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Abstract

Most of the machine translation systems rely
on a large set of translation rules. These rules
are treated as discrete and independent events.
In this short paper, we propose a novel method
to model rules as observed generation output
of a compact hidden model, which leads to
better generalization capability. We present a
preliminary generative model to test this idea.
Experimental results show about one point im-
provement on TER-BLEU over a strong base-
line in Chinese-to-English translation.

1 Introduction

Most of the modern Statistical Machine Transla-
tion (SMT) systems, for example (Koehn et al.,
2003; Och and Ney, 2004; Chiang, 2005; Marcu et
al., 2006; Shen et al., 2008), employ a large rule
set that may contain tens of millions of translation
rules or even more. In these systems, each transla-
tion rule has about 20 dense features, which repre-
sent key statistics collected from the training data,
such as word translation probability, phrase transla-
tion probability etc. Except for these common fea-
tures, there is no connection among the translation
rules. The translation rules are treated as indepen-
dent events.

The use of sparse features as in (Arun and Koehn,
2007; Watanabe et al., 2007; Chiang et al., 2009) to
some extent mitigated this problem. In their work,
there are as many as 10,000 features defined on the
appearance of certain frequent words and Part of
Speech (POS) tags in rules. They provide signifi-
cant improvement in automatic evaluation metrics.
However, these sparse features fire quite randomly

and infrequently on each rule. Thus, there is still
plenty of space to better model translation rules.

In this paper, we will explore the relationship
among translation rules. We no longer view rules
as discrete or unrelated events. Instead, we view
rules, which are observed from training data, as ran-
dom variables generated by a hidden model. This
generative process itself is also hidden. All possible
generative processes can be represented with factor-
ized structures such as weighted hypergraphs and fi-
nite state machines. This approach leads to a com-
pact model that has better generalization capability
and allows translation rules not explicitly observed
in training date.

This paper reports work-in-progress to exploit
hidden relations among rules. Preliminary experi-
ments show about one point improvement on TER-
BLEU over a strong baseline in Chinese-to-English
translation.

2 Hidden Models

LetG = {(r, f)} be a grammar observed from paral-
lel training data, wheref is the frequency of a bilin-
gual translation ruler.

Let M be a hidden model that generates every
translation ruler. For example,M could be mod-
eled with a weighted hypergraph or finite state ma-
chine. For the sake of convenience, in this section
we assumeM is a meta-grammarM = {m}, where
eachm represents a meta-rule. For each translation
r, there exists a hypergraphHr that represents all
possible derivationsDr = {d} that can generate rule
r. Here, each derivationd is a hyperpath using meta-
rulesMd, whereMd ⊆ M. Thus, we can use hy-
pergraphHr to characterizer. Translation rules inG
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can share nodes and meta-rules in their hypergraphs,
so thatM is more compact model thanG.

In the rest of this section, we will introduce three
methods to quantifyHr as features of ruler. It
should be noted that there are more ways to exploit
the compact model ofM than these three.

2.1 Type 1 : A Generative Model

Let θ be the parameters of a statistical model
Pr(m; θ) for meta-rulesm in meta-grammarM es-
timated from the observed translation grammarG.
The probability of a translation ruler can be calcu-
lated as follows.

Pr(r; θ) ∝ Pr(Hr; θ)

=
∑

d∈Dr

Pr(d; θ) (1)

By assuming separability,

Pr(d; θ) =
∏

m∈Md

Pr(m; θ) (2)

we can further decompose rule probabilityPr(r; θ)
as below.

Pr(r; θ) =
∑

d∈Dr

∏

m∈Md

Pr(m; θ) (3)

In practice, Pr(r; θ) in (3) can be calculated
through bottom-up dynamic programming on hyper-
graphHr. Hypergraphs of different rules can share
nodes and meta-rules. This reveals the underlying
relationship among translation rules.

As a by-product of this generative model, we use
the log-likelihood of a translation rule,log Pr(r; θ),
as a new dense feature. We call itType 1 in experi-
ments.

