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Abstract

We present a novel translation model, which
simultaneously exploits the constituency and
dependency trees on the source side, to com-
bine the advantages of two types of trees. We
take head-dependents relations of dependency
trees as backbone and incorporate phrasal n-
odes of constituency trees as the source side
of our translation rules, and the target side as
strings. Our rules hold the property of long
distance reorderings and the compatibility
with phrases. Large-scale experimental result-
s show that our model achieves significantly
improvements over the constituency-to-string
(+2.45 BLEU on average) and dependency-
to-string (+0.91 BLEU on average) model-
s, which only employ single type of trees,
and significantly outperforms the state-of-the-
art hierarchical phrase-based model (+1.12
BLEU on average), on three Chinese-English
NIST test sets.

1 Introduction

In recent years, syntax-based models have become a
hot topic in statistical machine translation. Accord-
ing to the linguistic structures, these models can be
broadly divided into two categories: constituency-
based models (Yamada and Knight, 2001; Graehl
and Knight, 2004; Liu et al., 2006; Huang et al.,
2006), and dependency-based models (Lin, 2004;
Ding and Palmer, 2005; Quirk et al., 2005; Xiong
et al., 2007; Shen et al., 2008; Xie et al., 2011).
These two kinds of models have their own advan-
tages, as they capture different linguistic phenome-
na. Constituency trees describe how words and se-

quences of words combine to form constituents, and
constituency-based models show better compatibil-
ity with phrases. However, dependency trees de-
scribe the grammatical relation between words of
the sentence, and represent long distance dependen-
cies in a concise manner. Dependency-based mod-
els, such as dependency-to-string model (Xie et al.,
2011), exhibit better capability of long distance re-
orderings.

In this paper, we propose to combine the advan-
tages of source side constituency and dependency
trees. Since the dependency tree is structurally sim-
pler and directly represents long distance depen-
dencies, we take dependency trees as the backbone
and incorporate constituents to them. Our mod-
el employs rules that represent the source side as
head-dependents relations which are incorporated
with constituency phrasal nodes, and the target side
as strings. A head-dependents relation (Xie et al.,
2011) is composed of a head and all its dependents in
dependency trees, and it encodes phrase pattern and
sentence pattern (typically long distance reordering
relations). With the advantages of head-dependents
relations, the translation rules of our model hold the
property of long distance reorderings and the com-
patibility with phrases.

Our new model (Section 2) extracts rules from
word-aligned pairs of source trees (constituency
and dependency) and target strings (Section 3), and
translate source trees into target strings by employ-
ing a bottom-up chart-based algorithm (Section 4).
Compared with the constituency-to-string (Liu et al.,
2006) and dependency-to-string (Xie et al., 2011)
models that only employ a single type of trees, our
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Figure 1: Illustration of phrases that can not be captured bya dependency tree (b) while captured by a constituency tree
(a), where the bold phrasal nodes NP1, VP2, VP3 indicate the phrases which can not be captured by dependencysyn-
tactic phrases. (c) is the corresponding bilingual sentences. The subscripts of phrasal nodes are used for distinguishing
the nodes with same phrasal categories.

approach yields encouraging results by exploiting t-
wo types of trees. Large-scale experiments (Sec-
tion 5) on Chinese-English translation show that
our model significantly outperforms the state-of-
the-art single constituency-to-string model by av-
eraged +2.45 BLEU points, dependency-to-string
model by averaged +0.91 BLEU points, and hierar-
chical phrase-based model (Chiang, 2005) by aver-
aged +1.12 BLEU points, on three Chinese-English
NIST test sets.

