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Abstract

Automatically constructed Knowledge Bases
(KBs) are often incomplete and there is a gen-
uine need to improve their coverage. Path
Ranking Algorithm (PRA) is a recently pro-
posed method which aims to improve KB cov-
erage by performing inference directly over
the KB graph. For the first time, we demon-
strate that addition of edges labeled with la-
tent features mined from a large dependency
parsed corpus of 500 million Web documents
can significantly outperform previous PRA-
based approaches on the KB inference task.
We present extensive experimental results val-
idating this finding. The resources presented
in this paper are publicly available.

1 Introduction

Over the last few years, several large scale Knowl-
edge Bases (KBs) such as Freebase (Bollacker et
al., 2008), NELL (Carlson et al., 2010), and YAGO
(Suchanek et al., 2007) have been developed. Each
such KB consists of millions of facts (e.g., (Tiger
Woods, playsSport, Golf )) spanning over multiple
relations. Unfortunately, these KBs are often incom-
plete and there is a need to increase their coverage of
facts to make them useful in practical applications.

A strategy to increase coverage might be to per-
form inference directly over the KB represented as a
graph. For example, if the KB contained the follow-
ing facts, (Tiger Woods, participatesIn, PGA Tour))
and (Golf, sportOfTournament, PGA Tour), then by
putting these two facts together, we could potentially
infer that (Tiger Woods, playsSport, Golf ). The

Figure 1: Example demonstrating how lexicalized syn-
tactic edges can improve connectivity in the KB enabling
PRA (Lao and Cohen, 2010) to discover relationships be-
tween Alex Rodriguez and World Series. Edges with la-
tent labels can improve inference performance by reduc-
ing data sparsity. See Section 1.1 for details.

recently proposed Path Ranking Algorithm (PRA)
(Lao and Cohen, 2010) performs such inference by
automatically learning semantic inference rules over
the KB (Lao et al., 2011). PRA uses features based
off of sequences of edge types, e.g., 〈playsSport,
sportOfTournament〉, to predict missing facts in the
KB.

PRA was extended by (Lao et al., 2012) to per-
form inference over a KB augmented with depen-
dency parsed sentences. While this opens up the
possibility of learning syntactic-semantic inference
rules, the set of syntactic edge labels used are
just the unlexicalized dependency role labels (e.g.,
nobj, dobj, etc., without the corresponding words),
thereby limiting overall expressitivity of the learned
inference rules. To overcome this limitation, in this
paper we augment the KB graph by adding edges
with more expressive lexicalized syntactic labels
(where the labels are words instead of dependen-
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cies). These additional edges, e.g., (Alex Rodriguez,
“plays for”, NY Yankees), are mined by extracting
600 million Subject-Verb-Object (SVO) triples from
a large corpus of 500m dependency parsed docu-
ments, which would have been prohibitively expen-
sive to add directly as in (Lao et al., 2012). In order
to overcome the explosion of path features and data
sparsity, we derive edge labels by learning latent em-
beddings of the lexicalized edges. Through exten-
sive experiments on real world datasets, we demon-
strate effectiveness of the proposed approach.

1.1 Motivating Example

In Figure 1, the KB graph (only solid edges) is dis-
connected, thereby making it impossible for PRA to
discover any relationship between Alex Rodriguez
and World Series. However, addition of the two
edges with SVO-based lexicalized syntactic edges
(e.g., (Alex Rodriguez, plays for, NY Yankees)) re-
stores this inference possibility. For example, PRA
might use the edge sequence 〈“plays for”, team-
PlaysIn〉 as evidence for predicting the relation in-
stance (Alex Rodriguez, athleteWonChampionship,
World Series). Unfortunately, such naı̈ve addition
of lexicalized edges may result in significant data
sparsity, which can be overcome by mapping lexi-
calized edge labels to some latent embedding (e.g.,
(Alex Rodriguez, LatentFeat#5, NY Yankees) and
running PRA over this augmented graph. Using la-
tent embeddings, PRA could then use the following
edge sequence as a feature in its prediction models:
〈LatentFeat#5, teamPlaysIn〉. We find this strategy
to be very effective as described in Section 4.

