Ti) = 2(T3) )

where C = Fi(s) X ... x Fp(s) is the product of
parse forests F;(s), and F;(s) is the set of trees in
grammar (G; whose yields are the input sentence s.
Solving this problem with an exact algorithm is
intractable. While artificial nodes could be inferred
using a traditional parsing algorithm based on dy-
namic programming (i.e. CKY), the natural nodes
require a coupling of the parsers’ items to enforce
the fact that natural daughter nodes must be identical
(or equivalent) with the same spans for all parsers.
Since the debinarization of markovized rules enables
the creation of arbitrarily long n-ary rules, in the
worst case the number of natural daughters to check
is exponential in the size of the span to infer. Even if



we bound the length of debinarized rules, the prob-
lem is hardly tractable.

As this problem is intractable, even for approxi-
mate PCFG-LA parsing, we apply the iterate method
presented in (Komodakis et al., 2007) for MRFs,
also applied for joint tasks in NLP such as combined
parsing and POS tagging in (Rush et al., 2010).

First, we introduce a witness vector « in order to
simplify constraints in (8). Problem (P) can then be
written in an equivalent form :

n

maxec ZW(Ti) 9)

(T1..T)eC =

st. Yie[l,n], 2(T;) =u

(P): find op=

10)

Next, we proceed to a Lagrangian decomposition.
This decomposition is a two-step process:
Step 1 (Relaxation): the coupling constraints (10)
are removed by introducing a vector of Lagrange
multipliers A; = (\; x,)x, for each parser 4, in-
dexed by anchored categories X, and writing the
equivalent problem:

(RP): orp= max m/&nf(u,Tl__n,A)

y41...n

where:
Fu,Tr.p, A) = Z oi(T;) + Z (2(T3) —u) - Ay

Intuitively, we can see the equivalence of (RP)
and (P) with the following reasoning:

e whenever all constraints (10) are met, the sec-
ond sum in f is nullified and f(u, T ,,A) =
>, 0i(T;), which is a finite value and precisely
the objective function maximized in (P);

e if there is at least one (i, X,s) such that
2(T;) x, # ux,, then the value of ) . (2(7;) —
u) - A; can be made arbitrarily small by
an appropriate choice of A; x,; in this case,
miny f(u, Ty, n,A) = —o0. Thus, (RP) can
not reach its maximum at a point where con-
straints (10) are not satisfied.

Step 2 (dualization): the dual problem (LP) is ob-
tained by permuting max and min in (RP):
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(LP1): orp= min max f(u,Ty n,A)

A u,Th..n

Finally, u can be removed from (LP1) by adding
the constraint: Zl A; = 0. As a matter of fact,
one can see that if this constraint is not matched,
max, 7, , f(u,T1. pn,A) = 400 and (LP1) can
not reach its minimum on such a point. We can now
find the maximum of f by maxing each 7; indepen-
dently of each other. The dual problem becomes:

(LP):

Minimization in (LP) can be solved iteratively
using the projected subgradient method. Finding a
subgradient amounts to computing the optimal so-
lution (Rush and Collins, 2012) for each of the n
subproblems (the slave problems in the terminol-
ogy of (Martins et al., 2011) and (Komodakis et al.,
2007)) which can be done efficiently, by incorpo-
rating the calculation of the penalties in the parsing
algorithm, and in parallel. Until the agreement con-
straints are met (or a maximal number of iterations
T), the Lagrangian multipliers are updated according
to the deviations from the average solutions (i.e. up-
dates are zeros for a natural span if the parsers agree
on it). This leads to Algorithm 1.

It should be noted that the DP charts are built and
pruned during the first iteration only (¢t = 0); fur-
ther iterations do not require recreating the DP chart,
which is memory intensive and time consuming, nor
recomputing the approximate distribution for varia-
tional inference. As DP on the pruned charts is a fast
process, the bottleneck of the algorithm still is in the
first calculation of slave solutions.

The stepsize sequence (ay)o<; must be diminish-
ing and non-summable, that is to say: V¢, oy > 0,
limy o0 ¢y = 0 and ;7 oy = oo. In practice, we
set oy = %C(t) where c(t) is the number of times the
objective function op has increased since iterations
began.

