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Abstract quences of words combine to form constituents, and
constituency-based models show better compatibil-
ity with phrases. However, dependency trees de-
scribe the grammatical relation between words of
the sentence, and represent long distance dependen-
cies in a concise manner. Dependency-based mod-
els, such as dependency-to-string model (Xie et al.,
2011), exhibit better capability of long distance re-

orderings.

In this paper, we propose to combine the advan-
tages of source side constituency and dependency
trees. Since the dependency tree is structurally sim-

We present a novel translation model, which
simultaneously exploits the constituency and
dependency trees on the source side, to com-
bine the advantages of two types of trees. We
take head-dependents relations of dependency
trees as backbone and incorporate phrasal n-
odes of constituency trees as the source side
of our translation rules, and the target side as
strings. Our rules hold the property of long
distance reorderings and the compatibility
with phrases. Large-scale experimental result-
s show that our model achieves significantly

improvements over the constituency-to-string
(+2.45 BLEU on average) and dependency-
to-string (+0.91 BLEU on average) model-
s, which only employ single type of trees,
and significantly outperforms the state-of-the-
art hierarchical phrase-based model (+1.12

pler and directly represents long distance depen-
dencies, we take dependency trees as the backbone
and incorporate constituents to them. Our mod-
el employs rules that represent the source side as
head-dependents relations which are incorporated

with constituency phrasal nodes, and the target side
as strings. A head-dependents relation (Xie et al.,
2011) is composed of a head and all its dependents in
dependency trees, and it encodes phrase pattern and
sentence pattern (typically long distance reordering
In recent years, syntax-based models have becoméeigtions). With the advantages of head-dependents
hot topic in statistical machine translation. Accordlelations, the translation rules of our model hold the
ing to the linguistic structures, these models can broperty of long distance reorderings and the com-
broadly divided into two categories: constituencyatibility with phrases.

based models (Yamada and Knight, 2001; Graehl Our new model (Section 2) extracts rules from
and Knight, 2004; Liu et al., 2006; Huang et al. word-aligned pairs of source trees (constituency
2006), and dependency-based models (Lin, 2004nd dependency) and target strings (Section 3), and
Ding and Palmer, 2005; Quirk et al., 2005; Xiongtranslate source trees into target strings by employ-
et al.,, 2007; Shen et al., 2008; Xie et al., 2011)ing a bottom-up chart-based algorithm (Section 4).
These two kinds of models have their own advan€ompared with the constituency-to-string (Liu et al.,
tages, as they capture different linguistic phenome2006) and dependency-to-string (Xie et al., 2011)
na. Constituency trees describe how words and setodels that only employ a single type of trees, our

BLEU on average), on three Chinese-English
NIST test sets.

1 Introduction
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English: Intel will launch the first Ultrabook in Asia
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Figure 1: lllustration of phrases that can not be capturealdgpendency tree (b) while captured by a constituency tree
(a), where the bold phrasal nodes N¥P,, VP; indicate the phrases which can not be captured by dependgney
tactic phrases. (c) is the corresponding bilingual serggnthe subscripts of phrasal nodes are used for distiriggish
the nodes with same phrasal categories.

approach yields encouraging results by exploiting phrasal node NPin the constituency tree indicates
wo types of trees. Large-scale experiments (Sethat “# 2% %1 A" is a noun phrase and it should
tion 5) on Chinese-English translation show thabe translated as a basic unit, while in the depen-
our model significantly outperforms the state-of-dency tree it is a non-syntactic phrase. The head-
the-art single constituency-to-string model by avdependents relation in the top level of the dependen-
eraged +2.45 BLEU points, dependency-to-stringy tree presents long distance dependencies of the
model by averaged +0.91 BLEU points, and hieramwords “J&45 /8”7, “ 657, “#EH”, and “Eid A" in a
chical phrase-based model (Chiang, 2005) by avetoncise manner, which is useful for long distance re-
aged +1.12 BLEU points, on three Chinese-Englisbrdering. We adopt this kind of rule representation
NIST test sets. to hold the property of long distance reorderings and

the compatibility with phrases.

