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Abstract

When using a machine translation (MT)
model trained on OLD-domain parallel data to
translate NEW-domain text, one major chal-
lenge is the large number of out-of-vocabulary
(OOV) and new-translation-sense words. We
present a method to identify new translations
of both known and unknown source language
words that uses NEW-domain comparable doc-
ument pairs. Starting with a joint distribution
of source-target word pairs derived from the
OLD-domain parallel corpus, our method re-
covers a new joint distribution that matches
the marginal distributions of the NEW-domain
comparable document pairs, while minimiz-
ing the divergence from the OLD-domain dis-
tribution. Adding learned translations to our
French-English MT model results in gains of
about 2 BLEU points over strong baselines.

1 Introduction

When a statistical machine translation (SMT) model
trained on OLD-domain (e.g. parliamentary proceed-
ings) parallel text is used to translate text in a NEW-
domain (e.g. medical or scientific), performance de-
grades drastically. One of the major causes is the
large number of NEW-domain words that are out-of-
vocabulary (OOV) with respect to the OLD-domain
text. Figure 1 shows the OOV rate for text in several
NEW-domains, with respect to OLD-domain parlia-
mentary proceedings. Even more challenging are
the difficult-to-detect new-translation-sense (NTS)
words: French words that are present in both the
OLD and NEW domains but that are translated dif-
ferently in each domain. For example, the French
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Figure 1: Percent of test set word types by domain that
are OOV with respect to five million tokens of OLD-
domain French parliamentary proceedings data.

word enceinte is mostly translated in parliamentary
proceedings as place, house, or chamber; in medical
text, the translation is mostly pregnant; in scientific
text, enclosures.

One potential remedy is to collect parallel data in
the NEW-domain, from which we can train a new
SMT model. Smith et al. (2010), for example, mine
parallel text from comparable corpora. Parallel sen-
tences are informative but also rare: in the data re-
leased by Smith et al. (2010), only 21% of the for-
eign sentences have a near-parallel counterpart in the
English article.1 Furthermore, these sentences do
not capture all terms. In that same dataset, we find
that on average only 20% of foreign and 28% of En-
glish word types in a given article are represented in
the parallel sentence pairs.

In this work, we seek to learn a joint distribu-

1Only 12% of sentences from generally longer English arti-
cles have a near-parallel counterpart in the foreign language.
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tion of translation probabilities over all source and
target word pairs in the NEW-domain. We begin
with a maximum likelihood estimate of the joint
based on a word aligned OLD-domain corpus and
update this distribution using NEW-domain compa-
rable data. We define a model based on a single com-
parable corpus and then extend it to learn from doc-
ument aligned comparable corpora with any number
of comparable document pairs. This approach al-
lows us to identify translations for OOV words in the
OLD-domain (e.g. French cisaillement and perçage,
which translate as shear and drilling, in the scien-
tific domain) as well as new translations for previ-
ously observed NTS words (e.g. enceinte translates
as enclosures, not place, in the scientific domain).
In our MT experiments, we use the learned NEW-
domain joint distribution to update our SMT model
with translations of OOV and low frequency words;
we leave the integration of new translations for NTS
words to future work.

Our approach crucially depends on finding com-
parable document pairs relevant to the NEW-domain.
Such pairs could be derived from a number of
sources, with document pairings inferred from
timestamps (e.g. news articles) or topics (inferred or
manually labeled). We use Wikipedia2 as a source
of comparable pairs. So-called “interwiki links”
(which link Wikipedia articles written on the same
topic but in different languages) act as rough guid-
ance that pages may contain similar information.
Our approach does not exploit any Wikipedia struc-
ture beyond this signal, and thus is portable to alter-
nate sources of comparable articles, such as multi-
lingual news articles covering the same event.

Our model also relies on the assumption that each
comparable document pair describes generally the
same concepts, though the order and structure of
presentation may differ significantly. The efficacy
of this method likely depends on the degree of com-
parability of the data; exploring the correlation be-
tween comparability and MT performance is an in-
teresting question for future work.

2 Previous Work

In prior work (Irvine et al., 2013), we presented a
systematic analysis of errors that occur when shift-

2www.wikipedia.org

ing domains in machine translation. That work con-
cludes that errors resulting from unseen (OOV) and
new translation sense words cause the majority of
the degradation in translation performance that oc-
curs when an MT model trained on OLD-domain
data is used to translate data in a NEW-domain. Here,
we target OOV errors, though our marginal match-
ing method is also applicable to learning translations
for NTS words.