2 Grammar

We take head-dependents relations of dependency
trees as backbone and incorporate phrasal nodes of
constituency trees as the source side of our transla-
tion rules, and the target side as strings. A head-
dependents relation consists of a head and all its de-
pendents in dependency trees, and it can represent
long distance dependencies. Incorporating phrasal
nodes of constituency trees into head-dependents
relations further enhances the compatibility with
phrases of our rules. Figure 1 shows an example of
phrases which can not be captured by a dependen-
cy tree while captured by a constituency tree, such
as the bold phrasal nodes NP1,VP2 and VP3. The

phrasal node NP1 in the constituency tree indicates
that “�? )P�” is a noun phrase and it should
be translated as a basic unit, while in the depen-
dency tree it is a non-syntactic phrase. The head-
dependents relation in the top level of the dependen-
cy tree presents long distance dependencies of the
words “=A�”, “ò”, “íÑ”, and “)P�” in a
concise manner, which is useful for long distance re-
ordering. We adopt this kind of rule representation
to hold the property of long distance reorderings and
the compatibility with phrases.

Figure 2 shows two examples of our translation
rules corresponding to the top level of Figure 1-(b).
We can see thatr1 captures a head-dependents rela-
tion, while r2 extendsr1 by incorporating a phrasal
node VP2 to replace the two nodes “íÑ/VV” and
“)P�/NN”. As shown in Figure 1-(b), VP2 con-
sists of two parts, a head node “íÑ/VV” and a
subtree rooted at the dependent node “)P�/NN”.
Therefore, we use VP2 and the POS tags of the t-
wo nodes VV and NN to denote the part covered
by VP2 in r2, to indicate that the source sequence
covered by VP2 can be translated by a bilingual
phrase. Since VP2 covers a head node “íÑ/VV”,
we representr2 by constructing a new head node
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Figure 2: Two examples of our translation rules corre-
sponding to the top level of Figure 1-(b).r1 captures a
head-dependents relation, andr2 extendsr1 by incorpo-
rating a phrasal node VP2. “x1:NN” indicates a substitu-
tion site which can be replaced by a subtree whose root
has POS tag “NN”. “x1:VP2|||VV NN” indicates a sub-
stitution site which can be replaced by a source phrase
covered by a phrasal node VP (the phrasal node consist-
s of two dependency nodes with POS tag VV and NN,
respectively). The underline denotes a leaf node.

VP2|||VV NN. For simplicity, we use a shorten for-
m CHDR to represent the head-dependents relations
with/without constituency phrasal nodes.

Formally, our grammarG is defined as a 5-tuple
G = 〈Σ, Nc, Nd,∆, R〉, whereΣ is a set of source
language terminals,Nc is a set of constituency
phrasal categories,Nd is a set of categories (POS
tags) for the terminals inΣ, ∆ is a set of target lan-
guage terminals, andR is a set of translation rules
that include bilingual phrases for translating source
language terminals and CHDR rules for translation
and reordering. A CHDR rule is represented as a
triple 〈t, s,∼〉, where:

• t is CHDR with each node labeled by a ter-
minal from Σ or a variable from a setX =
{x1, x2, · · · } constrained by a terminal fromΣ
or a category fromNd or a joint category (con-
structed by the categories fromNc andNd);

• s ∈ (X ∪∆) denotes the target side string;

• ∼ denotes one-to-one links between nontermi-
nals int and variables ins.

We use the lexicon dependency grammar (Hellwig,
2006) which adopts a bracket representation to ex-
press the head-dependents relation and CHDR. For
example, the left-hand sides ofr1 andr2 in Figure 2
can be respectively represented as follows:

(=A�) (ò)íÑ (x1:NN)
(=A�) (ò) x1:VP2|||VV NN
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Figure 3: An example derivation of translation. (g) lists
all the translation rules.r3, r6 andr8 are CHDR rules,
while r4, r5 andr7 are bilingual phrases, which are used
for translating source terminals. The dash lines indicate
the reordering when employing a translation rule.

The formalized presentation ofr2 in Figure 2-(b):
t = (=A�) (ò) x1:VP2|||VV NN
s = Intel will x1

∼= x1:VP2|||VV NN ↔ x1
where the underline indicates a leaf node.