2 Grammar : .
Figure 2 shows two examples of our translation

We take head-dependents relations of dependenmyles corresponding to the top level of Figure 1-(b).
trees as backbone and incorporate phrasal nodesWé can see that; captures a head-dependents rela-
constituency trees as the source side of our transtaen, while o extendsr; by incorporating a phrasal
tion rules, and the target side as strings. A headiode VB to replace the two nodedft Hi/VV” and
dependents relation consists of a head and all its d&€1c. 4</NN”. As shown in Figure 1-(b), VPcon-
pendents in dependency trees, and it can represeaigts of two parts, a head nodéfE“H/VV” and a
long distance dependencies. Incorporating phrassiibtree rooted at the dependent no@&if 4</NN”.
nodes of constituency trees into head-dependentherefore, we use ViPand the POS tags of the t-
relations further enhances the compatibility withwo nodes VV and NN to denote the part covered
phrases of our rules. Figure 1 shows an example bf VP, in ry, to indicate that the source sequence
phrases which can not be captured by a dependerovered by VR can be translated by a bilingual
cy tree while captured by a constituency tree, sucphrase. Since ViPcovers a head nodeft Hi/VV”,

as the bold phrasal nodes NWP; and VR. The we represent, by constructing a new head node
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Figure 2: Two examples of our translation rules corre-

sponding to the top level of Figure 1-(b); captures a % /0D
head-dependents relation, andextendsr; by incorpo- .
rating a phrasal node \4P“z1:NN” indicates a substitu- : : 5 ’

tion site which can be replaced by a subtree whose roo}c)
has POS tag “NN”. #1:VPs|||VV _NN” indicates a sub-
stitution site which can be replaced by a source phrase
covered by a phrasal node VP (the phrasal node consist-
s of two dependency nodes with POS tag VV and NN, ﬂn ﬂr5
respectively). The underline denotes a leaf node.

YEH5/RNR 4/AD launch
TEHH/NR /M NP,

H/M

VP,||[VV _NN. For simplicity, we use a shorten for- (@ el will - launch, [l EiKINP in Asia

m CHDR to represent the head-dependents relations e
with/without constituency phrasal nodes. ﬂ“
Formally, our grammag is defined as a 5-tuple #M
G = (¥, N, Ng, A, R), whereX is a set of source (9 el will  launch / Ultrabook ~in Asia
language terminalsN. is a set of constituency op
phrasal categoriesy, is a set of categories (POS ﬂrx
tags) for the terminals i, A is a set of target lan- _ o
Intel will  launch the first Ultrabook in Asia

guage terminals, an® is a set of translation rules
that include bilingual phrases for translating source
language terminals and CHDR rules for translation

Translation Rules
r5  (xi:NR) (x2:AD) HEH (x3:%10A) — Xy x; launch x3

. . Ty YRR — Intel
and reordering. A CHDR rule is represented as a B ,
triple (t, s, ~), where: ® s -
p 185~ )s : e (N MGNPLIT NN — x, x,in Aisa
e ¢t is CHDR with each node labeled by a ter- r G EATES — Ultrabook
minal from X or a variable from a sek = g % (%) — the first

{x1,x9,- -} constrained by a terminal frol
or a category fromV, or a joint category (con- Figure 3: An example derivation of translation. (g) lists

structed by the categories froW. and N); all the translation rulesrs, r¢ andrg are CHDR rules,
while r4, r5 andr; are bilingual phrases, which are used

e s € (X UA) denotes the target side string;  for translating source terminals. The dash lines indicate
the reordering when employing a translation rule.
e ~ denotes one-to-one links between nontermi-

nals int and variables irs.

We use the lexicon dependency grammar (Hellwighhe formalized presentation of, in Figure 2-(b):
2006) which adopts a bracket representation to ex-t = (JEHRER) () X1:VP2|[VV NN

press the head-dependents relation and CHDR. Fors = Intelwillx,

example, the left-hand sidesafandr in Figure 2 ~= X1:VP[|[VV_NN < x;

can be respectively represented as fOIIOWS: Where the Underline indicates a Ieaf nOde.
(FERFIR) () HEH (X1:NN) Figure 3 gives an example of the translation
(FERFIR) () X1:VPs||[VV NN derivation in our model, with the translation rules