A plethora of prior work learns bilingual lex-
icons from monolingual and comparable corpora
with many signals including distributional, tempo-
ral, and topic similarity (Rapp, 1995; Fung and Yee,
1998; Rapp, 1999; Schafer and Yarowsky, 2002;
Schafer, 2006; Klementiev and Roth, 2006; Koehn
and Knight, 2002; Haghighi et al., 2008; Mimno
et al., 2009; Mausam et al., 2010; Prochasson
and Fung, 2011; Irvine and Callison-Burch, 2013).
However, this prior work stops short of using these
lexicons in translation. We augment a baseline MT
system with learned translations.

Our approach bears some similarity to Ravi and
Knight (2011), Dou and Knight (2012), and Nuhn
et al. (2012); we learn a translation distribution de-
spite a lack of parallel data. However, we focus on
the domain adaptation setting. Parallel data in an
OLD-domain acts as a starting point (prior) for this
translation distribution. It is reasonable to assume an
initial bilingual dictionary can be obtained even in
low resource settings, for example by crowdsourc-
ing (Callison-Burch and Dredze, 2010) or pivoting
through related languages (Schafer and Yarowsky,
2002; Nakov and Ng, 2009).

Daumé III and Jagarlamudi (2011) mine trans-
lations for high frequency OOV words in NEW-
domain text in order to do domain adaptation. Al-
though that work shows significant MT improve-
ments, it is based primarily on distributional simi-
larity, thus making it difficult to learn translations for
low frequency source words with sparse word con-
text counts. Additionally, that work reports results
using artificially created monolingual corpora taken
from separate source and target halves of a NEW-
domain parallel corpus, which may have more lexi-
cal overlap with the corresponding test set than we
could expect from true monolingual corpora. Our
work mines NEW-domain-like document pairs from
Wikipedia. In this work, we show that, keeping
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data resources constant, our model drastically out-
performs this previous approach. Razmara et al.
(2013) take a fundamentally different approach and
construct a graph using source language monolin-
gual text and identify translations for source lan-
guage OOV words by pivoting through paraphrases.

Della Pietra et al. (1992) and Federico (1999) ex-
plore models for combining foreground and back-
ground distributions for the purpose of language
modeling, and their approaches are somewhat simi-
lar to ours. However, our focus is on translation.

3 Model

Our goal is to recover a probabilistic translation dic-
tionary in a NEW-domain, represented as a joint
probability distribution pnew(s, t) over source/target
word pairs. At our disposal, we have access to a joint
distribution pold(s, t) from the OLD-domain (com-
puted from word alignments), plus comparable doc-
ument pairs in the NEW-domain. From these com-
parable documents, we can extract raw word fre-
quencies on both the source and target side, repre-
sented as marginal distributions q(s) and q(t). The
key idea is to estimate this NEW-domain joint dis-
tribution to be as similar to the OLD-domain distri-
bution as possible, subject to the constraint that its
marginals match those of q.

To illustrate our goal, consider an example. Imag-
ine in the OLD-domain parallel data we find that ac-
corder translates as grant 10 times and as tune 1
time. In the NEW-domain comparable data, we find
that accorder occurs 5 times, but grant occurs only
once, and tune occurs 4 times. Clearly accorder no
longer translates as grant most of the time; perhaps
we should shift much of its mass onto the translation
tune instead. Figure 2 shows the intuition.

First, we present an objective function and set of
constraints over joint distributions to minimize the
divergence from the OLD-domain distribution while
matching both the source and target NEW-domain
marginal distributions. Next, we augment the objec-
tive with information about word string similarity,
which is particularly useful for the French-English
language pair. Optimizing this objective with a sin-
gle pair of source and target marginals can be per-
formed using an off-the-shelf solver. In practice,
though, we have a large set of document pairs, each

of which can induce a pair of marginals. Using
these per-document marginals provides additional
information to the learning function but would over-
whelm a common solver. Therefore, we present a se-
quential learning method for approximately match-
ing the large set of document pair marginal distribu-
tions. Finally, we describe how we identify compa-
rable document pairs relevant to the NEW-domain.