2.2 Type 2 : Meta-Rules as Sparse Features

As given in (3), likelihood of a translation rule is
a function overPr(m; θ), in which θ is estimated
from the training data with a generative model. Pre-
vious work in (Chiang et al., 2009) showed the ad-
vantage of using a discriminative model to optimize
individual weights for these factors towards a better
automatic score.

Following this practice, we treat each meta-rule
m as a sparse feature. Feature valuef(m) = 1 if

and only ifm is used in hypergraphHr. Otherwise,
its default value is 0. We call these featuresType
2 in experiments. The Type 2 system contains the
log-likelihood feature in Type 1.

2.3 Type 3 : Posterior as Feature Values

A natural question on the binary sparse features de-
fined above is why all the active features have the
same value of 1. We use these meta-rules to repre-
sent a translation rule in feature space. Intuitively,
for meta-rules with closer connection to the trans-
lation rules, we hope to use relatively larger feature
values to increase their effect.

We formalize this intuition with the posterior
probability that a meta-rulem is used to generate
r, as below.

f(m) ≡ Pr(m|r; θ) (4)

=
Pr(m, r; θ)

Pr(r; θ)

=

∑
d∈Dr ,m∈Md

Pr(d; θ)

Pr(r; θ)

The posterior in (4) could be too sharp. Follow-
ing the common practice, we smooth the posterior
features with a scaling factorα.

f(m) ≡ Pr(m|r)α

We useType 3(α) to represent the posterior model
with a scaling factor ofα in experiments. The Type
3 systems also contain the log-likelihood feature in
Type 1.

2.4 Parameter Estimation

Now we explain how to obtain parameterθ. With
proper definition of the underlying modelM, we
can estimateθ with the traditional EM algorithm or
Bayesian methods.

In the next section, we will present an example
of the hidden model. We will employ the EM algo-
rithm to estimate the parameters inθ. Here, trans-
lation rules and their frequencies inG are observed
data, and derivationd for each ruler is hidden. At
the Expectation step, we search all derivationsd in
Dr of each ruler and calculate their probabilities
according to equation (2). At theMaximization step,
we re-estimateθ on all derivations in proportion to
their posterior probability.
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3 Case Study

In Section 2, we explored the use of meta-grammars
as the underlying modelM and developed three
methods to define features. Similar techniques can
be applied to finite state machines and other underly-
ing models. Now, we introduce a POS-based under-
lying model to illustrate the generic model proposed
in Section 2. We will show experimental results in
Section 4.

3.1 Meta-rules on POS tags

Let r ∈ G be a translation rule composed of a pair of
source and target word strings (Fw, Ew). LetFp and
Ep be the POS tags for the source and target sides
respectively. For the sake of simplicity as the first
attempt, we treat non-terminal as a special wordX

with POS tagX.
Suppose we have a Chinese-to-English translation

rule as below.

yuehan qu zhijiage ⇒ john leaves for chicago

We call

NR VV NR ⇒ NNP VBZ IN NNP (5)

a translation rule in POS tags.
We will propose an underlying modelM to gen-

erate translation rules in POS tags instead of trans-
lation rules themselves. For the rest of this section,
we take translation rules in POS tags as the target of
our generative model. We define meta-rules on pairs
of POS tag strings, e.g.NR VV ⇒ NNP VBZ .

We can decompose the probability of translation
rule in (5) into a product on meta-rule probabilities
via various derivations, such as

• Pr(NR VV , NNP VBZ ) ×
Pr(NR, IN NNP), and

• Pr(NR, NNP) × Pr(VV , VBZ IN ) ×
Pr(NR, NNP).

3.2 The Underlying Model and Features

Now, we introduce a generative modelM for trans-
lation rules in POS tags. We still use the example in
(5) as shown in Figure 1, where the top box repre-
sents the source side and the bottom box represents
the target side. Dotted lines represent word align-
ments on three pairs of words.

