
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1124–1135,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Identifying Multiple Userids of the Same Author

Tieyun Qian Bing Liu
State Key Laboratory of Software Eng.

Wuhan University

Department of Computer Science

University of Illinois at Chicago

16 Luojiashan Road 851 South Morgan St., Chicago

Wuhan, Hubei 430072, China IL, USA, 60607

qty@whu.edu.cn liub@cs.uic.edu

Abstract

This paper studies the problem of identifying

users who use multiple userids to post in so-

cial media. Since multiple userids may belong

to the same author, it is hard to directly apply

supervised learning to solve the problem. This

paper proposes a new method, which still uses

supervised learning but does not require train-

ing documents from the involved userids. In-

stead, it uses documents from other userids

for classifier building. The classifier can be

applied to documents of the involved userids.

This is possible because we transform the

document space to a similarity space and

learning is performed in this new space. Our

evaluation is done in the online review do-

main. The experimental results using a large

number of userids and their reviews show that

the proposed method is highly effective.

1 Introduction

It is common knowledge that some users in social

media register multiple accounts/userids to post

articles, blogs, reviews, etc. There are many rea-

sons for doing this. For example, due to past post-

ings, a user may become despised by others.

He/she then registers another userid in order to

regain his/her status. A user may also use multiple

userids to instigate controversy or debates to popu-

larize a topic to make it “hot” or even just to pro-

mote activities at a website. Yet, a user may also

use multiple userids to post fake or deceptive opin-

ions to promote or demote some products (Liu,

2012). It is thus important to develop technologies

to identify such multi-id users. This paper deals

with this problem based on writing style and other

linguistic clues.

Problem definition: Given a set of userids ID =

{id1, …, idn} and each idi has a set of documents

Di, we want to identify userids that belong to the

same physical author.

The main related works to ours are in the area of

authorship attribution (AA), which aims to identify

authors of documents. AA is often solved using

supervised learning. Let A = {a1, …, ak} be a set of

authors (or classes) and each author ai  A has a

set of training documents Di. A classifier is then

built to decide the author a of each test document

d, where a  A. We will discuss this and other re-

lated works in Section 2.

This supervised AA formulation, however, is

not suitable for our task because we only have

userids but not real authors. Since some of the

userids may belong to the same author, we cannot

treat each userid as a class because in that case, we

will be classifying based on userids, which won’t

help us find authors with multiple userids (see Sec-

tion 7 also).

This paper proposes a novel algorithm. To sim-

plify the presentation, we assume that at most two

userids can belong to a single author, but the algo-

rithm can be extended to handle more than two

userids from the same author. Using this assump-

tion, the algorithm works in two steps:

1. Candidate identification: For each userid idi,

we first find the most likely userid idj (i ≠ j) that

may have the same author as idi. We call idj the

candidate of idi. We also call this function can-

did-iden, i.e., idj = candid-iden(idi). For easy

presentation, here we only use one argument for
* The work was mainly done when the first author was visit-

ing the University of Illinois at Chicago.

1124

candid-iden. In the computation, it needs more

arguments (see Section 4).

2. Candidate confirmation: In the reverse order,

we apply the function candid-iden on idj, which

produces idk, i.e., idk = candid-iden(idj).

Decision making: If k = i, we conclude that idi

and idj are from the same author. Otherwise, idi

and idj are not from the same author.

The key of the algorithm is candid-iden. An ob-

vious approach for candid-iden is to use an infor-

mation retrieval method. We can first split the

documents Di of each idi into two subsets, a query

set Qi and a sample set Si. We then compare each

query document in Qi with each sample document

in Sj from other userids idj ( ID – {idi}). Cosine

can be used here for similarity comparison. All the

similarity scores are then aggregated and used to

rank the userids in ID – {idi}. The top ranked

userid is the candidate for idi. Note that partition-

ing the documents of a userid idi into the query set

Qi and the sample set Si is crucial here. We cannot

use all documents in Di to compare with all docu-

ments in Dj. If so and we get candid-iden(idi) = idj,

we will definitely get candid-iden(idj) = idi since

the similarity function is symmetric.

This cosine similarity based method, however,

does not work well (see Section 7). We propose a

supervised learning method to compute the scores.

For this, we need to reformulate the problem.

The idea of this reformulation is to learn in a

similarity space rather than in the original docu-

ment space as in traditional AA. In the new formu-

lation, each document d is still represented as a

feature vector, but the vector no longer represents

the document d itself. Instead, it represents a set of

similarities between the document d and a query q.

We call this method learning in the similarity

space (LSS).

Specifically, in LSS, each document d is first

represented with a document space vector (called a

d-vector) based on the document itself as in the

traditional classification learning of AA. Each fea-

ture in the d-vector is called a d-feature (docu-

ment-feature). A query document q is represented

in the same way. We then produce a similarity vec-

tor sv (called s-vector) for d. sv consists of a set of

similarity values between document d (in a d-

vector) and query q (in a d-vector):

sv =Sim(d, q),

where Sim is a similarity function consists of a set

of similarity measures. Thus, the d-vector for doc-

ument d in the document space is transformed to

an s-vector sv for d in the similarity space. Each

feature in sv is called an s-feature. For example,

we have the following d-vector for query q:

 q: 1:1 2:1 6:2

where x:z represents a d-feature x (a word) and its

frequency z in q. We also have two non-query

documents, one is d1 which is written by the author

of query q and the other is d2 which is not written

by query author q. Their d-vectors are:

 d1: 1:2 2:1 3:1 d2: 2:2 3:1 5:2

If we use cosine as the first similarity measure in

Sim, we can generate an s-feature 1:0.50 for d1

(cosine(q, d1) = 0.50) and an s-feature 1:0.27 for d2

(cosine(q, d2) = 0.27). If we have more similarity

measures more s-features can be produced. The

resulting two s-vectors for d1 and d2 with their

class labels, 1 and -1, are as follows:

 d1: 1 1:0.50 … d2: -1 1:0.27 …

Class 1 means “written by author of query q”, also

called q-positive, and class -1 means “not written

by author of query q”, also called q-negative.

LSS gives us a two-class classification problem.

