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Abstract

Matrix and tensor factorization have been ap-
plied to a number of semantic relatedness
tasks, including paraphrase identification. The
key idea is that similarity in the latent space
implies semantic relatedness. We describe
three ways in which labeled data can im-
prove the accuracy of these approaches on
paraphrase classification. First, we design
a new discriminative term-weighting metric
called TF-KLD, which outperforms TF-IDF.
Next, we show that using the latent repre-
sentation from matrix factorization as features
in a classification algorithm substantially im-
proves accuracy. Finally, we combine latent
features with fine-grained n-gram overlap fea-
tures, yielding performance that is 3% more
accurate than the prior state-of-the-art.

1 Introduction

Measuring the semantic similarity of short units
of text is fundamental to many natural language
processing tasks, from evaluating machine transla-
tion (Kauchak and Barzilay, 2006) to grouping re-
dundant event mentions in social media (Petrović
et al., 2010). The task is challenging because of
the infinitely diverse set of possible linguistic real-
izations for any idea (Bhagat and Hovy, 2013), and
because of the short length of individual sentences,
which means that standard bag-of-words representa-
tions will be hopelessly sparse.

Distributional methods address this problem by
transforming the high-dimensional bag-of-words
representation into a lower-dimensional latent space.

This can be accomplished by factoring a matrix
or tensor of term-context counts (Turney and Pan-
tel, 2010); proximity in the induced latent space
has been shown to correlate with semantic similar-
ity (Mihalcea et al., 2006). However, factoring the
term-context matrix means throwing away a consid-
erable amount of information, as the original ma-
trix of size M ×N (number of instances by number
of features) is factored into two smaller matrices of
size M ×K and N ×K, with K � M, N . If the
factorization does not take into account labeled data
about semantic similarity, important information can
be lost.

In this paper, we show how labeled data can con-
siderably improve distributional methods for mea-
suring semantic similarity. First, we develop a
new discriminative term-weighting metric called
TF-KLD, which is applied to the term-context ma-
trix before factorization. On a standard paraphrase
identification task (Dolan et al., 2004), this method
improves on both traditional TF-IDF and Weighted
Textual Matrix Factorization (WTMF; Guo and
Diab, 2012). Next, we convert the latent repre-
sentations of each sentence pair into a feature vec-
tor, which is used as input to a linear SVM clas-
sifier. This yields further improvements and sub-
stantially outperforms the current state-of-the-art
on paraphrase classification. We then add “fine-
grained” features about the lexical similarity of the
sentence pair. The combination of latent and fine-
grained features yields further improvements in ac-
curacy, demonstrating that these feature sets provide
complementary information on semantic similarity.
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2 Related Work

Without attempting to do justice to the entire lit-
erature on paraphrase identification, we note three
high-level approaches: (1) string similarity metrics
such as n-gram overlap and BLEU score (Wan et
al., 2006; Madnani et al., 2012), as well as string
kernels (Bu et al., 2012); (2) syntactic operations
on the parse structure (Wu, 2005; Das and Smith,
2009); and (3) distributional methods, such as la-
tent semantic analysis (LSA; Landauer et al., 1998),
which are most relevant to our work. One appli-
cation of distributional techniques is to replace in-
dividual words with distributionally similar alterna-
tives (Kauchak and Barzilay, 2006). Alternatively,
Blacoe and Lapata (2012) show that latent word rep-
resentations can be combined with simple element-
wise operations to identify the semantic similarity
of larger units of text. Socher et al. (2011) pro-
pose a syntactically-informed approach to combine
word representations, using a recursive auto-encoder
to propagate meaning through the parse tree.

We take a different approach: rather than repre-
senting the meanings of individual words, we di-
rectly obtain a distributional representation for the
entire sentence. This is inspired by Mihalcea et al.
(2006) and Guo and Diab (2012), who treat sen-
tences as pseudo-documents in an LSA framework,
and identify paraphrases using similarity in the la-
tent space. We show that the performance of such
techniques can be improved dramatically by using
supervised information to (1) reweight the individ-
ual distributional features and (2) learn the impor-
tance of each latent dimension.