Figure 1: An example

We first generate the number of source tokens of
a translation rule with a uniform distribution for up
to, for example, 7 tokens.

Then we split the source side into chunks with
a binomial distribution with a Bernoulli variable at
the gap between each two continuous words, which
splits the two words into two chunks with a proba-
bility of p. For example, the probability of obtaining
two chunksNR VV andNR is (1 − p)p, as shown in
Figure 1.

Suppose we split the target side into two parts,
NNP VBZ and IN NNP, which respects the word
alignments. It generates two meta-rulesNR VV ⇒
NNP VBZ andNR⇒ IN NNP, as shown in Figure 1.
The probability for the first meta-rule is

Pr(|E| = 2 | |F | = 2) ×

Pr(NR VV ,NNP VBZ | |F | = 2, |E| = 2),

where|F | represents the number of source tokens,
and |E| the number of target tokens. Similarly, the
probability of the second one is as follows.

Pr(|E| = 2 | |F | = 1) ×

Pr(NR, IN NNP | |F | = 1, |E| = 2).

To sum up, the probability of a derivationd for a
translation ruler : F ⇒ E is

Pr(d) ≈ Prθ1
(|F |)

× Prθ2
(Fs)

×
∏

m∈Md

Prθ3
(|Em| | |Fm|)

×
∏

m∈Md

Prθ4
(m | |Fm|, |Em|) (6)

whereFm andEm are source and target sides of a
meta-rulem used in derivationd, andFs is a split-
ting of the source side. As for the distributions, we
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have

θ1 ∼ Uniform

θ2 ∼ Binomial

θ3 ∼ Categorical

θ4 ∼ Categorical

whereθ1 andθ2 have pre-selected hyperparameters,
andθ3 andθ4 are estimated with the EM algorithm.

As for sparse features, we will obtain 7 meta-rule
features as below.

• NR⇒ NNP

• VV ⇒ VBZ

• VV ⇒ VBZ IN

• NR VV ⇒ NNP VBZ

• NR VV ⇒ NNP VBZ IN

• VV NR⇒ VBZ IN NNP

• NR VV NR⇒ NNP VBZ IN NNP

All of them respect the word alignment, which
means that

• there is no alignment that aligns one word in a
meta-rule with the other out of the same meta-
rule, and

• there is at least one alignment within a meta-
rule.

3.3 Implementation Details

Even though the size of all possible meta-rules is
much smaller than the space of translation rules,
it is still too large to work with existing optimiza-
tion methods for sparse features in MT, i.e. MIRA
(Chiang et al., 2009) or L-BFGS (Matsoukas et al.,
2009). In practice, we have to limit the feature space
to around 20,000 dimensions.

For this purpose, we first use a frequency based
method to filter meta-rule features. Specifically,
we first divide all the meta-rules into 100 bins,
(|F |, |E|), where|F | is the number of words on the
source side, and|E| the target side,0 < |F |, |E| ≤
10. For each bin, we keep the same topk-percentile
of the meta-rules such that we obtain a total of
20,000 meta-rules as features.

System BLEU% TER% T-B
Baseline 30.35 55.32 24.97
Type 1 30.74 55.48 24.74
Type 2 31.07 55.07 24.00
Type 3 (1) 30.93 55.34 24.41
Type 3 (0.1) 31.05 55.02 23.97
Type 3 (0.01) 31.09 54.96 23.87

Table 1: scores on test-1

A shortcoming of this filtering method is that all
these features are positive indicators, while low-
frequency negative indicators are discarded. In order
to keep the features of various level of frequency, we
define class features with a 3-tupleC(|F |, |E|, q),
where|F | and|E| are numbers of source and target
words as defined above, andq is the integer part of
thelog2 value of the feature frequency in the training
data.

In this way, each meta-rule feature can be mapped
to one of these classes. The value of a class feature
equals the sum of the meta-rule features that mapped
into this class. We have about 2,000 class features
defined in this way. They are applied on both Type
2 and Type 3 features.