1068



LAY VP,
{3-3) {1-8} <2-8>

VP,
<3-8>

listed in (g). r3, 7¢ andrg are CHDR rules, while
r4, 5 @andr; are bilingual phrases, which are used
for translating source language terminals. Given a
sentence to translate in (a), we first parse it into B im0
constituency tree and a dependency tree, then label; -1 ;
the phrasal nodes from the constituency tree to the @ —i--rimmm s /
dependency tree, and yield (b). Then, we translate : ' " :

it into a target string by the following steps. At the ' (661 {6.6)
root node, we apply rules to translate the top level P A S
head-dependents relation and results in four unfin- \:”5)154)1;
ished substructures and target strings in (c). From : P
(c) to (d), there are three steps (one rule for one step)ntel ~ will launch the first Ultrabook in  Asia
We user, to translate L% /R” to “Intel”, r5 to 1 2 3 4 5 6 7 8
translate 44" to “will", and rg to translate the right-

NP,

1057
HRLRITT 66>

STHINR M

_ Figure 4: An annotated dependency tree. Each node is
most unfinished part. Then, we appiyto translate annotated with two spans, the former is node span and

Varia ” “ ” H
the phrase % % i 4" to “Ultrabook”, and yield the latter subtree span. The fragments covered by phrasal

(e). Finally, we applyrs to tran§late the last frag- nodes are annotated with phrasal spans. The nodes de-
ment to “the first”, and get the final result (f). noted by the solid line box are natp consistent.

3 Rule Extraction

n;?hrases, in order to complement the information that
dependency trees can not capture, we only label the
phrasal nodes that cover dependency non-syntactic
phrases.
Then, we annotate alignment information to the
phrasal nodes labeled dependency ffe@as shown
in Figure 4. For description convenience, we make
use of the notion of spans (Fox, 2002; Lin, 2004).
1. Label the dependency tree with phrasal nodgsiven a node in the source phrasal nodes labeled
from the constituency tree, and annotate aligri’ with word alignment information, the spans f
ment information to the phrasal nodes labeleénduced by the word alignment are consecutive se-
dependency tree (Section 3.1). quences of words in the target sentence. As shown
in Figure 4, we annotate each nodef phrasal n-
2. |dentify acceptable CHDR fragments from theyges labeled” with two attributes: node span and
annotated dependency tree for rule inductiogptree span; besides, we annotafghrasal span to

In this section, we describe how to extract rules fro
a set of 4-tuplegC, T, S, A), whereC' is a source
constituency tre€]" is a source dependency tree,
is a target side sentence, aAds an word alignmen-
t relation betweerl’/C' and S. We extract CHDR
rules from each 4-tupl&C, T, S, A) based on GHK-
M algorithm (Galley et al., 2004) with three steps:

(Section 3.2). the parts covered by phrasal nodes in each subtree
3. Induce a set of lexicalized and generalize rooted .atn. The three types of spans are defined as
CHDR rules from the acceptable fragmentsonows'
(Section 3.3). Definition 1 Given a node n, its node span n.sp(n)
isthe consecutive target word sequence aligned with
the node n.

3.1 Annotation

Given a 4-tuple(C, T, S, A), we first label phrasal Take the nodeE[E?J'l‘[/NR”_in Figure 4 for example,
nodes from the constituency treé2 to the depen- nsp(ILHH NR)={7-8}, which corresponds to the tar-
dency treeT’, which can be easily accomplished byd€t words “in” and *Asia’.

phrases mapping according to the common coverdefinition 2 Given a subtree 7" rooted at n, the
source sequences. As dependency trees can captsubtree span tsp(n) of n is the consecutive target

some phrasal information by dependency syntactiword sequence from the lower bound of the nsp of
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all nodesin 7" to the upper bound of the same set of
spans.

For instancetsp(%& 1 4</NN)={4-8}, which corre- o
sponds to the target words “the first Ultrabook in A- et il la“;mh [ the first Ul‘ig""k in Asia ]
sia”, whose indexes are from4to8.