3 Discriminative feature weighting

Distributional representations (Turney and Pantel,
2010) can be induced from a co-occurrence ma-
trix W ∈ RM×N , where M is the number of in-
stances and N is the number of distributional fea-
tures. For paraphrase identification, each instance
is a sentence; features may be unigrams, or may
include higher-order n-grams or dependency pairs.
By decomposing the matrix W, we hope to obtain
a latent representation in which semantically-related
sentences are similar. Singular value decomposition
(SVD) is traditionally used to perform this factoriza-
tion. However, recent work has demonstrated the ro-

bustness of nonnegative matrix factorization (NMF;
Lee and Seung, 2001) for text mining tasks (Xu et
al., 2003; Arora et al., 2012); the difference from
SVD is the addition of a non-negativity constraint
in the latent representation based on non-orthogonal
basis.

While W may simply contain counts of distribu-
tional features, prior work has demonstrated the util-
ity of reweighting these counts (Turney and Pantel,
2010). TF-IDF is a standard approach, as the inverse
document frequency (IDF) term increases the impor-
tance of rare words, which may be more discrimi-
native. Guo and Diab (2012) show that applying a
special weight to unseen words can further improve-
ment performance on paraphrase identification.

We present a new weighting scheme, TF-KLD,
based on supervised information. The key idea is
to increase the weights of distributional features that
are discriminative, and to decrease the weights of
features that are not. Conceptually, this is similar
to Linear Discriminant Analysis, a supervised fea-
ture weighting scheme for continuous data (Murphy,
2012).

More formally, we assume labeled sentence pairs
of the form 〈~w(1)

i , ~w
(2)
i , ri〉, where ~w

(1)
i is the bi-

narized vector of distributional features for the first
sentence, ~w

(2)
i is the binarized vector of distribu-

tional features for the second sentence, and ri ∈
{0, 1} indicates whether they are labeled as a para-
phrase pair. Assuming the order of the sentences
within the pair is irrelevant, then for k-th distribu-
tional feature, we define two Bernoulli distributions:

• pk = P (w
(1)
ik |w

(2)
ik = 1, ri = 1). This is the

probability that sentence w
(1)
i contains feature

k, given that k appears in w
(2)
i and the two sen-

tences are labeled as paraphrases, ri = 1.

• qk = P (w
(1)
ik |w

(2)
ik = 1, ri = 0). This is the

probability that sentence w
(1)
i contains feature

k, given that k appears in w
(2)
i and the two sen-

tences are labeled as not paraphrases, ri = 0.

The Kullback-Leibler divergence KL(pk||qk) =∑
x pk(x) log pk(x)

qk(x) is then a measure of the discrim-
inability of feature k, and is guaranteed to be non-
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Figure 1: Conditional probabilities for a few hand-
selected unigram features, with lines showing contours
with identical KL-divergence. The probabilities are es-
timated based on the MSRPC training set (Dolan et al.,
2004).

negative.1 We use this divergence to reweight the
features in W before performing the matrix factor-
ization. This has the effect of increasing the weights
of features whose likelihood of appearing in a pair
of sentences is strongly influenced by the paraphrase
relationship between the two sentences. On the other
hand, if pk = qk, then the KL-divergence will be
zero, and the feature will be ignored in the ma-
trix factorization. We name this weighting scheme
TF-KLD, since it includes the term frequency and
the KL-divergence.

Taking the unigram feature not as an example, we
have pk = [0.66, 0.34] and qk = [0.31, 0.69], for a
KL-divergence of 0.25: the likelihood of this word
being shared between two sentence is strongly de-
pendent on whether the sentences are paraphrases.
In contrast, the feature then has pk = [0.33, 0.67]
and qk = [0.32, 0.68], for a KL-divergence of 3.9×
10−4. Figure 1 shows the distributions of these and
other unigram features with respect to pk and 1−qk.
The diagonal line running through the middle of the
plot indicates zero KL-divergence, so features on
this line will be ignored.