3.1 Marginal Matching Objective
Given word-aligned parallel data in the OLD-domain
and source and target comparable corpora in the
NEW-domain, we first estimate a joint distribution
pold(s, t) over word pairs (s, t) in the OLD-domain,
where s and t range over source and target lan-
guage words, respectively. For the OLD-domain
joint distribution, we use a simple maximum like-
lihood estimate based on non-null automatic word
alignments (using grow-diag-final GIZA++ align-
ments (Och and Ney, 2003)). Next, we find source
and target marginal distributions, q(s) and q(t), by
relative frequency estimates over the source and tar-
get comparable corpora. Our goal is to recover a
joint distribution pnew(s, t) for the new domain that
matches the marginals, q(s) and q(t), but is mini-
mally different from the original joint distribution,
pold(s, t).

We cast this as a linear programming problem:

pnew = arg min
p

∥∥∥p− pold
∥∥∥

1
(1)

subject to:
∑
s,t

p(s, t) = 1, p(s, t) ≥ 0

∑
s

p(s, t) = q(t),
∑

t

p(s, t) = q(s)

In the objective function, the joint probability matri-
ces p and pold are interpreted as large vectors over
all word pairs (s, t). The first two constraints force
the result to be a well-formed distribution, and the
final two force the marginals to match.

Following prior work (Ravi and Knight, 2011),
we would like the matrix to remain as sparse as pos-
sible; that is, introduce the smallest number of new
translation pairs necessary. A regularization term
captures this goal:

Ω(p) =
∑
s,t:

pold(s,t)=0

λr × p(s, t) (2)
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house place pregnant dress qold(s)

enceinte 0.30 0.40 0.10 0 0.80

habiller 0 0 0 0.20 0.20

qold(t) 0.30 0.40 0.10 0.20

(a) OLD-Domain Joint (b) NEW-Domain Marginals

house place pregnant dress girl q(s)

enceinte

?????
0.60

habiller ????? 0.20

fille
?????

0.20

q(t) 0.12 0.08 0.40 0.20 0.20

(c) Inferred NEW-Domain Joint

house place pregnant dress girl qnew(s)

enceinte 0.12 0.08 0.40 0 0 0.60

habiller 0 0 0 0.20 0 0.20

fille 0 0 0 0 0.20 0.20

qnew(t) 0.12 0.08 0.40 0.20 0.20

=

Matched 
Marginals

Figure 2: Starting with a joint distribution derived from OLD-domain data, we infer a NEW-domain joint distribution
based on the intuition that the new joint should match the marginals that we observe in NEW-domain comparable
corpora. In this example, a translation is learned for the previously OOV word fille, and pregnant becomes a preferred
translation for enceinte.

If the old domain joint probability pold(s, t) was
nonzero, there is no penalty. Otherwise, the penalty
is λr times the new joint probability p(s, t). To dis-
courage the addition of translation pairs that are un-
necessary in the new domain, we use a value of λr

greater than one. Thus, the benefit of a more sparse
matrix overwhelms the desire for preventing change.
Any value greater than one seems to suffice; we use
λr = 1.1 in our experiments.

Inspired by the preference for sparse matrices
captured by Ω(p), we include another orthogonal
cue that words are translations of one another: their
string similarity. In prior work, string similarity was
a valuable signal for inducing translations, particu-
larly for closely related languages such as French
and English (Daumé III and Jagarlamudi, 2011). We
define a penalty function f(p) as follows: if the nor-
malized Levenshtein edit distance between swithout
accents and t is less than 0.2, no penalty is applied;
a penalty of 1 is applied otherwise. We chose the
0.2 threshold manually by inspecting results on our
development sets.

f(p) =
∑
s,t

p(s, t) ·

{
0 if lev(t,strip(s))

len(s)+len(t) < 0.2

1 otherwise

The objective function including this penalty is:

pnew = arg min
p

∥∥∥p− pold
∥∥∥

1
+ Ω(p) + f(p)

In principle, additional penalties could be encoded
in a similar way.3 This objective can be optimized
by any standard LP solver; we use the Gurobi pack-
age (Gurobi Optimization Inc., 2013).