In this formulation, a test userid and his/her docu-

ments do not have to be seen in training as long as

a set of known documents from this userid is

available. Any supervised learning method can be

used to build a classifier. We use SVM. The result-

ing classifier is employed to compute a score for

each review to be used in the two-step algorithm

above to find the candidate for each userid and

then the userids with the same authors.

Due to the use of query documents, the LSS

formulation has some resemblance to document

ranking based on learning to rank (Li, 2011; Liu,

2011). However, LSS is very different because we

turn the problem into a supervised classification

problem. The key difference between learning to

rank and classification is that ranking will always

put some documents at the top even if the desired

documents do not exist. However, classification

will not return any document if the desired docu-

ments do not exist in the test data (unless there are

classification errors). Our Type II experiments in

Section 7 were specifically designed for testing

such non-existence situations.

1125

Using online review as the application domain,

we conduct experiments on a large number of re-

views and their author/reviewer userids from Am-

azon.com. The results show that the proposed

algorithm is highly accurate and outperforms three

strong baselines markedly.

2 Related Work

A similar problem was attempted in (Chen et al.,

2004) in the context of open forums where users

interact with each other in their discussions. Their

method is based on post relationships and intervals

between posts. It does not use any linguistic clues.

It is thus not applicable to domains like online re-

views. Reviews do not involve user interactions

since each review is independent of other reviews.

Novak et al. also solved the same problem under

the name of “Anti-aliasing” (Novak et al., 2004).

They used a clustering based method which as-

sumed the number of actual authors is known. This

is unrealistic in practice as there is no way to know

which author has and does not have multiple ids.

Our work is also related to authorship attribu-

tion (AA). However, to our knowledge, our prob-

lem has not been attempted in AA. Existing works

focused on two main themes: finding good writing

style features, and developing effective classifica-

tion methods. On finding good features (d-features

in our case), it was found that the most promising

features are function words (Mosteller, 1964; Ar-

gamon and Levitan, 2004; Argamon et al., 2007)

and rewrite rules (Halteren et al., 1996). Length

(Gamon 2004; Graham et al., 2005), richness (Hal-

teren et al., 1996; Koppel and Schler, 2004), punc-

tuations (Graham et al., 2005), character n-grams

(Grieve, 2007; Hedegaard and Simonsen, 2011),

word n-grams (Burrows, 1992; Sanderson and

Guenter 2006), POS n-grams (Gamon, 2004; Hirst

and Feiguina, 2007), syntactic category pairs (Na-

rayanan et al., 2012) are also useful.

On classification, numerous methods have been

tried, e.g., Bayesian analysis (Mosteller, 1964),

discriminant analysis (Stamatatos et al., 2000),

PCA (Hoover, 2001), neural networks (Graham et

al., 2005; Zheng et al., 2006; Graham et al., 2005),

clustering (Sanderson and Guenter, 2006), decision

trees (Uzuner and Katz, 2005; Zhao and Zobel,

2005), regularized least squares classification

(Narayanan et al., 2012), and SVM (Diederich et

al., 2000; Gamon 2004; Koppel and Schler, 2004;

Hedegaard and Simonsen, 2011). Among them,

SVM was found to be most accurate (Li et al.,

2006; Kim et al., 2011). Although we also use

supervised learning, we do not learn in the original

document space as these existing methods do. The

transformation is important because it enables us

to use documents from other authors in training.

The traditional supervised learning (TSL) cannot

do that. In our case, the only documents that TSL

can use for training are the queries in the testing

set. However, as we will see in our experiments,

such a method performs poorly.

Since we use online reviews as our experiment

domain, our work is related to fake review detec-

tion (Jindal and Liu, 2008) as imposters can use

multiple userids to post fake reviews. Existing re-

search has proposed many methods to detect fake

reviewers (Lim et al., 2010; Wang et al., 2011;

Mukherjee et al., 2012) and fake reviews (Jindal

and Liu, 2008; Ott et al., 2011, 2012; Li et al.,

2011; Feng et al., 2012). However, none of them

identifies userids belonging to the same person.

3 Learning in the Similarity Space

We now formulate the proposed supervised

learning in the similarity space (LSS), which will

be used in the candid-iden function in our algo-

rithm to be discussed in Section 4.

The key difference between LSS and the classic

document space learning is in the document repre-

sentation. Another difference is in the testing

phase. We discuss testing first.

Test data: We are given:

 A query q from query author (userid) aq

 A set of test documents DT = {dt1, …, dtm}.

Goal: classify the test documents into those au-

thored by aq and those not authored by aq.

We note the following points:

i) This is like a retrieval scenario, but we use su-

pervised learning to perform the task.

ii) Unlike traditional supervised classification,

here the test query author aq does not have to

be used in training. But we are given a query

document q from aq. Clearly, in practice, we

can have multiple query documents from aq,

which we will discuss in Section 4.

Training document representation: As noted

earlier, each document is represented with a simi-

larity vector (s-vector) computed using a similarity

1126

function Sim. Sim takes a query document and a

non-query document and produces a vector of sim-

ilarity values or s-features to represent the non-

query document. We present the detail below:

Let the set of training authors be AR = {ar1, ..,

arn}. Each author ari has a set of documents DRi.

Each document in DRi is first represented with a

document vector (or d-vector). The algorithm for

producing the training set, called s-training set, is

given in Figure 1.

We randomly select a small set of queries Qi

from documents DRi of each author ari (lines 1,

and 2). For each query qij  Qi (line 3), it selects a

set of documents DRij also from DRi (excluding qij)

of the same author (line 4) to be the positive doc-

uments for qij, called q-positive and labeled 1.

Then, for each document drijk in DRij, a q-positive

s-training example with the label 1 is generated for

drijk by computing the similarities of qij and drijk

using the similarity function Sim (lines 5, 6). In

line 7, it selects a set of documents DRij,rest from

other authors to be the negative documents for qij,

called q-negative and labeled -1. For each docu-

ment drijk,rest in DRij,rest (line 8), a q-negative s-

training example with label -1 is generated for drijk

by computing the similarities of qij and drijk,rest us-

ing Sim (line 9). How to select Qi, DRij and DRij,rest

(lines 2, 4 and 7) is left open intentionally to give

flexibility in implementation.