Solving (P): it is easy to see that orp is an up-
per bound of op, but we do not necessarily have



Algorithm 1 Find best compound parse with con-
straints on natural spans

Require: n parsers {p; }1<i<n
for all 7, syntactical category X, anchor s do
A% =0
0Xs
end for
fort =0— 7do

for all parsers p; do

Ti(t) < argmaXpe g, (ai(T) +2(T) - Agt))
end for

for all parsers p; do

(t)
) ®) _ Tigi<a (1)

Agtﬂ) — AEt) n AEt)
end for
if A% = 0 for all i then
Exit loop
end if
end for
return (77, ... | T7)

strong duality (i.e. or,p = op) due to the facts that
parse forests are discrete sets. Furthermore, they get
pruned independently of each other. Thus, the algo-
rithm is not guaranteed to find a ¢ such that z(Ti(t))
is the same for every parser . However — see (Koo
et al., 2010) — if it does reach such a state, then we
have the guarantee of having found an exact solution
of the primal problem (P). We show in the experi-
ments that this occurs very frequently.

S5 Experiments

5.1 Experimental Setup

We perform our experiments on the WSJ sections of
the PTB with the usual split: sections 2 to 21 for
training, section 23 for testing, and we run bench-
marks on section 22. evalb is used for evaluation.

We use the LORG parser modified with Algo-
rithm 1. % All grammars are trained using 6
split/merge EM cycles. For the handling of unknown
words, we removed all words occurring once in the
training set and replaced them by their morpholog-
ical signature (Attia et al., 2010). Grammars for
products are obtained by training with 16 random
seeds for each setting. We use the approximate al-

“The LORG parser is available at https://github.
com/CNGLdlab/LORG-Release and the modification at
https://github.com/jihelhere/LORG-Release/
tree/functional_cll.
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gorithm MaxRule-Product (Petrov and Klein, 2007).
The basic settings are a combination of the two
following parameters:

left or right binarization: we conjecture that this
affects the quality of the parsers by impacting the
recognition of left and right constituent frontiers.
We set vertical markovization to 1 (no parent anno-
tation) and horizontal markovization to 0 (we drop
all left/right annotations).

with or without functional annotations: in par-
ticular when non-terminals are annotated with mul-
tiple functions, all are kept.

5.2 Products of Grammars

We first evaluate each setting on its own before com-
bining them. We test the 4 different settings on the
development set, using a single grammar or a prod-
uct of n grammars. Results are reported on Figure 3.
We can see that right binarization performs better
than left binarization. Contrary to the results of Gab-
bard et al. (2006), function labels are detrimental for
parsing performance for one grammar only. How-
ever, they do not penalize performance when using
the product model with 8 grammars or more.

F
93
Func Right
e 3 —$—3 No Func Right
92 e T N
T T Func Left
91
90
89 n
12 4 8 16

Figure 3: F1 for products of n grammars on the dev. set

EM is not guaranteed to find the optimal model
and the problem is made harder by the increased
number of parameters. Product models effectively
alleviate this curse of dimensionality by letting some
models compensate for the errors made by others.

On the other hand, as differences between left
and right binarization settings remain over all prod-
uct sizes, right binarization seems more useful on
its own. The first part of Table 1 gives F-score and



Exact Match results of the product models with 16
grammars on the development set.

5.3 Combinations with Dual Decomposition

We now turn to a series of experiments combining
product models of 16 grammars. In all these experi-
ments, we set the maximum number of iterations in
Algorithm 1 to 1000. The system then returns the
first element of the c-parse. We first try to combine
two settings in four different combinations:

DD Right Bin the two right-binarized systems —
with and without functions — the system returns
the function-labeled parse;

DD Left Bin the two left-binarized systems — with
and without functions — the system returns the
function-labeled parse;

DD Func the two systems with functions — left and
right binarization — the system returns the right-
binarized parse;

DD No Func the two systems without functions —
left and right binarization — the system returns
the right-binarized parse;

Results are in the second part of Table 1. Un-
surprisingly, the best configuration is the one com-
bining the two best product systems (with right bi-
narization) but all combined systems perform better
than their single components.

Setting F EX
No Func Right  92.26  42.97
No Func Left 91.92 42091
Func Right 9237 43.35
Func Left 91.95 43.15
DD Right Bin  92.71 44.44
DD Left Bin 92.23  43.97
DD Func 92.51 44.79
DD No Func 92.52 44.08
DD3 92.86 45.03
DD4 92.82 45.14

Table 1: Parse evaluation on development set.

We also combine 3 and 4 parsers to see if combin-
ing the above DD Right Bin setting with informa-
tion that could improve the recognition of beginning
of constituents can be helpful. We have 2 settings:

DD3 The 2 right-binarized parsers combined with
the left binarized parser without functions,
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DD4 The 4 parsers together.

In both cases the system returns the right-
binarized function annotated parse. The results are
shown in the last part of Table 1. These 2 new con-
figurations give similar F-scores, better than all 2-
parser configurations.