3.2 Document Pair Modification

The above formulation applies whenever we have
access to comparable corpora. However, often we
have access to comparable documents, such as those
given by Wikipedia inter-language links. We modify
our approach to take advantage of the document cor-
respondences within our comparable corpus. In par-
ticular, we would like to match the marginals for all
document pairs.4 By maintaining separate marginal
distributions, our algorithm is presented with more

3We experimented with penalties measuring document-pair
co-occurrence and monolingual frequency differences but did
not see gains on our development sets.

4This situation is not unique to our application; multiple
marginals are likely to exist in many cases.
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information. For example, imagine that one doc-
ument pair uses “dog” and “chien”, where another
document pair uses “cat” and “chat”, each with sim-
ilar frequency. If we sum these marginals to produce
a single marginal distribution, it is now difficult to
identify that “dog” should correspond to “chien” and
not “chat.” Document pair alignments add informa-
tion at the cost of additional constraints.

An initial formulation of our problem with mul-
tiple comparable document pairs might require
the pnew marginals to match all of the document
marginals. In general, this constraint set is likely
to result in an infeasible problem. Instead, we take
an incremental, online solution, considering a sin-
gle comparable document pair at a time. For docu-
ment pair k, we solve the optimization problem in
Eq (1) to find the joint distribution minimally dif-
ferent from pk-1, while matching the marginals of
this pair only. This gives a new joint distribution,
tuned specifically for this pair. We then update our
current guess of the new domain joint toward this
document-pair-specific distribution, much like a step
in stochastic gradient ascent.

More formally, suppose that before processing the
kth document we have a guess at the NEW-domain
joint distribution, pnew

1:k−1 (the subscript indicates that
it includes all document pairs up to and including
document k − 1). We first solve Eq (1) solely on
the basis of this document pair, finding a joint dis-
tribution pnew

k that matches the marginals of the kth
document pair only and is minimally different from
pnew
1:k−1. Finally, we form a new estimate of the joint

distribution by moving pnew
1:k−1 in the direction of

pnew
k , via:

pnew
1:k = pnew

1:k−1 + ηu

[
pnew

k − pnew
1:k−1

]
The learning rate ηu is set to 0.001.5

This incremental update of parameters is simi-
lar to the margin infused relaxed algorithm (MIRA)
(Crammer et al., 2006). Like MIRA and the percep-
tron, there is not an overall “objective” function that
we are attempting to optimize (as one would in many
stochastic gradient steps). Instead, we’re aiming for

5We tuned ηu on semi-extrinsic results on the development
set. Note that although 0.001 seems small, the values we are
moving are joint probabilities, which are tiny and so small
learning rates make sense.

a solution that makes a small amount of progress
on each example, in such a way if it received that
example again, it would “do better” (in this case:
have a closer match of marginals). Also like MIRA,
our learning rate is constant. We parallelize learning
with mini-batches for increased speed. Eight paral-
lel learners update an initial joint distribution based
on 100 document pairs (i.e. each learner makes 100
incremental updates), and then we merge results us-
ing an average over the 8 learned joint distributions.

3.3 Comparable Data Selection

It remains to select comparable document pairs. We
assume that we have enough monolingual NEW-
domain data in one language to rank comparable
document pairs (here, Wikipedia pages) according
to how NEW-domain-like they are. In particular, we
estimate the similarity to a source language (here,
French) corpus in the NEW domain. For our experi-
ments, we use the French side of a NEW-domain par-
allel corpus.6 We could have targeted our learning
even more by using our NEW-domain MT test sets.
Doing so would increase the chances that our source
language words of interest appear in the comparable
corpus. However, to avoid overfitting any particular
test set, we use the French side of the training data.

For each Wikipedia document pair, we com-
pute the percent of French phrases up to length
four that are observed in the French monolingual
NEW-domain corpus and rank document pairs by
the geometric mean of the four overlap measures.
More sophisticated ways to identify NEW-domain-
like Wikipedia pages (e.g. Moore and Lewis (2010))
may yield additional performance gains, but, quali-
tatively, the ranked Wikipedia pages seemed reason-
able to the authors.

4 Experimental setup

4.1 Data

We use French-English Hansard parliamentary pro-
ceedings7 as our OLD-domain parallel corpus. With
over 8 million parallel lines of text, it is one of the
largest freely available parallel corpora for any lan-

6We could have, analogously, used the target language (En-
glish) side of the parallel corpus and measure overlap with the
English Wikipedia documents, or even used both.