This formulation gives us a two-class classifica-

tion problem. The classes are 1 (q-positive mean-

ing “written by author of query qij”) and -1 (q-

negative meaning “not written by author of query

qij.” Figure 2 shows what the s-training data looks

like. For easy presentation, we assume that there

are k queries in every Qi, and p documents in every

DRij and u documents in every DRij,rest. The num-

ber of authors is n. Each author ari generates

k×(p+u) s-training examples. As we will see in

Section 7, k can be very small, even 1.

Complexity: In the worst case, every document

1. For each document set Di of idi  ID do
2. partition Di into two subsets:
 (1) query set Qi and (2) sample set Si;

3. For each document set Di of idi  ID do
 // step 1: candidate identification
4. idj = candid-iden(idi, ID), i < j;
 // step 2: candidate confirmation
5. idk = candid-iden(idj, ID), k ≠ j;

6. If k = i then idi and idj are from the same author
8. else idi and idj are not from the same author

Figure 3: Identifying userids from the same authors

Function candidate-iden(idi, ID)

1. For each sample document set Sj of idj  ID-{idi} do
2. pcount[idj], psum[idj], psqsum[idj], max[idj] = 0;

3. For each query qi  Qi do

4. For each sample sjf  Sj do
5. ssjf = <(idi, qi), (Sim(sjf, qi), ?)>;
6. Classify ssjf using the classifier built earlier;
7. If ssjf is classified positive, i.e., 1 then
8. pcount[idj] = pcount[idj] + 1;
9. psum[idj] = psum[idj] + ssjf.score
10 psqsum[idj] = psqsum[idj] + (ssjf.score)2
11. If ssif.score > max[idj] then
12. max[idj] = srjf.score

// Four methods to decide which idj is the candidate for idi

13. If for all idj  ID-{idi}, pcount[idi] = 0 then

14.])(max[maxarg
}{

j
idIDid

idcid
ij 



15. Else)
||

][
(maxarg

}{ j

j

idIDid S

idpcount
cid

ij 

 // 1. Voting

16.)
||

][
(maxarg

}{ j

j

idIDid S

idpsum
cid

ij 

 // 2. ScoreSum

17.)
||

])[(
(maxarg

2

}{ j

j

idIDid S

idpsum
cid

ij 

 // 3. ScoreSqSum

18.])(max[maxarg
}{

j
idIDid

idcid
ij 

 // 4. ScoreMax

19. return cid;

Figure 4: Identifying the candidate

1. For each author ari  AR

2. select a set of query documents Qi  DRi

3. For each query qij  Qi

 // produce positive s-training examples

4. select a set of documents from author ari

 DRij  DRi – {qij}

5. For each document drijk  DRij

6. produce an s-training example for drijk,

 (Sim(drijk, qij), 1)

 // produce negative s-training examples

7. select a set of documents from the rest of authors

 DRij,rest  (DR1  …  DRn) – DRi

8. For each document drijk,rest  DRij,rest

9. produce an s-training example for drijk,rest,

 (Sim(drijk,rest, qij), -1)

Figure 1: Generating s-training examples

// Author ar1 –

// positive (1) s-training examples

(Sim(dr111, q11), 1), …, (Sim(dr11p, q11), 1)

…

(Sim(dr1k1, q1k), 1), …, (Sim(dr1kp, q1k), 1)

// negative (-1) s-training examples

(Sim(dr111.rest, q11), -1), …, (Sim(dr11u.rest, q11), -1)

…

(Sim(dr1k1.rest, q1k), -1), …, (Sim(dr1ku.rest, q1k), -1)

…

Figure 2: s-training examples

1127

can serve as a query or a non-query document.

Then we need to compute all pairwise document

similarities. If the number of training documents is

m, the complexity is O(m2), which is both space

and computation expensive. However, in practice,

we don’t need all pairwise comparisons. Only a

small subset is sufficient (see Section 7).

Test document representation: Like training

documents, test documents are represented as s-

vectors as well in the similarity space.

Given a query q from author aq and a set of test

documents DT, each test document dti is converted

to a s-vector svi = Sim(dti, q). To reflect svi is com-

puted based on query q from author aq, a s-test

case is thus represented as <(aq, q), (svi, ?)>.

Training: A binary classifier is learned using the

s-training data. Each s-training example is repre-

sented with (sv, y), where sv is an s-vector and y

( {1, -1}) is its class. Any supervised learning

algorithm, e.g., SVM, can be applied.

Testing: The classifier is applied to each s-test

case <(aq, q), (svi, ?)> (where svi = S(dti, q)) to

give it a class q-positive or q-negative. Note that

the classifier is only applied on svi.

In most cases, classification based on a single que-

ry is inaccurate. Using multiple queries of an au-

thor can classify much more accurately.

4 Identify Userids of the Same Author

We now expand the sketch of the two-step algo-

rithm in Section 1 based on the problem statement

in Section 1. The algorithm is given in Figure 3.

Lines 1-2 partitions the documents set Di of

each idi in ID = {id1, id2, …, idn}, the set of userids

that we are working on. How to do the partition is

flexible (see Section 7). Line 4 is the step 1 of

candidate identification, and line 5 is the step2 of

candidate confirmation. Lines 6-8 is the decision

making of step 2 (see Section 1). Line 6 produced

a classification score using the classifier described

in Section 3. The key function here is candid-iden.

Its algorithm is in Figure 4.

The candid-iden function takes two arguments:

the query userid idi and the whole set of userids

ID. It classifies each sample ssjf in sample set Sj of

idj  ID-{idi} to positive (qi-positive) or negative

(qi-negative) (lines 4, 5, 6). We then aggregate the

classification results to determine which userid is

likely to have the same author as idi.

One simple aggregation method is voting. We

count the total number of positive classifications of

the sample documents of each userid in ID-{idi}.

The userid idj with the highest count is the candi-

date cid which may share the same author as query

idi. cid is returned as the candidate.

There are also other methods, which can depend

on what output value the classifier produces. Here

we propose four methods including the voting

method above. The other three methods requires

the classifier to produces a prediction score, which

reflects the positive and negative certainty. Many

classification algorithms produce such a score.