4 Experiments

We carry out our experiments on web genre of
Chinese-to-English translation. The training set
contains about 10 million parallel sentences avail-
able to Phase 1 of the DARPA BOLT MT task. The
tune set contains 1275 sentences. Each has four ref-
erences. There are two test sets. Test-1 is from a
similar source of the tune set, and it contains 1239
sentences. Test-2 is the web part of the MT08 eval-
uation data.

Our baseline system is a home-made Hiero (Chi-
ang, 2005) style system. The baseline rule set con-
tains about 17 million rules. It contains about 40
dense features, including a 6-gram LM.

The sparse feature optimization algorithm is sim-
ilar to the MIRA recipe described in (Chiang et al.,
2009). We optimize on TER-BLEU (Snover et al.,
2006; Papineni et al., 2001).

The BLEU, TER and T-B scores on the two tests
are shown in Tables 1 and 2. It should be noted that,
even though our metric of tuning is T-B, the baseline
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System BLEU% TER% T-B
Baseline 25.80 56.96 31.16
Type 1 26.18 57.09 30.91
Type 2 26.63 56.64 30.01
Type 3 (1) 26.30 57.00 30.70
Type 3 (0.1) 26.34 56.73 30.39
Type 3 (0.01) 26.50 56.73 30.23

Table 2: scores on test-2 (MT08-WB)

system already provides a very competitive BLEU
score on MT08-WB as compared the best system in
the evaluation1, thanks to comprehensive features in
the baseline system and more data in training.

All the three types of systems provide consis-
tent improvement on both test sets in terms of T-B,
our optimization metric. Type 1 gives marginal im-
provement of 0.2. This shows the limitation of the
generative feature. When we use meta-rules as bi-
nary sparse features in Type 2, we obtain about one
point improvement on T-B on both sets. This shows
the advantage of tuning individual meta-rule weights
over a generative model. Type 3 (0.01) and Type 2
are at the same level. Proper smoothing is important
to Type 3.

5 Discussion

In the case study of Section 3, we use POS-based
rules as hidden states. However, it should be noted
that the hidden structures surely do not have to be
POS tags. For example, an alternative could be
unsupervised NT splitting similar to (Huang et al.,
2010).

The meta-grammar based approach was also mo-
tivated by the insight acquired on mono-lingual lin-
guistic grammar generation, especially in the TAG
related research (Xia, 2001; Prolo, 2002). Meta-
grammar was viewed as an effective way to remove
redundancy in grammars.

The link between Tree Adjoining Grammar
(TAG) (Joshi et al., 1975; Joshi and Schabes, 1997)
and MT was first introduced in (Shieber and Sch-
abes, 1990), a pioneer work in tree-to-tree transla-
tion. (DeNeefe and Knight, 2009) re-visited the use
of adjoining operation in the context of Statistical
MT, and reported encouraging results. On the other

1http://www.itl.nist.gov/iad/mig/tests/mt/2008/

hand, (Dras, 1999) showed how a meta-level gram-
mar could help in modeling parallel operations in
(Shieber and Schabes, 1990). Our work is another
effort of statistical modeling of well-recognized lin-
guistic insight in NLP and MT.

6 Conclusions and Future Work

In this paper, we introduced a novel method to model
translation rules as observed generation output of a
compact hidden model. As a case study to capital-
ize this model, we presented three methods to en-
rich rule modeling with features defined on a hid-
den model. Preliminary experiments verified gain of
one point on TER-BLEU over a strong baseline in
Chinese-to-English translation.

As for future work, we plan to extend this work in
the following aspects.

• To try other prior distributions to generate the
number of source tokens.

• Unsupervised and semi-supervised learning of
hidden models.

• To incorporate rich models into the generative
process, e.g. reordering, non-terminals, struc-
tural information and lexical models.

• To improve the posterior model with better pa-
rameter estimation, e.g. Bayesian methods.

• To replace the exhaustive translation rule set
with a compact meta grammar that can create
and parameterize new translation rules dynam-
ically, which is the ultimate goal of this line of
work.
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