We conclude from these results that left-
binarization and right-binarization capture different
linguistic aspects, even in the case of heavy horizon-
tal markovization, and that the method we propose
enables a practical integration of these models.

Table 2 shows for each setting how often the sys-
tems agree before 1000 iterations of Algorithm 1.
As one might expect, the more diverse the systems
are, the lower the rate of agreement.

Setting Rate
DD Right Bin  99.24
DD Left Bin 99.12
DD Func 98.53
DD No Func 99.12
DD3 96.18
DD4 94.53

Table 2: Rate of certificates of optimality on the dev set.

5.4 Evaluation of Function Labeling

We also evaluate the quality of the function labels.
We compare the results obtained directly from the
parser output with results obtained with Funtag, a
state-of-the-art functional tagger that is applied on
parser output, using a gold model trained on sections
02 to 21 of the WSJ (Chrupala et al., 2007).

Setting SYSTEM FUN FUNTAG
No Func Right - 90.41
No Func Left - 90.26
Func Right 89.61 90.37
Func Left 89.29 90.40
DD Right Bin 89.50 90.38
DD Left Bin 89.11 90.31
DD Func 89.54 90.49
DD No Func - 90.36
DD3 89.48 90.42
DD4 89.57 90.45

Table 3: Function labeling F1 on development set.

The results are shown in Table 3. First, we can
see that the parser output is always outperformed by
Funtag. This is expected from a context-free parser



that has a limited domain of locality with strong in-
dependence constraints, compared to a voted-SVM
classifier that can rely on arbitrarily rich features.
Second, the quality of the Funtag prediction seems
to be influenced by the fact that parser already han-
dle functions and by the accuracy of the parser (Par-
seval F-score). This is because we use a model
trained on the gold reference and so the closer the
parser output is from the reference, the better the
prediction. On the other hand, this is not the case
with parser predicted functions, where the best sys-
tem is the right-binarized product model with func-
tions, with very similar performance obtained by the
combinations consisting of 2 function parsers, set-
tings DD Func and DD4. This tends to indicate
that the constraints we have set to define consisten-
cies in c-parses, focusing on syntactical categories,
do not help in retrieving better function labels. This
suggests some possible further improvements where
parsers with functional annotations should be forced
to agree on these too.

5.5 Evaluation of Dependencies

Setting Stanford LTH p2m

LAS UAS | LAS UAS | UAS
Func Right 92.18 9432 | 89.51 93.92 | 94.2
No Func Right | 92.03 94.47 | 6531 9222 | 942
Func Left 91.86 94.06 | 89.28 93.75 | 93.9
No Func Left | 91.83 94.29 | 65.33 92.18 | 94.1
DD Right Bin | 92.56 94.60 | 89.81 94.17 | 94.5
DD Left Bin 92.01 9438 | 89.62 94.05 | 942
DD Func 92.19 9436 | 89.67 94.06 | 942
DD No Func 92.19 9457 | 6544 9237 | 943
DD3 92.77 94.79 | 90.04 9433 | 945
DD4 92.59 9462 | 89.95 9424 | 944

Table 4: Dependency accuracies on the dev set

Dependency-based evaluation of phrase structure
parser output has been used in recent years to pro-
vide a more rounded view on parser performance
and to compare with direct dependency parsers (Cer
et al., 2010; Petrov et al., 2010; Nivre et al., 2010;
Foster et al., 2011; Petrov and McDonald, 2012).
We evaluate our various parsing models on their
ability to recover three types of dependencies: basic
Stanford dependencies (de Marneffe and Manning,
2008)°, LTH dependencies (Johansson and Nugues,

SWe used the latest version at the time of writing, i.e. 3.20.
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2007)% and penn2malt dependencies.” The latter
are a simpler version of the LTH dependencies but
are still used when reporting unlabeled attachment
scores for dependency parsing.

The results, shown in Table 4, mirror the con-
stituency evaluation results in that the dual decom-
position results tend to outperform the basic product
model results, and combining three or four gram-
mars using dual decomposition yields the highest
scores. The differences between the Func and No
Func results highlight an important difference be-
tween the Stanford and LTH dependency schemes.
The tool used to produce Stanford dependencies has
been designed to work with phrase structure trees
that do not contain function labels. In contrast, the
LTH tool makes use of function label information
in phrase structure trees. Thus, their availability re-
sults in only a moderate improvement in LAS for the
Stanford dependencies and a very striking improve-
ment for the LTH dependencies. By retaining func-
tion labels during parsing, we have shown that LTH
dependencies can be recovered with a high level of
accuracy without having to resort to a post-parsing
function labeling step.