Here we use SVM. For each classification, SVM

outputs a positive or negative score indicating the

certainty that the test case is positive or negative.

To save space, all four alternative methods are

given in Figure 4. Line 2 initializes some variables

for recording the aggregated values for the final

decision making. The four methods are as follows:

1). Voting: For each sample from userid idj, if it is

classified as positive, one vote/count is added

to pcount[idj]. The userid with the highest

pcount is regarded as the candidate userid, cid

(line 15). Note that the normalization is ap-

plied because the sizes of the sample sets Sj

can be different for different userids. Lines 13

and 14 mean that if all documents of all

userids are classified as negative (pcount[idj] =

0, which also implies psum[idj] = psqsum[idj]

= 0), we use method 4).

2). ScoreSum: This method works similarly to the

voting method above except that instead of

counting positive classifications, this method

sums up all scores of positive classifications in

psum[idj] for each userid (line 9). The decision

is also made similarly (line 16).

3). ScoreSqSum: This method works similarly to

ScoreSum above except that it sums up the

squared scores of positive classifications in

psqsum[idj] for each userid (line 10). The deci-

sion is also made similarly (line 17).

4). ScoreMax: This method works similarly to the

voting method as well except that it finds the

maximum classification score for the docu-

ments of each userid (lines 11 and 12). The

decision is made in line 18.

5 D-features

We now compute s-features (similarity features)

1128

for each non-query document based on a query

document. Since s-features are calculated using d-

features of a non-query document and a query

document, we thus discuss d-features first, which

are extracted from each document itself. We em-

ploy 26 d-features in four categories: length d-

features, frequency based d-features, tf.idf based d-

features, and richness d-features. Although many

features below have been used in various tasks

before, our key contribution is solving a new prob-

lem based on a new learning formulation (LSS).

Length d-feature: We derive three length d-

features from each raw document: (1) average

sentence length (in terms of word count); (2)

average word length (in terms of character count

in one word); (3) average document length (in

terms of word count in one document).

Frequency based d-features: We extract lexical,

syntactic, and stylistic tokens from the raw docu-

ments and the parsed syntactic trees to produce the

following features:

 Lexical tokens: word unigrams

 Syntactic tokens: content-independent struc-

tures: POS n-grams (1 ≤ n ≤ 3) and rewrite rules

(Halteren et al., 1996; Hirst and Feiguina, 2007).

A rewrite rule is a combination of a node and

its immediate constituents in a syntactic tree.

For example, the rewrite rule for "the best

book" is NP->DT+JJS+NN.

 Common stylistic token: K-length word (1 ≤ K ≤

15), punctuations, and 157 function words

(www.flesl.net/Vocabulary/SinglewordLists/fun

ctionwordlist.php).

 Review specific stylistic tokens: These tokens

reflect styles of reviews: all cap words, pairs of

quotation marks, pairs of brackets, exclamatory

marks, contractions, two or more consecutive

non-alphanumeric characters, model auxilia-

ries (e.g., should, must), word “recommend” or

“recommended”, sentences with the first letter

capitalized, sentences starting with This is (this

is) or This was (this was). We then treat these

tokens as pseudo-words and count their fre-

quency to form frequency d-features.

TF-IDF based d-feature: For the tokens listed in

the frequency based features above, we also com-

pute their tf.idf values. We list these two kinds of

d-features separately because they will be used for

different s-features later.

Richness d-features: This is a set of vocabulary

richness functions used to quantify the diversity of

vocabulary in text (Holmes and Forsyth, 1995). In

this paper, we apply them to the counts of word

unigrams, POS n-grams (1 ≤ n ≤ 3), and rewrite

rules. Here POS n-grams and rewrite rules are

treated as pseudo-words. Let T be the total number

of tokens (words or pseudo-words), and V(T) be

the number of different tokens in a document, v be

the highest frequency of occurrence of a token, and

V(m, T) be the number of tokens which occur m

times in the document. We use the following six

richness measures (Yule, 1944; Burrows, 1992;

Halteren et al., 1996) given in Table 1: Yule’s

characteristic (K), Hapax dislegomena (S), Simp-

son’s index (D), Honorës measure (R), Brunet’s

measure (W), and Hapax legomena (H). They give

us a set of richness d-features about word uni-

grams, POS n-grams, and rewrite rules.

Table 1. Richness metrics

2

4 1

2

(* (,))

10 *

v

m

m V m T T

K
T








(2,)

()

V T
S

V T


1

(*(1)* (,))

*(1)

v

m

m m V m T

D
T T










100*log()

1 (1,) / ()

T
R

V T V T




(1,)H V T

() , 0.17
aV TW T a



 

6 S-Features

The extracted d-features are transformed into s-

features, which are a set of similarity functions on

two documents. We adopt five types of s-features.

Sim4 Length s-features: This is a set of four simi-

larity functions defined by us. They are used for d-

feature vectors of length. The four formulae are

given in Table 2, where lwq. (lwd), lsq. (lsd), and lrq.

(lrd) denote the average word, sentence, and docu-

ment length respectively, either in query q or non-

query document d. They produce four s-features.

Table 2. Sim4 for computing length s-features

1/ (1 log(1 | |))wq wdl l  

1/ (1 log(1 | |))sq sdl l  

1/ (1 log(1 | |))rq rdl l  

{ , , } { , , } { , , }

22(*) / () * ()
m w s r m w s r m w s r

mq md mq mdl l l l
  

  

1129

Sim3 Sentence s-features: This is a set of three

sentence similarity functions (Metzler et al., 2005).

We apply them (called Sim3) to documents. Sim3

s-features are used for frequency based d-features.

The three formulae are given in Table 3, where f(t,

s) is the frequency count of token t in a document s,

and lq and ld are the average document length of

the query and non-query document, respectively.