7http://www.parl.gc.ca
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guage pair. In order to simulate more typical data
settings, we sample every 32nd line, using the result-
ing parallel corpus of 253, 387 lines and 5, 051, 016
tokens to train our baseline model.

We test our model using three NEW-domain cor-
pora: (1) the EMEA medical corpus (Tiedemann,
2009), (2) a corpus of scientific abstracts (Carpuat
et al., 2013a), and (3) a corpus of translated movie
subtitles (Tiedemann, 2009). We use development
and test sets to tune and evaluate our MT mod-
els. We use the NEW-domain parallel training cor-
pora only for language modeling and for identifying
NEW-domain-like comparable documents.

4.2 Machine translation

We use the Moses MT framework (Koehn et al.,
2007) to build a standard statistical phrase-based
MT model using our OLD-domain training data. Us-
ing Moses, we extract a phrase table with a phrase
limit of five words and estimate the standard set of
five feature functions (phrase and lexical translation
probabilities in each direction and a constant phrase
penalty feature). We also use a standard lexicalized
reordering model and two language models based on
the English side of the Hansard data and the given
NEW-domain training corpora. Features are com-
bined using a log-linear model optimized for BLEU,
using the n-best batch MIRA algorithm (Cherry and
Foster, 2012). We call this the “simple baseline.” In
Section 5.2 we describe several other baseline ap-
proaches.

4.3 Experiments

For each domain, we use the marginal matching
method described in Section 3 to learn a new,
domain-adapted joint distribution, pnew

k (s, t), over
all French and English words. We use the learned
joint to compute conditional probabilities, pnew

k (t|s),
for each French word s and rank English translations
t accordingly. First, we evaluate the learned joint
directly using the distribution based on the word-
aligned NEW-domain development set as a gold
standard. Then, we perform end-to-end MT exper-
iments. We supplement phrase tables with transla-
tions for OOV and low frequency words (we ex-
periment with training data frequencies less than
101, 11, and 1) and include pnew

k (t|s) and pnew
k (s|t)

as new translation features for those supplemental

translations. For these new phrase pairs, we use the
average lexicalized reordering values from the ex-
isting reordering tables. For phrase pairs extracted
bilingually, we use the bilingually estimated trans-
lation probabilities and uniform scores for the new
translation features. We experimented with using
pnew

k (t|s) and pnew
k (s|t) to estimate additional lex-

ical translation probabilities for the bilingually ex-
tracted phrase pairs but did not observe any gains
(experimental details omitted due to space con-
straints). We re-run tuning in all experiments.

We also perform oracle experiments in which
we identify translations for French words in word-
aligned development and test sets and append these
translations to baseline phrase tables.

5 Results

5.1 Semi-extrinsic evaluation

Before doing end-to-end MT experiments, we eval-
uate our learned joint distribution, pnew

k (s, t), by
comparing it to the joint distribution taken from a
word aligned NEW-domain parallel development set,
pgold(s, t). We call this evaluation semi-extrinsic
because it involves neither end-to-end MT (our ex-
trinsic task) nor an intrinsic evaluation based on our
training objective (L1 norm). We find it informa-
tive to evaluate the models using bilingual lexicon
induction metrics before integrating our output into
full MT. That is, we do not compare the full joint dis-
tributions, but, rather, for a given French word, how
our learned model ranks the word’s most probable
translation under the gold distribution. In particular,
because we are primarily concerned with learning
translations for previously unseen words, we eval-
uate over OOV French word types. In some cases,
the correct translation for OOV words is the identi-
cal string (e.g. na+, lycium). Because it is trivial
to produce these translations,8 we evaluate over the
subset of OOV development set French words for
which the correct translation is not the same string.

Figure 3 shows the mean reciprocal rank for the
learned distribution, pnew

k (s, t), for each domains as
a function of the number of comparable document
pairs used in learning. In all domains, the compara-
ble document pairs are sorted according to their sim-

8And, indeed, by default our decoder copies OOV strings
into its output directly.
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Figure 3: Semi-extrinsic bilingual lexicon induction results. Mean reciprocal rank is computed over all OOV devel-
opment set words for which identity is not the correct translation.

ilarity with the NEW-domain. Figure 3 also shows
the performance of baseline models and our learner
without the edit distance penalty. For each source
word s, the edit distance (ED) baseline ranks all En-
glish words t in our monolingual data by their edit
distance with s.9 The Canonical Correlation Analy-
sis (CCA) baseline uses the approach of Daumé III
and Jagarlamudi (2011) and the top 25, 000 ranked
document pairs as a comparable corpus. That model
performs poorly largely because of sparse word con-
text counts. Interestingly, for Science and EMEA,
the performance of our full model at 50, 000 doc-
ument pairs is higher than the sum of the edit dis-
tance baseline and the model without the edit dis-
tance penalty, indicating that our approach effec-
tively combines the marginal matching and edit dis-
tance signals.