HEH/VV

@ FHEAUNR K/AD S EICANN

Definition 3 Given a fragment f covered by a VPy|[[VV_NN

phrasal node, the phrasal span psp(f) of f is ® J v :
the ConseFUtlve target word $quence a“gned with In;cl w111 [launch the first ﬁltrabook in Asia] VP,
source string covered by f. 1 2 3-8

BHEAUNR H4/AD

For examplepsp(VP2)=(3-8), which corresponds

to the target word sequence “launch the first Ultra- VP4[|AD_VV_NN

book in Asia”. @
We SaWSp’ .tSp andpSp areconsistent accordlng Ingel [will launch the ﬁrst’”UItrabook in Asia ] VP;
to the notion in the phrase-based model (Koehn et 1 2.8
al., 2003). For exampleysp(iL #/NR), tsp(E ic CHDR.normal Rules
ZIK/NN) andpsp(NP,) are consistent Wh”elsp(ﬁ s (JERF/R) () HEHH (i #B12A)  — Intel will launch x,

25/3J) andnsp(%E 12 AX/NN) are not consistent.

The annotation can be achieved by a single pos-
torder transversal of the phrasal nodes labeled de-
pendency tree. For simplicity, we call the annotat-  r: (xiNR) (x:AD) 4t (x:NN)  — X1 x2 launch x
ed phrasal nodes labeled dependencydnmetated rs: (BRER) () x:VV (o Ei0A)  — Intel will x, x,
dependency tree. The extraction of bilingual phrases
(including the translation of head node, dependen-
cy syntactic phrases and the fragment covered by a
phrasal node) can be readily achieved by the algo- __ " ®NR) (:AD) xs:VV (xeNN) — — X1 % %%

1 (x;:NR) (xo:AD) #EH (x3: 210 4K) — X X, launch x5

130 (BEEEZR) (1) HEH (x1:NN) — Intel will launch x,

r6: (X1:NR) (x2:AD) X3:VV (x4: B 10A) — X1 X2 X3 Xy

170 (BERER) (B x1:VV (x2:NN) — Intel will X, x,

rithm described in Koehn et al., (2003). In the fol- CHDR-phrasal Rules

lowing, we focus on CHDR rules extraction. ro: (FERER)(KE)x;: VPl [VV_NN — Intel will x,
r10: (X:NR)(X2:AD)x3:VP,|[VV_ NN — X X3 X3

3.2 Acceptable Fragments Identification r: (R VPSAD VV NN — Intel x,

Before present the method of acceptable fragments r.,: (x;:NR)x,:VPy[[AD_VV_NN — xx
identification, we give a brief description of CHDR
fragments. A CHDR fragment is an annotated fragFigure 5: Examples of a CHDR-normal fragment (a), two

ment that consists of a source head-dependents refddDR-phrasal fragments (b) and (c) that are identified

tion with/without constituency phrasal nodes, a tar’om the top level of the annotated dependency tree in
' Figure 4, and the corresponding CHDR rules (d) induced

get string and the word allgn.ment mformgnon be_from (a), (b) and (c). The underline denotes a leaf node.
tween the source and target side. We identify the ac-
ceptable CHDR fragments that are suitable for rule
induction from the annotated dependency tree. We
divide the acceptable CHDR fragments into two cat- 1. Without phrasal nodes, the node span of the
egories depending on whether the fragments con- root n is consistent and the subtree spans of
tain phrasal nodes. If an acceptable CHDR frag- n's all dependents are consistent. For example,

ment does not contain phrasal nodes, we call it Figure 5-(a) shows a CHDR-normal fragmen-

CHDR-normal fragment, otherwiseCHDR-phrasal t that identified from the top level of the an-
fragment. Given a CHDR fragmenF’ rooted atn, notated dependency tree in Figure 4, since the
we sayF is acceptable if it satisfies any one of the  nsp(3E HH/VV), tsp(FLEE/RINR), tsp(Fi/AD)
following properties: andtsp(%1c A/NN) are consistent.
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2. With phrasal nodes, the phrasal spans d¥or example, rule- in Figure 5-(d) is a lexicalized
phrasal nodes are consistent; and for the oth€HDR-normal rule induced from the CHDR-normal
nodes, the node span of head (if it is not covfragment in Figure 5-(a).r¢ andr;; are CHDR-
ered by any phrasal node) is consistent, and thghrasal rules induced from the CHDR-phrasal frag-
subtree spans of dependents are consistent. Foent in Figure 5-(b) and Figure 5-(c) respectively.
instance, Figure 5-(b) and (c) show two CHDR-As we can see, these CHDR-phrasal rules are par-
phrasal fragments identified from the top levetially unlexicalized.
of Figure 4. In Figure 5-(b)psp(VPy), tsp(J& To alleviate the sparseness problem, we gener-
F§ /RINR) andtsp(#/AD) are consistent. In alize the lexicalized CHDR-normal rules and par-
Figure 5-(c),psp(VP3) and tsp(¥ 5 /KINR) tially unlexicalized CHDR-phrasal rules with un-
are consistent. lexicalized nodes by the method proposed in Xie