Figure 3 gives an example of the translation
derivation in our model, with the translation rules
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listed in (g). r3, r6 andr8 are CHDR rules, while
r4, r5 andr7 are bilingual phrases, which are used
for translating source language terminals. Given a
sentence to translate in (a), we first parse it into a
constituency tree and a dependency tree, then label
the phrasal nodes from the constituency tree to the
dependency tree, and yield (b). Then, we translate
it into a target string by the following steps. At the
root node, we apply ruler3 to translate the top level
head-dependents relation and results in four unfin-
ished substructures and target strings in (c). From
(c) to (d), there are three steps (one rule for one step).
We user4 to translate “=A�” to “Intel”, r5 to
translate “ò” to “will”, and r6 to translate the right-
most unfinished part. Then, we applyr7 to translate
the phrase “�?)P�” to “Ultrabook”, and yield
(e). Finally, we applyr8 to translate the last frag-
ment to “the first”, and get the final result (f).

3 Rule Extraction

In this section, we describe how to extract rules from
a set of 4-tuples〈C, T, S,A〉, whereC is a source
constituency tree,T is a source dependency tree,S
is a target side sentence, andA is an word alignmen-
t relation betweenT /C andS. We extract CHDR
rules from each 4-tuple〈C, T, S,A〉 based on GHK-
M algorithm (Galley et al., 2004) with three steps:

1. Label the dependency tree with phrasal nodes
from the constituency tree, and annotate align-
ment information to the phrasal nodes labeled
dependency tree (Section 3.1).

2. Identify acceptable CHDR fragments from the
annotated dependency tree for rule induction
(Section 3.2).

3. Induce a set of lexicalized and generalized
CHDR rules from the acceptable fragments
(Section 3.3).

3.1 Annotation

Given a 4-tuple〈C, T, S,A〉, we first label phrasal
nodes from the constituency treeC to the depen-
dency treeT , which can be easily accomplished by
phrases mapping according to the common covered
source sequences. As dependency trees can capture
some phrasal information by dependency syntactic

/VV

{3-3}{1-8}

/NR

{1-1}{1-1}

/AD

{2-2}{2-2}

/NN

{6-6}{4-8}

/NR

{7-8}{7-8}

/M

{null}{4-5}

/JJ

{6-6}{6-6}

/OD

{4-5}{4-5}

NP1

<6-6>

VP2

<3-8>

VP3

<2-8>

Figure 4: An annotated dependency tree. Each node is
annotated with two spans, the former is node span and
the latter subtree span. The fragments covered by phrasal
nodes are annotated with phrasal spans. The nodes de-
noted by the solid line box are notnsp consistent.

phrases, in order to complement the information that
dependency trees can not capture, we only label the
phrasal nodes that cover dependency non-syntactic
phrases.

Then, we annotate alignment information to the
phrasal nodes labeled dependency treeT , as shown
in Figure 4. For description convenience, we make
use of the notion of spans (Fox, 2002; Lin, 2004).
Given a noden in the source phrasal nodes labeled
T with word alignment information, the spans ofn
induced by the word alignment are consecutive se-
quences of words in the target sentence. As shown
in Figure 4, we annotate each noden of phrasal n-
odes labeledT with two attributes:node span and
subtree span; besides, we annotatephrasal span to
the parts covered by phrasal nodes in each subtree
rooted atn. The three types of spans are defined as
follows:

Definition 1 Given a node n, its node span nsp(n)
is the consecutive target word sequence aligned with
the node n.

Take the node “æ³/NR” in Figure 4 for example,
nsp(æ³/NR)={7-8}, which corresponds to the tar-
get words “in” and “Asia”.

Definition 2 Given a subtree T
′

rooted at n, the
subtree span tsp(n) of n is the consecutive target
word sequence from the lower bound of the nsp of
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all nodes in T
′

to the upper bound of the same set of
spans.

For instance,tsp()P�/NN)={4-8}, which corre-
sponds to the target words “the first Ultrabook in A-
sia”, whose indexes are from 4 to 8.

Definition 3 Given a fragment f covered by a
phrasal node, the phrasal span psp(f) of f is
the consecutive target word sequence aligned with
source string covered by f .

For example,psp(VP2)=〈3-8〉, which corresponds
to the target word sequence “launch the first Ultra-
book in Asia”.

We saynsp, tsp andpsp areconsistent according
to the notion in the phrase-based model (Koehn et
al., 2003). For example,nsp(æ³/NR), tsp()P�/NN) andpsp(NP1) are consistent whilensp(�?/JJ) andnsp()P�/NN) are not consistent.