Table 3. Sim3 for computing sentence s-features

(,) / ((,) (,) (,))
t q d t q t d t q d

f t d f t q f t d f t d
     

    

(,)

log ()*
(,) (,) (,) (,)

t q d

t q d

t q t d t q d

f t d
N

f t d f t q f t d f t d

 

 

   

 



  

1 * ()
*

1 log(1 | |) 1 | (,) (,) |t q dq d

N idf t

l l f t q f t d     


Sim7 Retrieval s-features: This is a set of seven

similarity functions (Table 4) applicable to all fre-

quency based d-features. These functions were

used in information retrieval (Cao et al., 2006).

Table 4. Sim7 for computing retrieval s-features

log((,) 1)
t q d

f t d
 

 | |
log(1)

(,)t q d

D

f t d 



log(())
t q d

idf t
 

 (,)
log(1)

| |t q d

f t d

d 



(,)
log(* () 1)

| |t q d

f t d
idf t

d 

 log(25)BM score

(,) | |
log(* 1)

| | (,)t q d

f t d D

d f t d 



In Table 4, f(t, d) denotes the frequency count of

token t in a non-query document d, q denotes the

query, D is the entire collection, |.| is the size of a

set, and idf is the inverse document frequency.

These 7 formulae can produce 7 s-features.

SimC tf-idf s-feature: This is the cosine similarity

used for d-vectors represented by the tf.idf based

d-features. SimC tf-idf produces one s-feature.

SimC Richness s-feature: This is also cosine sim-

ilarity. However, it is applied to the richness d-

feature vectors, and produces one s-feature.

7 Experimental Evaluation

We now evaluate the proposed approach and com-

pare it with baselines. All our experiments use the

SVMperf classifier (Joachims, 2006).

7.1 Experiment Setup

Experiment Data: We use a set of reviews and

their authors/reviewers from Amazon.com as our

experiment data. We select the authors who have

posted more than 30 reviews in the book category.

After cleaning, we have 831 authors, 731 authors

for training and 100 authors for testing. The num-

bers of reviews in the training and test author set

are 59256 and 14308, respectively. We use the

Stanford parser (Klein and Manning, 2003) to gen-

erate the grammar structure of review sentences

for extracting syntactic d-features. Note that the

authors here are in fact userids. However, since

they are randomly selected from a large number of

userids, the probability that two sampled userids

belong to the same person is very small. Thus, it

should be safe to assume that each userid here rep-

resents a unique author.

Training data: We randomly choose 1 (one) re-

view for each author as the query and all of his/her

other reviews as q-positive reviews. The q-

negative reviews consist of reviews randomly se-

lected from the other 730 authors, two reviews per

author. We also tried to use more queries from

each author, but they make little difference.

Test data: The test authors are all unseen, i.e.,

their reviews have not been used in training. We

prepare the test case for each author as follows.

We first divide the reviews of each author into

two equal subsets. The purpose is to simulate the

situation where there are two userids idia and idib

from the same author ai. Our objective is that giv-

en one userid idia and its query set, we want to find

the other userid idib from the same author.

For the review subset of idia (or idib), we ran-

domly select 9 reviews as the query set and anoth-

er 10 reviews as the sample set for the userid. The

two sets are disjoint. We don’t use more queries or

sample reviews from each author since in the re-

view domain most authors do not have many re-

views (Jindal and Liu, 2008). In the experiments,

we will vary the number of test userids, the num-

ber of queries, and the number of samples. We use

the following format to describe each test data:

T<n>_Q<n>S<n>, where T denotes the total num-

ber of test userids, Q the query set and S the sam-

ple set, and <n> a number. For example,

T50_Q9S10 stands for a test data with 50 userids,

and for each userid, 9 reviews are selected as que-

ries and 10 reviews are selected as samples. * rep-

1130

resents a wildcard whose value we can vary.

Note that we use this “artificial” data rather than

manually labeled data for our experiments because

it is very hard to reliably label any gold-standard

data manually in this case. The problem is similar

to labeling fake reviews. In the fake review detec-

tion research, researchers have manually label fake

reviews and reviewers (Yoo and Gretzel 2009;

Lim et al., 2010; Li et al., 2011; Wang et al., 2011).

However, based on the actual fake reviews written

using Amazon Mechanical Turk, Ott et al. (2011)

have showed that the accuracy of human labeling

of fake reviews is very poor. We also believe that

our test data is realistic for evaluation as we can

image that the two sets of reviews are from two

accounts (userids) of the same author (reviewer).

Two types of experiments: For each author with

two userids, we conduct two types of tests.

 Type I: Identify two userids belong to the same

author. The experiment runs iteratively to test

every userid. In each iteration, we plant one

userid of an author in the test set and use the

other userid of the same author as the query

userid. That is, in the ith run, the test data con-

sist of the following two components:

1. Query userid idia and its query set Qia

2. Test userids {id1a, …, id(i-1)a, idib, …, idma}

and their corresponding sample review sets

{S1a, …, S(i-1)a, Sib, …, Sma}.

Note that the query userid idia and the test

userid idib are from the same author. Our objec-

tive is to use Qia to find idib through Sib.

Evaluation measure: We use precision, recall,

and F1 score to evaluate Type I experiments as

we want to identify all matching pairs. The er-

rors are “no pair” and “wrong pair” found.

 Type II: Type II experiments test the cases

when no pair exists. That is, we do not plant

any matching userid for the query userid. Then,

the algorithm should not find anything. For the

ith run, the test data has these components:

1. Query userid idia and its query set Qia

2.Test userids {id1a, …, id(i-1)a, id(i+1)a, …, idma}

and their sample review sets {S1a, …, S(i-1)a,

S(i+1)a, …, Sma}. idib is not planted.

Evaluation measure: Here we cannot use pre-

cision and recall because we are not trying to

find any pairs. We thus use accuracy as our

measure. For each idi, if no pair is found, it is

correct. If a pair is found, it is wrong.

Baseline methods: As mentioned eariler, there

are only two works that tried to identify multi-id

users. The first is that in (Chen et al., 2004).

However, as we discussed in related work, their

approach is not applicable to reviews. The other is

that in (Novak et al., 2004), which used clustering

but assumed that the number of actual authors (or

clusters) is known. This is unrealistic in practice.