et al., (2011). As the modification relations be-

The identification of acceptable fragments can bgyeen head and dependents are determined by the

achieved by a single postorder transversal of the aggges, we can replace the lexical word of each n-
notated dependency tree. Typically, each acceptaligle with its category (POS tag) and obtain new
fragment contains at most three types of nodes: headad-dependents relations with unlexicalized nodes
node, head of the related CHDR; internal nodes, irkeeping the same modification relations. We gen-
ternal nodes of the related CHDR except head nodgialize the rule by simultaneously turn the nodes of
leaf nodes, leaf nodes of the related CHDR. the same type (head, internal, leaf) into their cate-
gories. For example, CHDR-normal rules ~ r;

are generalized fromy in Figure 5-(d). Besides;
From each acceptable CHDR fragment, we inducandr;» are the corresponding generalized CHDR-
a set of lexicalized and generalized CHDR rulesphrasal rules. Actually, our CHDR rules are the su-
We induce CHDR-normal rules and CHDR-phrasaperset of head-dependents relation rules in Xie et
rules from CHDR-normal fragments and CHDR-al., (2011). CHDR-normal rules are equivalent with

3.3 Rule Induction

phrasal fragments, respectively. the head-dependents relation rules and the CHDR-
We first induce a lexicalized form of CHDR rule phrasal rules are the extension of these rules. For
from an acceptable CHDR fragment: convenience of description, we use the subscript to

distinguish the phrasal nodes with the same catego-
1. For a CHDR-normal fragment, we first markry, such as VRand VR. In actual operation, we use
the internal nodes as substitution sites. Thi¥P instead of VR and VR,.
forms the input of a CHDR-normal rule. Then We handle the unaligned words of the target side
we generate the target string according to thby extending the node spans of the lexicalized head
node span of the head and the subtree spansaid leaf nodes, and the subtree spans of the lexical-
the dependents, and turn the word sequencéged dependents, on both left and right directions.
covered by the internal nodes into variablesThis procedure is similar with the method of Och
This forms the output of a lexicalized CHDR-and Ney, (2004). During this process, we might ob-
normal rule. tain m(m > 1) CHDR rules from an acceptable
fragment. Each of these rules is assigned with a frac-
2. For a CHDR-phrasal fragment, we first markional countl/m. We take the extracted rule set as
the internal nodes and the phrasal nodes as subserved data and make use of relative frequency es-

stitution sites. This forms the input of a CHDR-timator to obtain the translation probabilitiéXz|s)
phrasal rule. Then we construct the output OéndP(s\t).

the CHDR-phrasal rule in almost the same way

with constructing CHDR-normal rules, except4 Decoding and the Model

that we replace the target sequences covered by

the internal nodes and the phrasal nodes withollowing Och and Ney, (2002), we adopt a general
variables. loglinear model. Letl be a derivation that convert a
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source phrasal nodes labeled dependency tree intoamber of translation rules used for each node.

target stringe. The probability ofd is defined as: There are two ways to limit the rule table size: by
a fixed limit (rule-limit) of how many rules are re-

P(d) o [ [ ¢i(d)™ (1) trieved for each input node, and by a threshold (rule-

@ threshold) to specify that the rule with a score low-

are feature weights. In our experiments of this pape@d- On the other hand, instead of keeping the full
the features are used as follows: list of candidates for a given node, we keep a top-

scoring subset of the candidates. This can also be

e CHDR rules translation probabilitie$*(|s)  done by a fixed limit (stack-limit) and a threshold
andP(s|t), and CHDR rules lexical translation (stack-threshold).