The annotation can be achieved by a single pos-
torder transversal of the phrasal nodes labeled de-
pendency tree. For simplicity, we call the annotat-
ed phrasal nodes labeled dependency treeannotated
dependency tree. The extraction of bilingual phrases
(including the translation of head node, dependen-
cy syntactic phrases and the fragment covered by a
phrasal node) can be readily achieved by the algo-
rithm described in Koehn et al., (2003). In the fol-
lowing, we focus on CHDR rules extraction.

3.2 Acceptable Fragments Identification

Before present the method of acceptable fragments
identification, we give a brief description of CHDR
fragments. A CHDR fragment is an annotated frag-
ment that consists of a source head-dependents rela-
tion with/without constituency phrasal nodes, a tar-
get string and the word alignment information be-
tween the source and target side. We identify the ac-
ceptable CHDR fragments that are suitable for rule
induction from the annotated dependency tree. We
divide the acceptable CHDR fragments into two cat-
egories depending on whether the fragments con-
tain phrasal nodes. If an acceptable CHDR frag-
ment does not contain phrasal nodes, we call it
CHDR-normal fragment, otherwiseCHDR-phrasal
fragment. Given a CHDR fragmentF rooted atn,
we sayF is acceptable if it satisfies any one of the
following properties:

CHDR-phrasal Rules

r9: ( )( )x1:VP2|||VV_NN Intel will x1

r10: (x1:NR)(x2:AD)x3:VP2|||VV_NN x1 x2 x3

r11: ( )x1:VP3|||AD_VV_NN Intel x1

r12: (x1:NR)x2:VP3|||AD_VV_NN x1 x2

CHDR-normal Rules

r4: (x1:NR) (x2:AD) (x3:NN) x1 x2 launch x3

Intel will launch x1r3: ( ) ( ) (x1:NN)

r2: (x1:NR) (x2:AD) (x3: ) x1 x2 launch x3

r1: ( ) ( ) (x1: ) Intel will launch x1

r5: ( ) ( ) x1:VV (x2: ) Intel will x1 x2

r8: (x1:NR) (x2:AD) x3:VV (x4:NN) x1 x2 x3 x4

r6: (x1:NR) (x2:AD) x3:VV (x4: ) x1 x2 x3 x4

Intel will x1 x2r7: ( ) ( ) x1:VV (x2:NN)

(d)

/VV

/NR /AD /NN

Intel

1

will

2

launch

3

the first Ultrabook in Asia

4-8

(a)

Intel

1

will

2

launch the first Ultrabook in Asia

3-8

VP2

/VV

/NR /AD /NN(b)

(c)

Intel

1

will launch the first Ultrabook in Asia

2-8

VP3

/VV

/NR /AD /NN

VP2|||VV_NN

VP3|||AD_VV_NN

Figure 5: Examples of a CHDR-normal fragment (a), two
CHDR-phrasal fragments (b) and (c) that are identified
from the top level of the annotated dependency tree in
Figure 4, and the corresponding CHDR rules (d) induced
from (a), (b) and (c). The underline denotes a leaf node.

1. Without phrasal nodes, the node span of the
root n is consistent and the subtree spans of
n’s all dependents are consistent. For example,
Figure 5-(a) shows a CHDR-normal fragmen-
t that identified from the top level of the an-
notated dependency tree in Figure 4, since the
nsp(íÑ/VV), tsp(=A�/NR), tsp(ò/AD)
andtsp()P�/NN) are consistent.
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2. With phrasal nodes, the phrasal spans of
phrasal nodes are consistent; and for the other
nodes, the node span of head (if it is not cov-
ered by any phrasal node) is consistent, and the
subtree spans of dependents are consistent. For
instance, Figure 5-(b) and (c) show two CHDR-
phrasal fragments identified from the top level
of Figure 4. In Figure 5-(b),psp(VP2), tsp(=A�/NR) and tsp(ò/AD) are consistent. In
Figure 5-(c),psp(VP3) and tsp(=A�/NR)
are consistent.