The learning curves for the three domains vary
substantially. For Science, learning is gradual and
it appears that additional gains could be made by
iterating over even more document pairs. In con-
trast, the model learns quickly for the EMEA do-
main; performance is stable after 20, 000 document
pairs. Given these results and our experience with
the two domains, we hypothesize that the difference
is due to the fact that the Science data is much more
heterogenous than the EMEA data. The Science data

9In particular, for each domain and each OOV French word,
we ranked the set of all English words that appeared at least five
times in the set of 50,000 most NEW-domain like Wikipedia
pages. Using a frequency threshold of five helped eliminate
French words and improperly tokenized English words from the
set of candidates.

includes physics, chemistry, and biology abstracts,
among others. The drug labels that make up most of
the EMEA data are more homogeneous. In Section
6 we comment on the poor Subtitles performance,
which persists in our MT experiments.

We experimented with making multiple learning
passes over the document pairs and observed rela-
tively small gains from doing so. In all experiments,
learning from some number of additional new doc-
ument pairs resulted in higher semi-extrinsic per-
formance gains than passing over document pairs
which were already observed.

In the case of OOV words, it’s clear that learning
something about how to translate a previously un-
observed French word is beneficial. However, our
learning method also learns domain-specific new-
translation senses (NTS). Table 1 shows some exam-
ples of what the marginal matching method learns
for different types of source words (OOVs, low fre-
quency, and NTS).

5.2 MT evaluation

By default, the Moses decoder copies OOV words
directly into its translated output. In some cases,
this is correct (e.g. ensembles, blumeria, google).
In other cases, French words can be translated into
English correctly by simply stripping accent marks
off of the OOV word and then copying it to the out-
put (e.g. caméra, éléments, molécules). In the Sci-
ence and EMEA domains, we found that our base-
line BLEU scores improved from 21.91 to 22.20
and 23.67 to 24.45, respectively, when we changed
the default handling of OOVs to strip accents before
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French OLD top pold(t|s) NEW top pgold(t|s) MM-learned top pnew(t|s)
OOV words
cisaillement - shear strength shearing shear viscous newtonian

courbure - curvature bending curvatures curvature curved manifold
Low frequency words

linéaires linear linear nonlinear non-linear linear linearly nonlinear
récepteur receiver receptor receiver y1 receptor receiver receptors

New translation sense words
champ field jurisdiction scope field magnetic near-field field magnetic fields
marche working march work walk step walking march walk walking

Table 1: Hand-picked examples of Science-domain French words and their top English translations in the OLD-
domain, NEW-domain, and marginal matching distributions. The first two are OOVs. The next two only appeared four
and one time, respectively, in the training data and only aligned to a single English word. The last two are NTS French
words: words that appeared frequently in the training data but for which the word’s sense in the new domain shifts.

copying into the output. Interestingly, performance
on the Subtitles domain text did not change at all
with this baseline modification. This is likely due
to the fact that there are fewer technical OOVs (the
terms typically captured by this accent-stripping pat-
tern) in the subtitles domain.

Throughout our experiments, we found it criti-
cal to retain correct ‘freebie’ OOV translations. In
the results presented below, including the baselines,
we supplement phrase tables with a new candidate
translation but also include accent-stripped identity,
or ‘freebie,’ translations in the table for all OOV
words. We experimented with classifying French
words as freebies or needing a new translation, but
oracle experiments showed very little improvement
(about 0.2 BLEU improvement in the Science do-
main), so instead we simply include both types of
translations in the phrase tables.