Thus we designed three new baselines:

TSL: This baseline is based on the traditional su-

pervised learning (TSL). We use it to evaluate

how the traditional approach performs in the

original feature space. In this case, each docu-

ment in TSL has to be represented as a vector of

d-features or traditional n-gram features. For

each test userid id, we build a SVM classifier

based on the one vs. all strategy. That is, for

training we use id’s queries in T*_Q*S10 as the

positive documents, and all queries of the other

test userids (e.g., 99 userids if the test data has

100 userids) as the negative documents. Note

that TSL cannot use the 731 userids for training

as in LSS because they do not appear in the test

data. In testing, userid id’s sample (non-query)

documents in T*_Q*S10 are used as positive

documents, and the sample documents of all oth-

er test userids are used as negative documents.

SimUG: It uses the word unigrams to compare the

cosine similarity of queries and samples. Cosine

similarity with unigrams is the most widely used

document similarity measure.

SimAD: It uses all d-features to compare the cosine

similarity of queries and samples.

For both SimUG and SimAD, their cosine simi-

larity values are used in place of SVM scores of

LSS or TSL. We then apply the same 4 strategies

to decide the final author attribution except voting

as cosine similarity cannot classify.

7.2 Results and analysis

1) Effects of positive/total ratio in training set:

Since our data is highly skewed and too many neg-

ative cases may not be good for classification, we

thus performed this experiment to find a good ratio.

Table 5 shows the results for Type I experiments.

From Table 5, we can see that the results are high-

ly accurate. Even for 100 userids, our method can

correctly identify 85% cases. Here we use the data

sets T*_Q9S10 and the decision method is

ScoreSqSum, which produces the best result. The

1131

results for Type II experiments (Table 6) are also

accurate. In most cases, the values of accuracy are

higher than 90%. For all our experiments below,

we use the model/classifier trained with 0.4 ratio.

Table 5. Positive(p)/total(t) ratio in training (Type I)

F1

p/t 10 30 50 80 100
0.3 100.00 84.62 86.36 88.89 83.72

0.4 100.00 91.91 90.11 88.89 85.71

0.5 100.00 90.91 91.30 88.89 87.01

0.6 94.74 82.35 87.64 85.71 86.36

0.7 94.74 84.62 86.36 86.53 87.64

Table 6. Positive(p)/total(t) ratio in training (Type II)

Accuracy

p/t 10 30 50 80 100
0.3 90.00 90.00 92.00 97.50 94.00

0.4 90.00 90.00 94.00 98.75 95.00

0.5 80.00 86.67 94.00 97.75 95.00

0.6 80.00 86.67 90.00 93.75 92.00

0.7 80.00 86.67 90.00 95.00 92.00

(2) Effects of different decision methods: We

show the results of the four proposed decision

methods: Voting, ScoreSum, ScoreSqSum, and

ScoreMax, using our basic data of T*_Q9S10 with

varied number of test userids. Figure 5(a) shows

that ScoreSqSum is the best for Type I experi-

ments. Figure 5(b) shows ScoreMax is the best for

Type II, but ScoreSqSum also does very well. Be-

low, ScoreSqSum is used as our default method

because Type I is more important than Type II.

 (a) Type I (b) Type II

Figure 5: Effect of different decision methods

(3) Effects of number of queries per userid:

Figure 6 shows the results of different numbers of

queries. We see that more queries give better re-

sults, which is easy to understand because more

queries give more information. We use 9 queries

per userid in all other experiments.

 (a) Type I (b) Type II

Figure 6: Effect of different numbers of queries

(4) Effects of number of samples per userid: We

tried 2, 4, 6, 8, 10 samples per userid. Although

there are some fluctuations for Type II (Fig.7(b)),

we can see an upward trend for Type I in Fig. 7(a).

This indicates that more sample documents give

better results in general. The main reason again is

that more samples from a userid give more identi-

fying information about the userid. We use 10 test

documents (samples) per userid in all experiments.

 (a) Type I (b) Type II

Figure 7: Effect of different number of samples

(5) Impact of individual s-feature sets: Here we

show the effectiveness of individual s-feature sets.

From Table 7, we see that Sim7Retrieval s-

features are extremely important for Type I test.

Removing Sim7Retrieval causes about 10% to

20% F1 score drop on different datasets. SimCT-

fidf s-features are also useful. The impacts of other

s-features are small. The same applies to Type II

test (Table 8). On average, using all features is the

best. Hence we use all features in all other experi-

ments above.

Table 7. Using different s-features (Type I)

T*_Q9S10 F1

10

F1

30

F1

50

F1

80

F1

100

All features 100.00 90.91 90.11 88.89 85.71

No Sim4Len 100.00 88.89 86.36 87.32 85.06

No SimCRichness 100.00 88.89 91.30 88.89 85.71

No SimCTfidf 100.00 80.00 86.36 86.53 83.72

No Sim7Retrieval 82.35 72.34 75.80 78.79 77.30

No Sim3Sent 94.74 84.62 86.36 88.11 87.64

Table 8. Using different s-features (Type II)

T*_Q9S10 Acc.

10

Acc

30

Acc.

50

Acc

80

Acc.

100

All features 90.00 90.00 94.00 98.75 99.00

No Sim4Len 90.00 93.33 96.00 96.25 96.00

No SimCRichness 90.00 90.00 94.00 96.25 96.00

No SimCTfidf 90.00 86.67 94.00 93.75 97.00

No Sim7Retrieval 80.00 90.00 94.00 94.00 96.00

No Sim3Sent 90.00 93.33 92.00 98.75 93.00

(6) Comparing with the three baselines: Similar

to our method, the training data for TSL is highly

skewed as it uses a one-vs.-all strategy. Hence we

also investigate the effect of p/t ratio in training for

TSL. Results show that 0.4 ratio is the best setting.

1132

Thus this setting is adopted for TSL in the follow-

ing experiments. Note that we cannot conduct p/t

ratio experiments for SimAD and SimUG as they

are unsupervised methods. We use ScoreMax for

TSL, ScoreSqSum for SimUG and SimAD, re-

spectively, since they perform the best for their

corresponding approaches. Tables 9 and 10 show

the results of our LSS method and the baseline

methods for Type I and II tests respectively. For

TSL, we use all d-features. Unigram features gave

TSL much worse results and are thus not included

here.