The identification of acceptable fragments can be
achieved by a single postorder transversal of the an-
notated dependency tree. Typically, each acceptable
fragment contains at most three types of nodes: head
node, head of the related CHDR; internal nodes, in-
ternal nodes of the related CHDR except head node;
leaf nodes, leaf nodes of the related CHDR.

3.3 Rule Induction

From each acceptable CHDR fragment, we induce
a set of lexicalized and generalized CHDR rules.
We induce CHDR-normal rules and CHDR-phrasal
rules from CHDR-normal fragments and CHDR-
phrasal fragments, respectively.

We first induce a lexicalized form of CHDR rule
from an acceptable CHDR fragment:

1. For a CHDR-normal fragment, we first mark
the internal nodes as substitution sites. This
forms the input of a CHDR-normal rule. Then
we generate the target string according to the
node span of the head and the subtree spans of
the dependents, and turn the word sequences
covered by the internal nodes into variables.
This forms the output of a lexicalized CHDR-
normal rule.

2. For a CHDR-phrasal fragment, we first mark
the internal nodes and the phrasal nodes as sub-
stitution sites. This forms the input of a CHDR-
phrasal rule. Then we construct the output of
the CHDR-phrasal rule in almost the same way
with constructing CHDR-normal rules, except
that we replace the target sequences covered by
the internal nodes and the phrasal nodes with
variables.

For example, ruler1 in Figure 5-(d) is a lexicalized
CHDR-normal rule induced from the CHDR-normal
fragment in Figure 5-(a).r9 and r11 are CHDR-
phrasal rules induced from the CHDR-phrasal frag-
ment in Figure 5-(b) and Figure 5-(c) respectively.
As we can see, these CHDR-phrasal rules are par-
tially unlexicalized.

To alleviate the sparseness problem, we gener-
alize the lexicalized CHDR-normal rules and par-
tially unlexicalized CHDR-phrasal rules with un-
lexicalized nodes by the method proposed in Xie
et al., (2011). As the modification relations be-
tween head and dependents are determined by the
edges, we can replace the lexical word of each n-
ode with its category (POS tag) and obtain new
head-dependents relations with unlexicalized nodes
keeping the same modification relations. We gen-
eralize the rule by simultaneously turn the nodes of
the same type (head, internal, leaf) into their cate-
gories. For example, CHDR-normal rulesr2 ∼ r7
are generalized fromr1 in Figure 5-(d). Besides,r10
and r12 are the corresponding generalized CHDR-
phrasal rules. Actually, our CHDR rules are the su-
perset of head-dependents relation rules in Xie et
al., (2011). CHDR-normal rules are equivalent with
the head-dependents relation rules and the CHDR-
phrasal rules are the extension of these rules. For
convenience of description, we use the subscript to
distinguish the phrasal nodes with the same catego-
ry, such as VP2 and VP3. In actual operation, we use
VP instead of VP2 and VP3.

We handle the unaligned words of the target side
by extending the node spans of the lexicalized head
and leaf nodes, and the subtree spans of the lexical-
ized dependents, on both left and right directions.
This procedure is similar with the method of Och
and Ney, (2004). During this process, we might ob-
tain m(m ≥ 1) CHDR rules from an acceptable
fragment. Each of these rules is assigned with a frac-
tional count1/m. We take the extracted rule set as
observed data and make use of relative frequency es-
timator to obtain the translation probabilitiesP (t|s)
andP (s|t).

4 Decoding and the Model

Following Och and Ney, (2002), we adopt a general
loglinear model. Letd be a derivation that convert a
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source phrasal nodes labeled dependency tree into a
target stringe. The probability ofd is defined as:

P (d) ∝
∏

i

φi(d)λi (1)

whereφi are features defined on derivations andλi

are feature weights. In our experiments of this paper,
the features are used as follows:

• CHDR rules translation probabilitiesP (t|s)
andP (s|t), and CHDR rules lexical translation
probabilitiesPlex(t|s) andPlex(s|t);

• bilingual phrases translation probabilities
Pbp(t|s) and Pbp(s|t), and bilingual phrases
lexical translation probabilitiesPbplex(t|s) and
Pbplex(s|t);

• rule penaltyexp(−1);

• pseudo translation rule penaltyexp(−1);

• target word penaltyexp(|e|);

• language modelPlm(e).