probabilities Py, (t|s) and Pje,.(s|t);
e bilingual phrases translation probabilities

Py, (t]s) and Py, (slt), and bilingual phrases we evaluated the performance of our model by com-

lexical translation probabilitie$,.(t/s) and  paring with hierarchical phrase-based model (Chi-

Prpiea(s[t); ang, 2007), constituency-to-string model (Liu et al.,
e rule penaltyezp(—1); 2006) and dependency-to-string model (Xie et al.,
2011) on Chinese-English translation. First, we de-
scribe data preparation (Section 5.1) and systems
e target word penaltyxp(|el); (Section 5.2). Then, we validate that our model sig-
e language modeP,, (e). nificantly outperforms all the other baseline models

] (Section 5.3). Finally, we give detail analysis (Sec-
We have twelve features in our model. The values qfon 5.4).

the first four features are accumulated on the CHDR
rules and the next four features are accumulated énl Data Preparation

the bilingual phrases. We also use a pseudo translgy training data consists of 1.25M sentence pairs
tion rule (constructed according to the word order ofyiracted from LDCE data. We choose NIST MT
head-dependents relation) as a feature to guaranieg,,ation test set 2002 as our development set,
the complete translation when no matched rules caisT MT Evaluation test sets 2003 (MT03), 2004
be found during decoding. (MT04) and 2005 (MTO05) as our test sets. The qual-

Our decoder is based on bottom-up chart-basef] of translations is evaluated by the case insensitive
algorithm. It finds the best derivation that converi ST BLEU-4 metric2.

the input phrasal nodes labeled dependency tree intoyg parse the source sentences to constituency

a target string among all possible derivations. Givgees (without binarization) and projective depen-
en the source constituency tree and dependency trca%,nCy trees with Stanford Parser (Klein and Man-
we first generate phrasal nodes labeled depender}%g, 2002). The word alignments are obtained by
treeT" as described in Section 3.1, then the decodgfnning GizA++ (Och and Ney, 2003) on the corpus
transverses each node Thby postorder. For each i, poth directions and using the “grow-diag-final-
noden, it enumerates all instances of CHDR rooted,, 4" palance strategy (Koehn et al., 2003). We get
atn, and checks the ru_Ie s_et for matched transla_tlogi“ngual phrases from word-aligned data with algo-
rules. A larger translation is generated by substitUtiinm described in Koehn et al. (2003) by running
ing the variables in the target side of a translatiog;gses Toolki®. We apply SRI Language Modeling

rule with the translations of the corresponding deygq kit (Stolcke and others, 2002) to train a 4-gram
pendents. Cube pruning (Chiang, 2007; Huang andli_

Chiang, 2007) is used to find the k-best items with "Including LDC2002E18, LDC2003E07, LDC2003E14,
. Hansards portion of LDC2004T07, LDC2004T08 and LD-
integrated language model for each node.

C2005T06.
To balance the performance and speed of the de- 2. /jjaguar.ncsl.nist.govimt/resources/mteval-vplb

coder, we limit the search space by reducing the ®hitp://www.statmt.org/moses/

5 Experiments

e pseudo translation rule penakyp(—1);
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System Rule # MT03 MT04 MTO5 Average
Moses-chart 116.4M 34.65 36.47 34.39 35.17
cons2str 25.4M+325M 33.14 35.12 33.27 33.84
dep2str 19.6M+32.5M 34.85 36.57 34.72 35.38
consdep2str  23.3M+32.5M 35.57* 37.68* 35.62* 36.29

Table 1. Statistics of the extracted rules on training daththe BLEU scores (%) on the test sets of different systems.
The “+” denotes that the rules are composed of syntacticskatinon rules and bilingual phrases (32.5M). The “*”
denotes that the results are significantly better than albther systems 0.01).