In addition to the strip-accents baseline, we com-
pare results with four other baselines. First, we
drop OOVs from the output translations. Second,
like our semi-extrinsic baseline, we rank English
words by their edit distance away from each French
OOV word (ED baseline). Third, we rank En-
glish words by their document-pair co-occurrence
score with each French OOV word. That is, for
all words w, we compute D(w), the vector indicat-
ing the document pairs in which w occurs, over the
set of 50,000 document-pairs which are most NEW-
domain-like. For French and English words s and t,
ifD(s) andD(t) are dissimilar, it is less likely (s, t)
is a valid translation pair. We weight D(w) entries

with BM25 (Robertson et al., 1994). For all French
OOVs, we rank all English translations according to
the cosine similarity between the pair of D(w) vec-
tors. The fourth baseline uses the CCA model de-
scribed in Daumé III and Jagarlamudi (2011) to rank
English words according to their distributional sim-
ilarity with each French word. For the CCA base-
line comparison, we only learned translations using
25,000 Science-domain document pairs, rather than
the full 50,000 and for all domains. However, it’s
unlikely that learning over more data would over-
come the low performance observed so far. For the
final three baselines, we append French OOV words
and their highest ranked English translation to the
phrase table. Along with each new translation pair,
we include one new phrase table feature with the
relevant translation score (edit distance, document
similarity, or CCA distributional similarity). For all
baselines other than drop-OOVs, we also include
accent-stripped translation pairs with an additional
indicator feature.

Table 3 shows results appending the top ranked
English translation for each OOV French word using
each baseline method. None of the alternate base-
lines outperform the simplest baseline on the subti-
tles data. Using document pair co-occurrences is the
strongest baseline for the Science and EMEA do-
mains. This confirms our intuition that taking ad-
vantage of document pair alignments is worthwhile.
For Science and EMEA, supplementing a model
with OOV translations learned through our marginal
matching method drastically outperforms all base-
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OOVs translated correctly and incorrectly
Input les résistances au cisaillement par poinçonnement ...
Ref the punching shear strengths...
Baseline the resistances in cisaillement by poinconnement ...
MM the resistances in shear reinforcement...
OOV translated incorrectly
Input présentation d’ un logiciel permettant de gérer les données temporelles .
Ref presentation of software which makes it possible to manage temporal data .
Baseline introduction of a software to manage temporelles data .
MM introduction of a software to manage data plugged .

Low frequency French words
Input ...limite est liée à la décroissance très rapide du couplage électron-phonon avec la température .
Ref ...limit is linked to the rapid decrease of the electron-phonon coupling with temperature .
Baseline ...limit is linked to the decline very rapid electron-phonon linkage with the temperature .
MM ...limit is linked to the linear very rapid electron-phonon coupling with the temperature .

Table 2: Example MT outputs for Science domain. The baseline strips accents (Table 3). In the first example, the
previously OOV word cisaillement is translated correctly by an MM-supplemented model. The OOV poinçonnement
is translated as reinforcement instead of strengths, which is incorrect with respect to the reference but arguably not
bad. In the second example, temporelles is not translated correctly in the MM output. In the third example, the MM-
hypothesized correct translation of low frequency word couplage, coupling, is chosen instead of incorrect linkage. Also
in the third example, the low frequency word décroissance is translated as the MM-hypothesized incorrect translation
linear. In the case of décroissance, the baseline’s translation, decline, is much better than the MM translation linear.

lines. Using our model to translate OOV words
yields scores of 23.62 and 26.97 in the Science and
EMEA domains, or 1.19 and 1.94 BLEU points, re-
spectively, above the strongest baseline. We observe
additional gains by also supplementing the model
with translations for low frequency French words.
For example, when we use our approach to translate
source words in the Science domain which appear
ten or fewer times in our OLD-domain training data,
the BLEU score increases to 24.28.

We tried appending top-k translations, varying k.
However, we found that for the baselines as well as
our MM translations, using only the top-1 English
translations outperformed using more.

Table 3 also shows the result of supplementing a
baseline phrase table with oracle OOV translations.
Using the marginal matching learned OOV transla-
tions takes us 30% and 40% of the way from the
baseline to the oracle upper bound for Science and
EMEA, respectively.