We have twelve features in our model. The values of
the first four features are accumulated on the CHDR
rules and the next four features are accumulated on
the bilingual phrases. We also use a pseudo transla-
tion rule (constructed according to the word order of
head-dependents relation) as a feature to guarantee
the complete translation when no matched rules can
be found during decoding.

Our decoder is based on bottom-up chart-based
algorithm. It finds the best derivation that convert
the input phrasal nodes labeled dependency tree into
a target string among all possible derivations. Giv-
en the source constituency tree and dependency tree,
we first generate phrasal nodes labeled dependency
treeT as described in Section 3.1, then the decoder
transverses each node inT by postorder. For each
noden, it enumerates all instances of CHDR rooted
at n, and checks the rule set for matched translation
rules. A larger translation is generated by substitut-
ing the variables in the target side of a translation
rule with the translations of the corresponding de-
pendents. Cube pruning (Chiang, 2007; Huang and
Chiang, 2007) is used to find the k-best items with
integrated language model for each node.

To balance the performance and speed of the de-
coder, we limit the search space by reducing the

number of translation rules used for each node.
There are two ways to limit the rule table size: by
a fixed limit (rule-limit) of how many rules are re-
trieved for each input node, and by a threshold (rule-
threshold) to specify that the rule with a score low-
er thanβ times of the best score should be discard-
ed. On the other hand, instead of keeping the full
list of candidates for a given node, we keep a top-
scoring subset of the candidates. This can also be
done by a fixed limit (stack-limit) and a threshold
(stack-threshold).

5 Experiments

We evaluated the performance of our model by com-
paring with hierarchical phrase-based model (Chi-
ang, 2007), constituency-to-string model (Liu et al.,
2006) and dependency-to-string model (Xie et al.,
2011) on Chinese-English translation. First, we de-
scribe data preparation (Section 5.1) and systems
(Section 5.2). Then, we validate that our model sig-
nificantly outperforms all the other baseline models
(Section 5.3). Finally, we give detail analysis (Sec-
tion 5.4).

5.1 Data Preparation

Our training data consists of 1.25M sentence pairs
extracted from LDC1 data. We choose NIST MT
Evaluation test set 2002 as our development set,
NIST MT Evaluation test sets 2003 (MT03), 2004
(MT04) and 2005 (MT05) as our test sets. The qual-
ity of translations is evaluated by the case insensitive
NIST BLEU-4 metric2.

We parse the source sentences to constituency
trees (without binarization) and projective depen-
dency trees with Stanford Parser (Klein and Man-
ning, 2002). The word alignments are obtained by
running GIZA++ (Och and Ney, 2003) on the corpus
in both directions and using the “grow-diag-final-
and” balance strategy (Koehn et al., 2003). We get
bilingual phrases from word-aligned data with algo-
rithm described in Koehn et al. (2003) by running
Moses Toolkit3. We apply SRI Language Modeling
Toolkit (Stolcke and others, 2002) to train a 4-gram

1Including LDC2002E18, LDC2003E07, LDC2003E14,
Hansards portion of LDC2004T07, LDC2004T08 and LD-
C2005T06.

2ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v11b.pl
3http://www.statmt.org/moses/
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System Rule # MT03 MT04 MT05 Average
Moses-chart 116.4M 34.65 36.47 34.39 35.17
cons2str 25.4M+32.5M 33.14 35.12 33.27 33.84
dep2str 19.6M+32.5M 34.85 36.57 34.72 35.38
consdep2str 23.3M+32.5M 35.57* 37.68* 35.62* 36.29

Table 1: Statistics of the extracted rules on training data and the BLEU scores (%) on the test sets of different systems.
The “+” denotes that the rules are composed of syntactic translation rules and bilingual phrases (32.5M). The “*”
denotes that the results are significantly better than all the other systems (p<0.01).

language model with modified Kneser-Ney smooth-
ing on the Xinhua portion of the English Gigaword
corpus. We make use of the standard MERT (Och,
2003) to tune the feature weights in order to maxi-
mize the system’s BLEU score on the development
set. The statistical significance test is performed by
sign-test (Collins et al., 2005).