1We obtain very similar results with the opposite divergence
KL(qk||pk). However, the symmetric Jensen-Shannon diver-
gence performs poorly.

1 unigram recall
2 unigram precision
3 bigram recall
4 bigram precision
5 dependency relation recall
6 dependency relation precision
7 BLEU recall
8 BLEU precision
9 Difference of sentence length

10 Tree-editing distance

Table 1: Fine-grained features for paraphrase classifica-
tion, selected from prior work (Wan et al., 2006).

4 Supervised classification

While previous work has performed paraphrase clas-
sification using distance or similarity in the latent
space (Guo and Diab, 2012; Socher et al., 2011),
more direct supervision can be applied. Specifically,
we convert the latent representations of a pair of sen-
tences ~v1 and ~v2 into a sample vector,

~s(~v1, ~v2) =
[
~v1 + ~v2, |~v1 − ~v2|

]
, (1)

concatenating the element-wise sum ~v1 +~v2 and ab-
solute difference |~v1 − ~v2|. Note that ~s(·, ·) is sym-
metric, since ~s(~v1, ~v2) = ~s(~v2, ~v1). Given this rep-
resentation, we can use any supervised classification
algorithm.

A further advantage of treating paraphrase as a
supervised classification problem is that we can ap-
ply additional features besides the latent represen-
tation. We consider a subset of features identified
by Wan et al. (2006), listed in Table 1. These fea-
tures mainly capture fine-grained similarity between
sentences, for example by counting specific unigram
and bigram overlap.

5 Experiments

Our experiments test the utility of the TF-
KLD weighting towards paraphrase classification,
using the Microsoft Research Paraphrase Corpus
(Dolan et al., 2004). The training set contains 2753
true paraphrase pairs and 1323 false paraphrase
pairs; the test set contains 1147 and 578 pairs, re-
spectively.

The TF-KLD weights are constructed from only
the training set, while matrix factorizations are per-
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formed on the entire corpus. Matrix factorization on
both training and (unlabeled) test data can be viewed
as a form of transductive learning (Gammerman et
al., 1998), where we assume access to unlabeled test
set instances.2 We also consider an inductive setting,
where we construct the basis of the latent space from
only the training set, and then project the test set
onto this basis to find the corresponding latent rep-
resentation. The performance differences between
the transductive and inductive settings were gener-
ally between 0.5% and 1%, as noted in detail be-
low. We reiterate that the TF-KLD weights are never
computed from test set data.

Prior work on this dataset is described in sec-
tion 2. To our knowledge, the current state-of-the-
art is a supervised system that combines several ma-
chine translation metrics (Madnani et al., 2012), but
we also compare with state-of-the-art unsupervised
matrix factorization work (Guo and Diab, 2012).

5.1 Similarity-based classification

In the first experiment, we predict whether a pair
of sentences is a paraphrase by measuring their co-
sine similarity in latent space, using a threshold for
the classification boundary. As in prior work (Guo
and Diab, 2012), the threshold is tuned on held-out
training data. We consider two distributional feature
sets: FEAT1, which includes unigrams; and FEAT2,
which also includes bigrams and unlabeled depen-
dency pairs obtained from MaltParser (Nivre et al.,
2007). To compare with Guo and Diab (2012), we
set the latent dimensionality to K = 100, which was
the same in their paper. Both SVD and NMF factor-
ization are evaluated; in both cases, we minimize the
Frobenius norm of the reconstruction error.