We have focused on supplementing an SMT
model trained on a sample of the Hansard parallel
corpus in order to mimic typical data conditions, but
we have also performed experiments supplementing

Science EMEA Subs
Simple Baseline 21.91 23.67 13.18
Drop OOVs 20.22 18.95 11.86
Accent-Stripped 22.20 24.45 13.13
ED Baseline 22.10 24.35 12.95
Doc Sim Baseline. 22.43 25.03 13.02
CCA Baseline 21.41 - -
MM Freq<1 (OOV) 23.62 26.97 13.07
MM Freq<11 24.28 27.26 12.97
MM Freq<101 23.96 26.82 12.92
Oracle OOV 26.38 29.99 15.06

Table 3: BLEU results using: (1) baselines, (2) phrase
tables augmented with top-1 translations for French
words with indicated OLD training data frequencies, (3)
phrase tables augmented with OOV oracle translations.

a model trained on the full dataset.10 Beginning with
the larger model, we observe performance gains of
0.8 BLEU points for both the EMEA and the Sci-
ence domains over the strongest baselines, which are
based on document similarity, when we add OOV

10We still use the joint that was learned starting with the one
estimated over the sample; we may observe greater gains over
the full Hansard baseline with a stronger initial joint.
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translations. As expected, these gains are less than
what we observe when our baseline model is esti-
mated over less data, but they are still substantial.

In all experiments, we have assumed that we have
no NEW-domain parallel training data, which is the
case for the vast majority of language pairs and do-
mains. However, In the case that we do have some
NEW-domain parallel data, OOV rates will be some-
what lower, but our method is still applicable. For
example, we would need 2.3 million words of Sci-
ence (NEW-domain) parallel data to cover just 50%
of the OOVs in our Science test set, and 4.3 million
words to cover 70%.

6 Discussion

BLEU score performance gains are substantial for
the Science and EMEA domains, but we don’t ob-
serve gains on the subtitles text. We believe this dif-
ference relates to the difference between a corpus
domain and a corpus register. As Lee (2002) ex-
plains, a text’s domain is most related to its topic,
while a text’s register is related to its type and pur-
pose. For example, religious, scientific, and dia-
logue texts may be classified as separate registers,
while political and scientific expositions may have a
single register but different domains. Our science
and EMEA corpora are certainly different in do-
main from the OLD-domain parliamentary proceed-
ings, and our success in boosting MT performance
with our methods indicates that the Wikipedia com-
parable corpora that we mined match those domains
well. In contrast, the subtitles data differs from the
OLD-domain parliamentary proceedings in both do-
main and register. Although the Wikipedia data that
we mined may be closer in domain to the subtitles
data than the parliamentary proceedings,11 its regis-
ter is certainly not film dialogues.

Although the use of marginal matching is, to the
best of our knowledge, novel in MT, there are related
threads of research that might inspire future work.
The intuition that we should match marginal distri-
butions is similar to work using no example labels
but only label proportions to estimate labels, for ex-
ample in Quadrianto et al. (2008). Unlike that work,

11In fact, we believe that it is. Wikipedia pages that ranked
very high in our subtitles-like list included, for example, the
movie The Other Side of Heaven and actor Frank Sutton.

our label set corresponds to entire vocabularies, and
we have multiple observed label proportions. Also,
while the marginal matching objective seems effec-
tive in practice, it is difficult to optimize. A number
of recently developed approximate inference meth-
ods use a decomposition that bears a strong resem-
blance to this objective function. Considering the
marginal distributions from each document pair to
be a separate subproblem, we could approach the
global objective of satisfying all subproblems as an
instance of dual decomposition (Sontag et al., 2010)
or ADMM (Gabay and Mercier, 1976; Glowinski
and Marrocco, 1975).

We experiment with French-English because tun-
ing and test sets are available in several domains for
that language pair. However, our techniques are di-
rectly applicable to other language pairs, including
those that are less related. We have observed that
many domain-specific terms, particularly in medi-
cal and science domains, are borrowed across lan-
guages, whether or not the languages are related.
Even for languages with different character sets,
one could do transliteration before measuring ortho-
graphical similarity.

Although we were able to identify translations for
some NTS words (Table 1), we did not make use of
them in our MT experiments. Recent work has iden-
tified NTS words in NEW-domain corpora (Carpuat
et al., 2013b), and in future work we plan to incorpo-
rate discovered translations for such words into MT.

7 Conclusions

We proposed a model for learning a joint distribu-
tion of source-target word pairs based on the idea
that its marginals should match those observed in
NEW-domain comparable corpora. Supplementing
a baseline phrase-based SMT model with learned
translations results in BLEU score gains of about
two points in the medical and science domains.
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