Table 9: Comparison with baselines (Type I)

 10 30 50 80 100

LSS Pre 100.00 100.00 100.00 100.00 98.68

Rec 100.00 83.33 82.00 80.00 75.76

F1 100.00 90.91 90.11 88.89 85.71

TSL Pre 50.00 50.00 33.33 0.00 0.00

Rec 11.11 3.45 2.08 0.00 0.00

F1 18.18 6.45 3.92 0.00 0.00

SimUG Pre 100.00 100.00 100.00 100.00 100.00

Rec 70.00 46.67 48.00 48.75 43.00

F1 82.35 63.64 64.86 65.55 60.14

SimAD Pre 100.00 75.00 100.00 33.33 0.00

Rec 20.00 10.35 2.00 1.28 0.00

F1 33.33 18.18 3.92 2.47 0.00

Table 10: Comparison with baselines (Type II)

Accuracy 10 30 50 80 100

LSS 90.00 90.00 94.00 98.75 95.00

TSL 90.00 96.67 98.00 98.75 99.00

SimUG 96.00 93.33 96.00 96.25 97.00

SimAD 90.00 96.67 98.00 98.75 99.00

From Tables 9 and 10, we can make the follow-

ing observations.

 For Type I, F1 scores of LSS are markedly bet-

ter than those of the three baselines. The results

of SimUG also drop more quickly than LSS

with the increased number of userids. SimAD’s

results are extremely poor. These show that

LSS is much more superior to the unsupervised

methods. TSL performed the worst, indicating

that traditional supervised learning is inappro-

priate for this task. There are two main reasons:

First, for one vs. all learning, the negative train-

ing data actually contain positive documents

which are written by the same author using an-

other userid as the positive data, which confus-

es the classifier. Second, TSL is unable to build

an accurate classifier using the small number of

queries (which are training data). In contrast,

our LSS method can exploit a large number of

other authors who do not have to appear in test-

ing and thus achieves the huge improvements.

 For Type II, LSS also performs very well. The

baselines perform well too and even better,

which is not surprising because they have diffi-

culty in finding matching pairs for Type I.

Since Type II datasets have no author with mul-

tiple userids, naturally the baselines will do

well for Type II. But that is useless because

when there are authors with multiple usersids

(Type I), they are unable to find them well.

In summary, we can conclude that for Type I tests

(there are authors with multiple userids), LSS is

dramatically better than all baseline methods. For

Type II tests (there is no author with multiple

userids), it also performs very well.

8 Conclusion

This paper proposed a novel method to identify

userids that may be from the same author. The

core of the method is a supervised learning method

which learns in a similarity space rather than the

document space. This learning method is able to

better determine whether a document may be writ-

ten by a known author, although no document

from the author has been used in training (as long

as we have some documents from the author to

serve as queries). To the best of our knowledge,

there is no existing method based on linguistic

analysis for solving the problem. Our experimental

results based on a large number of reviewers and

their reviews show that the proposed algorithm is

highly accurate. It outperforms three baselines

markedly.

Acknowledgements

We are grateful to the anonymous reviewers for

their thoughtful comments. Tieyun Qian was sup-

ported in part by the NSFC Projects (61272275,

61272110, 61202036), and the 111 Project

(B07037). Bing Liu was supported in part by a

grant from National Science Foundation (NSF)

under no. IIS-1111092.

References

Shlomo Argamon and Shlomo Levitan. 2004.
Measuring the usefulness of function words for
authorship attribution. Literary and Linguistic
Computing 1-3.

1133

Shlomo Argamon, Casey Whitelaw, Paul Chase,
Sobhan Raj Hota, Navendu Garg, and Shlomo
Levitan. 2007. Stylistic text classification using
functional lexical features: Research articles. J.
Am. Soc. Inf. Sci. Technol. 58:802-822.

John F. Burrows. 1992. Not unless you ask nicely:
The interpretative nexus between analysis and
information. Literary and Linguistic Computing
7:91-109.

Yunbo Cao, Jun Xu, Tie-Yan Liu, Hang Li, Yalou
Huang, and Hsiao-Wuen Hon. 2006. Adapting
ranking svm to document retrieval. Proc. of
SIGIR, Pages 186-193.

Hung-Ching Chen, Mark K. Goldberg, Malik
Magdon-Ismail. 2004. Identifying multi-ID users
in open forums. Intelligence and Security
Informatics, Pages 176-186.

Joachim Diederich, Jörg Kindermann, Edda
Leopold, and Gerhard Paass, 2000. Authorship
attribution with support vector machines.
Applied Intelligence 19:109-123.

Hugo Jair Escalante, Thamar Solorio, and Manuel
Montes-y-Gómez. 2011. Local histograms of
character n-grams for authorship attribution.
Proc. of ACL-HLT, Volume I: 288-298.

Song Feng, Longfei Xing, Anupam Gogar, and
Yejin Choi. 2012. Distributional Footprints of
Deceptive Product Reviews. Proc. of ICWSM.

Michael Gamon. 2004. Linguistic correlates of
style: authorship classification with deep
linguistic analysis features. Proc. of Coling.

Neil Graham, Graeme Hirst, and Bhaskara Marthi.
2005. Segmenting documents by stylistic
character. Natural Language Engineering,
11:397-415.

Jack Grieve. 2007. Quantitative authorship
attribution: An evaluation of techniques. Literary
and Linguistic Computing 22:251-270.

Hans van Halteren, Fiona Tweedie, and Harald
Baayen. 1996. Outside the cave of shadows:
using syntactic annotation to enhance authorship
attribution. Literary and Linguistic Computing
11:121-132.

Steffen Hedegaard and Jakob Grue Simonsen.
2011. Lost in translation: authorship attribution
using frame semantics. Proc. of ACL-HLT, short
papers - Volume 2, 65-70.

Graeme Hirst and Ol’ga Feiguina. 2007. Bigrams
of syntactic labels for authorship discrimination
of short texts. Literary and Linguistic Computing
22:405-417.

David I. Holmes and R. S. Forsyth. 1995. The
Federalist Revisited: New Directions in
Authorship Attribution, Literary and Linguistic
Computing, 10(2): 111-127.