5.6 Test Set Results

We now evaluate our various systems on the test set
(the first half of Table 5) and compare these results
with state-of-the-art systems (the second half of Ta-
ble 5). We present parser accuracy results, measured
using Parseval F-score and penn2malt UAS, and, for
our systems, function label accuracy for labels pro-
duced during parsing and after parsing using Funtag.
We also carried out statistical significance testing®
on the F-score differences between our various sys-
tems on the development and test sets. The results

6nlp .cs.lth.se/software/treebank_converter. It
is recommended that LTH is used with the version of the Penn
Treebank which contains the more detailed NP bracketing pro-
vided by Vadas and Curran (2007). However, to facilitate com-
parison with other parsers and dependency schemes, we did not
use it in our experiments. We ran the converter with the right-
Branching=false option to indicate that we are using the version
without extra noun phrase bracketing.

7stp .lingfil.uu.se/-nivre/research/Penn2Malt.
The English head-finding rules of Yamada and Mat-
sumoto (2003), supplied on the website, are employed.

8We used Dan Bikel’s compare.pl script which uses
stratified shuffling to compute significance. We consider a p
value < 0.05 to indicate a statistically significant difference.



Setting F UAS Fun Funtag
Func Right 91.73 939 | 91.02 91.88
No Func Right 91.76  93.8 - 91.80
Func Left 91.45 937 | 9041 91.80
No Func Left 91.57 93.7 - 91.74
DD Right Bin 92.16  94.1 | 90.85 91.86
DD Left Bin 91.89 939 | 90.10 91.85
DD Func 9223  94.1 | 91.02 91.91
DD No Func 92.09 94.0 - 91.86
DD3 92.45 943 | 90.86 91.98
DD4 9244 943 | 90.97 92.04
(Shindo et al., 2012) 92.4

(Zhang et al., 2009) 92.3

(Petrov, 2010) 91.8

(Huang, 2008) 91.7

(Bohnet and Nivre, 2012) 93.7

Table 5: Test Set Results: Parseval F-score, penn2malt
UAS, Function Label Accuracy and Funtag Function La-
bel Accuracy

are shown in Table 6.

S
&
<
=
4

Comparison

Func Right vs. No Func Right
Func Left vs. No Func Left
Func Right vs. Func Left

No Func Right vs. No Func Left
DD Right Bin vs. Func Right
DD Right Bin vs. No Func Right
DD Left Bin vs. Func Left

DD Left Bin vs. No Func Left
DD Right Bin vs DD Left Bin
DD Func vs. Func Right

DD Func vs. Func Left

DD No Func vs. No Func Right
DD No Func vs. No Func Left
DD Func vs. DD No Func

DD3 vs. DD Right Bin

DD3 vs. No Func Left

DD3 vs. DD Func

DD4 vs. DD. Right Bin

DD4 vs. DD. Left Bin

DD4 vs. DD Func

DD4 vs. DD3

X NAXRN AR X NN EAX NSNS N % N % %
R TN N N N B e N N T N N N A T

Table 6: Statistical Significance Testing

We measured the performance of DD4 on the test
set. It is approximately 3 times slower than the
slowest product model (left binarization with func-
tion labels) and 7 slower than the fastest one (right
binarization without function labels). This system
performs on average 85.5 iterations of the DD al-
gorithm. If we exclude the non-converging cases
(5.1% of the cases), this drops to 39.4.
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Finally we compare our results with systems
trained and evaluated on the PTB, see the lower half
of Table 5. Our product models are not different
from those presented in (Petrov, 2010) and it is not
surprising to see that the F-scores are similar. More
interestingly our DD4 setting improves on these re-
sults and compares favorably with systems relying
on richer syntactic information, such as the discrim-
inative parser of (Huang, 2008) that makes use of
non-local features to score trees and the TSG parser
of (Shindo et al., 2012) that can take into account
larger tree fragments: this would indicate that by
combining our parsers we extend the domain of lo-
cality, horizontally with binarization schemes and
vertically with function labels. Our system also per-
forms better than the combination system presented
in (Zhang et al., 2009) that only relies on material
from the PTB® but a more detailed comparison is
difficult: this system does not use products of la-
tent models and more generally their method is or-
thogonal to ours. We also include for comparison
state-of-the-art dependency parsing results (Bohnet
and Nivre, 2012).

6 Conclusion

We presented an algorithm and a set of experiments
showing that grammar extraction strategies can be
combined in an elegant way and give state-of-the-art
results when applied to high-quality phrase-based
parsers. As well as repeating these experiments for
languages which rely more on function annotation,
we also plan to apply our method to other types of
annotations, e.g. more linguistically motivated bina-
rization strategies or — of particular interest to us —
annotation of empty elements.
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