language model with modified Kneser-Ney smoothforms all the other baseline models, witke@.01
ing on the Xinhua portion of the English Gigawordon statistical significance tesign-test (Collins et
corpus. We make use of the standard MERT (Ocfal., 2005). By exploiting two types of trees on
2003) to tune the feature weights in order to maxisource side, our model gains significant improve-
mize the system’s BLEU score on the developmenhents over constituency-to-string and dependency-
set. The statistical significance test is performed btp-string models, which employ single type of trees.
sign-test (Collins et al., 2005). Table 1 also lists the statistical results of rules ex-
tracted from training data by different systems. Ac-
cording to our statistics, the number of rules extract-
We take the open source hierarchical phrase-based by ourconsdep2str system is about 18.88% larger
system Moses-chart (with default configuration), thandep2str, without regard to the 32.5M bilingual
our in-house constituency-to-string systeams2str  phrases. The extra rules are CHDR-phrasal rules,
and dependency-to-string systedep2str as our which can bring in BLEU improvements by enhanc-
baseline systems. ing the compatibility with phrases. We will conduct
For cons2str, we follow Liu et al., (Liu et al., a deep analysis in the next sub-section.
2006) to strict that the height of a rule tree is no
greater than 3 and phrase length is no greater thar*
7. To keep consistent with our proposed modeln this section, we first illustrate the influence of
we implement the dependency-to-string model (X€HDR-phrasal rules in owonsdep2str model. We
ie et al., 2011) with GHKM (Galley et al., 2004) calculate the proportion of 1-best translations in test
rule extraction algorithm and utilize bilingual phras-sets that employ CHDR-phrasal rules, and we cal-
es to translate source head node and dependerdis proportion ‘CHDR-phrasal Sent.”. Besides,
syntactic phrases. Outep2str shows comparable the proportion of CHDR-phrasal rules in all CHDR
performance with Xie et al., (2011), which can begules is calculated in these translations, and we cal-
seen by comparing with the results of hierarchicdl this proportion ‘CHDR-phrasal Rule’. Table 2
phrase-based model in our experiments. deplstr  lists the using of CHDR-phrasal rules on test sets,
and our proposed modebnsdep2str, we set rule- showing thatCHDR-phrasal Sent. on all test sets
threshold and stack-threshold 16—2, rule-limit to  are higher than 50%, ar@HDR-phrasal Rule on al-
100, stack-limit to 300, and phrase length limit to 7] three test sets are higher than 10%. These results
indicate that CHDR-phrasal rules do play a role in
decoding.
Table 1 illustrates the translation results of our ex- Furthermore, we compare some actual transla-
periments. As we can see, ooonsdep2str sys- tions of our test sets generated bgns2str, de-
tem has gained the best results on all test sets, wit2str and consdep2str systems, as shown in Fig-
+1.12 BLEU points higher thaMoses-chart, +2.45 ure 6. In the first example, the Chinese input hold-
BLEU points higher thargons2str, and +0.91 BLEU s long distance dependencie§t*s [E & & Xt
points higher thandep2str, averagely on MTO03, ... Jii& T .. F 2 % 1", which correspond
MTO04 and MTO05. Our model significantly outper-to the sentence pattern “noun+adverb+prepositional

5.2 Systems

Analysis

5.3 Experimental Results
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System MTO3 MTO04 MTO5 proposed a constituency-to-dependency translation
CHDR-phrasal Sent. 50.71 61.80 56.19 model, which utilizes constituency forests on the
CHDR-phrasal Rule  10.53 13.55 10.83 source side to direct the translation, and depen-
dency trees on the target side to ensure grammati-
Table 2: The proportion (%) of 1-best translations thatality. Feng et al. (2012) presented a hierarchical
employs CHDR-phrasal rules (CHDR-phrasal Sent.) anghynk-to-string translation model, which is a com-
the proportion (%) of CHDR-phrasal rules in all CHDR o mise petween the hierarchical phrase-based mod-
rules in these translations (CHDR-phrasal Rule). . .
el and the constituency-to-string model. Most work-
s make effort to introduce linguistic knowledge in-
phrase+verb+noun”. Cons2str gives a bad result to the phrase-based model and hierarchical phrase-
with wrong global reordering, while owonsdep2str ~ based model with constituency trees. Only the work
system gains an almost correct result since we caproposed by Mi and Liu, (2010) utilized constituen-
ture this pattern by CHDR-normal rules. In the seccy and dependency trees, while their work applied
ond example, we can see that the Chinese phray¥o types of trees on two sides.
“HX B is a non-syntactic phrase in the depen- Instead, our model simultaneously utilizes con-
dency tree, and this phrase can not be captured biituency and dependency trees on the source side to
head-dependents relation rules in Xie et al., (2011ylirect the translation, which is concerned with com-
thus can not be translated as one unit. Since we epiing the advantages of two types of trees in trans-
code constituency phrasal nodes to the dependeni@ion rules to advance the state-of-the-art machine
tree, ‘B " is labeled by a phrasal node “VP” translation.
(means verb phrase), which can be captured by our
CHDR-phrasal rules and translated into the correct Conclusion
result “reemergence” with bilingual phrases.