5.2 Systems

We take the open source hierarchical phrase-based
system Moses-chart (with default configuration),
our in-house constituency-to-string systemcons2str
and dependency-to-string systemdep2str as our
baseline systems.

For cons2str, we follow Liu et al., (Liu et al.,
2006) to strict that the height of a rule tree is no
greater than 3 and phrase length is no greater than
7. To keep consistent with our proposed model,
we implement the dependency-to-string model (X-
ie et al., 2011) with GHKM (Galley et al., 2004)
rule extraction algorithm and utilize bilingual phras-
es to translate source head node and dependency
syntactic phrases. Ourdep2str shows comparable
performance with Xie et al., (2011), which can be
seen by comparing with the results of hierarchical
phrase-based model in our experiments. Fordep2str
and our proposed modelconsdep2str, we set rule-
threshold and stack-threshold to10−3, rule-limit to
100, stack-limit to 300, and phrase length limit to 7.

5.3 Experimental Results

Table 1 illustrates the translation results of our ex-
periments. As we can see, ourconsdep2str sys-
tem has gained the best results on all test sets, with
+1.12 BLEU points higher thanMoses-chart, +2.45
BLEU points higher thancons2str, and +0.91 BLEU
points higher thandep2str, averagely on MT03,
MT04 and MT05. Our model significantly outper-

forms all the other baseline models, with p<0.01
on statistical significance testsign-test (Collins et
al., 2005). By exploiting two types of trees on
source side, our model gains significant improve-
ments over constituency-to-string and dependency-
to-string models, which employ single type of trees.

Table 1 also lists the statistical results of rules ex-
tracted from training data by different systems. Ac-
cording to our statistics, the number of rules extract-
ed by ourconsdep2str system is about 18.88% larger
thandep2str, without regard to the 32.5M bilingual
phrases. The extra rules are CHDR-phrasal rules,
which can bring in BLEU improvements by enhanc-
ing the compatibility with phrases. We will conduct
a deep analysis in the next sub-section.

5.4 Analysis

In this section, we first illustrate the influence of
CHDR-phrasal rules in ourconsdep2str model. We
calculate the proportion of 1-best translations in test
sets that employ CHDR-phrasal rules, and we cal-
l this proportion “CHDR-phrasal Sent.”. Besides,
the proportion of CHDR-phrasal rules in all CHDR
rules is calculated in these translations, and we cal-
l this proportion “CHDR-phrasal Rule”. Table 2
lists the using of CHDR-phrasal rules on test sets,
showing thatCHDR-phrasal Sent. on all test sets
are higher than 50%, andCHDR-phrasal Rule on al-
l three test sets are higher than 10%. These results
indicate that CHDR-phrasal rules do play a role in
decoding.

Furthermore, we compare some actual transla-
tions of our test sets generated bycons2str, de-
p2str and consdep2str systems, as shown in Fig-
ure 6. In the first example, the Chinese input hold-
s long distance dependencies “éÜI ®² é
... \�u ... L« '�”, which correspond
to the sentence pattern “noun+adverb+prepositional
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System MT03 MT04 MT05
CHDR-phrasal Sent. 50.71 61.80 56.19
CHDR-phrasal Rule 10.53 13.55 10.83

Table 2: The proportion (%) of 1-best translations that
employs CHDR-phrasal rules (CHDR-phrasal Sent.) and
the proportion (%) of CHDR-phrasal rules in all CHDR
rules in these translations (CHDR-phrasal Rule).

phrase+verb+noun”. Cons2str gives a bad result
with wrong global reordering, while ourconsdep2str
system gains an almost correct result since we cap-
ture this pattern by CHDR-normal rules. In the sec-
ond example, we can see that the Chinese phrase
“2gÑy” is a non-syntactic phrase in the depen-
dency tree, and this phrase can not be captured by
head-dependents relation rules in Xie et al., (2011),
thus can not be translated as one unit. Since we en-
code constituency phrasal nodes to the dependency
tree, “2gÑy” is labeled by a phrasal node “VP”
(means verb phrase), which can be captured by our
CHDR-phrasal rules and translated into the correct
result “reemergence” with bilingual phrases.