David L. Hoover. 2001. Statistical stylistics and
authorship attribution: an empirical
investigation. Literary and Linguistic Computing
16:421-424.

Nitin Jindal and Bing Liu. 2008. Opinion Spam
and Analysis. Proc. of WSDM, California, USA.

Thorsten Joachims. 2006. Training linear svms in
linear time. Proc. of KDD.

Sangkyum Kim, Hyungsul Kim, Tim Weninger,
Jiawei Han, and Hyun Duk Kim. 2011.
Authorship classification: a discriminative
syntactic tree mining approach. Proc. of SIGIR,
Pages 455-464.

Dan Klein, and Christopher D. Manning. 2003.
Accurate unlexicalized parsing. Proc. of ACL,
423-430.

Moshe Koppel and Jonathan Schler. 2004.
Authorship verification as a one-class
classification problem. Proc. of ICML.

Moshe Koppel, Jonathan Schler, Shlomo
Argamon. 2011. Authorship attribution in the
wild. Lang Resources & Evaluation, 45:83-94

Fangtao Li, Minlie Huang, Yi Yang and Xiaoyan
Zhu. 2011. Learning to identify review Spam.
Proc. of IJCAI.

Hang Li. 2011. Learning to Rank for Information
Retrieval and Natural Language Processing.
Morgan & Claypool publishers.

Jiexun Li, Rong Zheng, and Hsinchun Chen. 2006.
From fingerprint to writeprint. Communications
of the ACM, 49:76-82.

Ee-Peng Lim, Viet-An Nguyen, Nitin Jindal, Bing
Liu, Hady W. Lauw. 2010. Detecting product
review spammers using rating behaviors. Proc.
of CIKM, 2010.

Bing Liu. 2012. Sentiment Analysis and Opinion
Mining, Morgan & Claypool publishers.

1134

Tieyan Liu. 2011. Learning to Rank for Infor-
mation Retrieval. Springer.

Kim Luyckx, Walter Daelemans. 2008. Authorship
Attribution and Verification with Many Authors
and Limited Data. Proc. of Coling, pages 513-
520.

David Madigan, Alexander Genkin, David D.
Lewis, Shlomo Argamon, Dmitriy Fradkin, and
Li Ye. 2005. Author Identification on the Large
Scale. Proc. of CSNA.

Donald Metzler, Yaniv Bernstein, W. Bruce Croft,
Alistair Moffat, and Justin Zobel. 2005.
Similarity measures for tracking information
flow. Proc. of CIKM. Pages 517-524.

Frederick Mosteller, David Lee Wallace. 1964.
Inference and disputed authorship: The
Federalist. Addison-Wesley.

Arjun Mukherjee, Bing Liu, and Natalie Glance.
2012. Spotting Fake Reviewer Groups in Con-
sumer Reviews. Proc. of WWW, Pages 191-200.

Arvind Narayanan, Hristo Paskov, Neil Zhenqiang
Gong, et al. 2012. On the feasibility of internet-
scale author identification. Proceedings of the
2012 IEEE Symposium on Security and Privacy.
Pages 300-314

Jasmine Novak, Prabhakar Raghavan, Andrew
Tomkins. 2004. Anti-aliasing on the web. Proc.
of WWW, Pages 30-39

Myle Ott, Yejin Choi, Claire Cardie, Jeffrey T.
Hancock. 2011. Finding Deceptive Opinion
Spam by Any Stretch of the Imagination. Proc.
of ACL.

Myle Ott, Claire Cardie, Jeffrey T. Hancock. 2012.
Estimating the prevalence of deception in online
review communities. Proc. of WWW.

Fuchun Peng, Dale Schuurmans, Shaojun Wang,
and Vlado Keselj. 2003. Language independent
authorship attribution using character level
language models. Proc. of EACL, Pages 267-
274.

Conrad Sanderson and Simon Guenter. 2006.
Short text authorship attribution via sequence
kernels, markov chains and author unmasking:
an investigation. Proc. of EMNLP, Pages 482-
491.

Yanir Seroussi, Fabian Bohnert, Ingrid Zukerman.
2012. Authorship Attribution with Author-

aware Topic Models. Proc. of ACL, 2:264-269.

Thamar Solorio, Sangita Pillay, Sindhu Raghavan,
Manuel Montes y G´omez. 2011. Modality
Specific Meta Features for Authorship
Attribution in Web Forum Posts. Proc. of
IJCNLP, Pages 156-164.

Efstathios Stamatatos. 2009. A Survey of Modern
Authorship Attribution Methods. Journal of the
American Society for Information Science and
Technology, 60(3):538-556, Wiley.

Efstathios Stamatatos, George Kokkinakis, and

Nikos Fakotakis. 2000. Automatic text

categorization in terms of genre and author.

Comput. Linguist. 26:471-495.

Özlem Uzuner and Boris Katz. 2005. A
comparative study of language models for book
and author recognition. Proc. of IJCNLP, Pages
969-980.

Vladimir N. Vapnik. 1998. Statistical Learning
Theory. Wiley-Interscience, NY.

O. de Vel, A. Anderson, M. Corney and G.
Mohay. 2001. Mining Email Content for Author
Identification Forensics. Sigmod Record, 30:55-
64.

Kyung-Hyan Yoo and Ulrike Gretzel. 2009.
Comparison of Deceptive and Truthful Travel
Reviews. Information and Communication
Technologies in Tourism, Pages 37-47.

Georgy Udnv Yule. 1944. The statistical study of
literary vocabulary. Cambridge University
Press.

Guan Wang, Sihong Xie, Bing Liu, Philip S. Yu.
2011. Review Graph based Online Store
Review Spammer Detection. Proc. of ICDM.

Ying Zhao and Justin Zobel. 2005. Effective and
scalable authorship attribution using function
words. Proceeding of Information Retrival
Technology, Pages 174-189.

Rong Zheng, Jiexun Li, Hsinchun Chen, and Zan

Huang. 2006. A framework for authorship iden-

tification of online messages: Writing style fea-

tures and classification techniques. Journal of

the American Society of Information Science

and Technology 57:378-393.

1135