In this paper, we present a novel model that si-

q By gomblnltng the merlstj c;faconstgulerlwcy andmultaneously utilizes constituency and dependency
ependency Irees, Owonsuep Sy Moael 1eams .5 on the source side to direct the translation. To

QHDR—normal rgles to acquire the property of Iongcombine the merits of constituency and dependen-
distance reorderings and CHDR-phrasal rules to oI%y trees, our model employs head-dependents rela-

tain good compatibility with phrases. tions incorporating with constituency phrasal nodes.
Experimental results show that our model exhibits
good performance and significantly outperforms the

In recent years, syntax-based models have witnessgidte-0f-the-art constituency-to-string, dependency-
promising improvements. Some researchers mal@String and hierarchical phrase-based models. For
efforts on constituency-based models (Graehl arfj€ first time, source side constituency and depen-
Knight, 2004: Liu et al., 2006; Huang et al., 2006;dency trees are simultaneously utilized to direct the
Zhang et al., 2007: Mi et al., 2008; Liu et al., Zoog;translatlon,' and the model surpasses the state-of-the-
Liu et al., 2011; Zhai et al., 2012). Some works paf't iranslation models. o
attention to dependency-based models (Lin, 2004; Since constituency tree binarization can lead
Ding and Palmer, 2005; Quirk et al., 2005; Xiong ef0 more constituency-to-string rules and syntactic
al., 2007; Shen et al., 2008; Xie et al., 2011). Thesehrases in rule extraction and decoding, which im-
models are based on single type of trees. prove the performance of constituency-to-string sys-
There are also some approaches combining mdfms: for future work, we would like to do research
its of different structures. Marton and Resnik (2008f"n €ncoding binarized constituency trees to depen-
took the source constituency tree into account arféNcy {rees to improve translation performance.
added soft constraints to the hierarchical phrase-
based model (Chiang, 2005). Cherry (2008) uAcknowIedgments

tilized dependency tree to add syntactic cohesionhe authors were supported by National Natural Sci-
to the phrased-based model. Mi and Liu, (2010&nce Foundation of China (Contracts 61202216),

6 Related Work
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MTOS5 ---- segment 448
BAE O 0 BB BUF g T A SN 1 R KR k).

reference: The United Nations has expressed concern over the deadline the Indonesian government imposed on foreign troops.

cons2srt: united nations with the indonesian government have expressed concern over the time limit for foreign troops .
consdep2srt: the united nations has expressed concern over the deadline of the indonesian government on foreign troops .

nsubj

advmod
prep pnuct

pobj dobj

1 C—1
|H7U\I I o% || x1|| N WiT SN ED B WIR || o EX B |

| the umtcd nations " has ” expressed ” concern ” over ” the deadline of the indonesian government on foreign troops ” |

MTO04 ---- segment 194
""" TRHEL B JmE 2 EIRGE EGRE ( SARS ) A e

reference: :-*-:- the reemergence of a severe acute respiratory syndrome (SARS) case ******
dep2srt: =+--* again severe acute respiratory syndrome ( SARS ) case *=*+**
consdep2srt: --*:** reemergence of a severe acute respiratory syndrome ( SARS ) case ******
AP E /NN IR 3 /NN
HBUVY i AN U O i> Dk AN =S CHA N

FLU/AD {¥)/DEG cons &dep | «k/AD {#)/DEG

again reemergence

Figure 6: Actual examples translated by ttoas2str, dep2str andconsdep2str systems.
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