By combining the merits of constituency and
dependency trees, ourconsdep2str model learns
CHDR-normal rules to acquire the property of long
distance reorderings and CHDR-phrasal rules to ob-
tain good compatibility with phrases.

6 Related Work

In recent years, syntax-based models have witnessed
promising improvements. Some researchers make
efforts on constituency-based models (Graehl and
Knight, 2004; Liu et al., 2006; Huang et al., 2006;
Zhang et al., 2007; Mi et al., 2008; Liu et al., 2009;
Liu et al., 2011; Zhai et al., 2012). Some works pay
attention to dependency-based models (Lin, 2004;
Ding and Palmer, 2005; Quirk et al., 2005; Xiong et
al., 2007; Shen et al., 2008; Xie et al., 2011). These
models are based on single type of trees.

There are also some approaches combining mer-
its of different structures. Marton and Resnik (2008)
took the source constituency tree into account and
added soft constraints to the hierarchical phrase-
based model (Chiang, 2005). Cherry (2008) u-
tilized dependency tree to add syntactic cohesion
to the phrased-based model. Mi and Liu, (2010)

proposed a constituency-to-dependency translation
model, which utilizes constituency forests on the
source side to direct the translation, and depen-
dency trees on the target side to ensure grammati-
cality. Feng et al. (2012) presented a hierarchical
chunk-to-string translation model, which is a com-
promise between the hierarchical phrase-based mod-
el and the constituency-to-string model. Most work-
s make effort to introduce linguistic knowledge in-
to the phrase-based model and hierarchical phrase-
based model with constituency trees. Only the work
proposed by Mi and Liu, (2010) utilized constituen-
cy and dependency trees, while their work applied
two types of trees on two sides.

Instead, our model simultaneously utilizes con-
stituency and dependency trees on the source side to
direct the translation, which is concerned with com-
bining the advantages of two types of trees in trans-
lation rules to advance the state-of-the-art machine
translation.

7 Conclusion

In this paper, we present a novel model that si-
multaneously utilizes constituency and dependency
trees on the source side to direct the translation. To
combine the merits of constituency and dependen-
cy trees, our model employs head-dependents rela-
tions incorporating with constituency phrasal nodes.
Experimental results show that our model exhibits
good performance and significantly outperforms the
state-of-the-art constituency-to-string, dependency-
to-string and hierarchical phrase-based models. For
the first time, source side constituency and depen-
dency trees are simultaneously utilized to direct the
translation, and the model surpasses the state-of-the-
art translation models.

Since constituency tree binarization can lead
to more constituency-to-string rules and syntactic
phrases in rule extraction and decoding, which im-
prove the performance of constituency-to-string sys-
tems, for future work, we would like to do research
on encoding binarized constituency trees to depen-
dency trees to improve translation performance.
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MT05 ---- segment 448

cons2srt: united nations with the indonesian government have expressed concern over the time limit for foreign troops .

consdep2srt: the united nations has expressed concern over the deadline of the indonesian government on foreign troops .

reference: The United Nations has expressed concern over the deadline the Indonesian government imposed on foreign troops.

dobjpobj

prep

advmod

nsubj

pnuct

the united nations has the deadline of the indonesian government on foreign troopsexpressed concern over .

dep2srt: again severe acute respiratory syndrome ( SARS ) case 

consdep2srt: reemergence of a severe acute respiratory syndrome ( SARS ) case

reference: the reemergence of a severe acute respiratory syndrome (SARS) case 

MT04 ---- segment 194

dep cons & dep

/VV

/AD /DEG

VP

reemergence

/NN

/JJ /JJ/VV

/AD /DEG

again

/NN

/JJ /JJ

Figure 6: Actual examples translated by thecons2str, dep2str andconsdep2str systems.
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