Table 2 compares the accuracy of a num-
ber of different configurations. The transductive
TF-KLD weighting yields the best overall accu-
racy, achieving 72.75% when combined with non-
negative matrix factorization. While NMF performs
slightly better than SVD in both comparisons, the
major difference is the performance of discrimina-
tive TF-KLD weighting, which outperforms TF-IDF
regardless of the factorization technique. When we

2Another example of transductive learning in NLP is
when Turian et al. (2010) induced word representations from a
corpus that included both training and test data for their down-
stream named entity recognition task.
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Figure 2: Accuracy of feature and weighting combina-
tions in the classification framework.

perform the matrix factorization on only the training
data, the accuracy on the test set is 73.58%, with F1
score 80.55%.

5.2 Supervised classification

Next, we apply supervised classification, construct-
ing sample vectors from the latent representation as
shown in Equation 1. For classification, we choose
a Support Vector Machine with a linear kernel (Fan
et al., 2008), leaving a thorough comparison of clas-
sifiers for future work. The classifier parameter C is
tuned on a development set comprising 20% of the
original training set.

Figure 2 presents results for a range of latent di-
mensionalities. Supervised learning identifies the
important dimensions in the latent space, yielding
significantly better performance that the similarity-
based classification from the previous experiment.
In Table 3, we compare against prior published
work, using the held-out development set to select
the best value of K (again, K = 400). The best
result is from TF-KLD, with distributional features
FEAT2, achieving 79.76% accuracy and 85.87% F1.
This is well beyond all known prior results on this
task. When we induce the latent basis from only
the training data, we get 78.55% on accuracy and
84.59% F1, also better than the previous state-of-art.

Finally, we augment the distributional represen-
tation, concatenating the ten “fine-grained” fea-
tures in Table 1 to the sample vectors described
in Equation 1. As shown in Table 3, the accu-
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Factorization Feature set Weighting K Measure Accuracy (%) F1
SVD unigrams TF-IDF 100 cosine sim. 68.92 80.33
NMF unigrams TF-IDF 100 cosine sim. 68.96 80.14

WTMF unigrams TF-IDF 100 cosine sim. 71.51 not reported
SVD unigrams TF-KLD 100 cosine sim. 72.23 81.19
NMF unigrams TF-KLD 100 cosine sim. 72.75 81.48

Table 2: Similarity-based paraphrase identification accuracy. Results for WTMF are reprinted from the paper by Guo
and Diab (2012).

Acc. F1
Most common class 66.5 79.9
(Wan et al., 2006) 75.6 83.0
(Das and Smith, 2009) 73.9 82.3
(Das and Smith, 2009) with 18 features 76.1 82.7
(Bu et al., 2012) 76.3 not reported
(Socher et al., 2011) 76.8 83.6
(Madnani et al., 2012) 77.4 84.1
FEAT2, TF-KLD, SVM 79.76 85.87
FEAT2, TF-KLD, SVM, Fine-grained features 80.41 85.96

Table 3: Supervised classification. Results from prior work are reprinted.

racy now improves to 80.41%, with an F1 score of
85.96%. When the latent representation is induced
from only the training data, the corresponding re-
sults are 79.94% on accuracy and 85.36% F1, again
better than the previous state-of-the-art. These re-
sults show that the information captured by the dis-
tributional representation can still be augmented by
more fine-grained traditional features.

6 Conclusion

We have presented three ways in which labeled
data can improve distributional measures of seman-
tic similarity at the sentence level. The main innova-
tion is TF-KLD, which discriminatively reweights
the distributional features before factorization, so
that discriminability impacts the induction of the la-
tent representation. We then transform the latent
representation into a sample vector for supervised
learning, obtaining results that strongly outperform
the prior state-of-the-art; adding fine-grained lexi-
cal features further increases performance. These
ideas may have applicability in other semantic sim-
ilarity tasks, and we are also eager to apply them to
new, large-scale automatically-induced paraphrase
corpora (Ganitkevitch et al., 2013).
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Gülsen Eryigit, Sandra Kübler, Svetoslav Marinov,
and Erwin Marsi. 2007. MaltParser: A language-
independent system for data-driven dependency pars-
ing. Natural Language Engineering, 13(2):95–135.
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