2 Related Work

There is a long history of methods using suface-level
lexical patterns for extracting relational facts from
text corpora (Hearst, 1992; Brin, 1999; Agichtein
and Gravano, 2000; Ravichandran and Hovy, 2002;
Etzioni et al., 2004). Syntactic information in the
form of dependency paths have been explored in
(Snow et al., 2006; Suchanek et al., 2006). A
method of latent embedding of relation instances
for sentence-level relation extraction was shown in
(Wang et al., 2011). However, none of this prior
work makes explicit use of the background KBs as
we explore in this paper.

Path Ranking Algorithm (PRA) (Lao and Cohen,
2010) has been used previously to perform inference
over graph-structured KBs (Lao et al., 2011), and to
learn formation of online communities (Settles and
Dow, 2013). In (Lao et al., 2012), PRA is extended
to perform inference over a KB using syntactic in-
formation from parsed text. In contrast to these pre-
vious PRA-based approaches where all edge labels
are either KB labels or at surface-level, in this pa-
per we explore using latent edge labels in addition
to surface-level labels in the graph over which PRA
is applied. In particular, we focus on the problem of
performing inference over a large KB and learn la-
tent edge labels by mining dependency syntax statis-
tics from a large text corpus.

Though we use Principal Components Analysis
(PCA) for dimensionality reduction for the experi-
ments in this paper, this is by no means the only
choice. Various other dimensionality reduction tech-
niques, and in particular, other verb clustering tech-
niques (Korhonen et al., 2003), may also be used.

OpenIE systems such as Reverb (Etzioni et al.,
2011) also extract verb-anchored dependency triples
from large text corpus. In contrast to such ap-
proaches, we focus on how latent embedding of
verbs in such triples can be combined with explicit
background knowledge to improve coverage of ex-
isting KBs. This has the added capability of infer-
ring facts which are not explicitly mentioned in text.

The recently proposed Universal Schema (Riedel
et al., 2013) also demonstrates the benefit of us-
ing latent features for increasing coverage of KBs.
Key differences between that approach and ours in-
clude our use of syntactic information as opposed to
surface-level patterns in theirs, and also the ability
of the proposed PRA-based method to generate use-
ful inference rules which is beyond the capability of
the matrix factorization approach in (Riedel et al.,
2013).

3 Method
3.1 Path Ranking Algorithm (PRA)
In this section, we present a brief overview of the
Path Ranking Algorithm (PRA) (Lao and Cohen,
2010), building on the notations in (Lao et al., 2012).
Let G = (V,E, T ) be the graph, where V is the set
of vertices, E is the set of edges, and T is the set of
edge types. For each edge (v1, t, v2) ∈ E, we have
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v1, v2 ∈ V and t ∈ T . LetR ⊂ T be the set of types
predicted by PRA. R could in principal equal T , but
in this paper we restrict prediction to KB relations,
while T also includes types derived from surface text
and latent embeddings. Let π = 〈t1, t2, . . . , tw〉 be
a path type of length w over graph G, where ti ∈ T
is the type of the ith edge in the path. Each such
path type is also a feature in the PRA model. For
a given source and target node pair s, t ∈ V , let
P (s → t;π) be the value of the feature π specify-
ing the probability of reaching node t starting from
node s and following a path constrained by path type
π. We approximate these probabilities using random
walks. A value of 0 indicates unreachability from s
to t using path type π.

Let B = {π1, . . . , πm} be the set of all features
(path types). The score that relation r holds between
node s and node t is given by the following function:

ScorePRA(s, t, r) =
∑
π∈B

P (s→ t;π) θrπ

where θrπ is the weight of feature π in class r ∈ R.
Feature Selection: The set B of possible path

types grows exponentially in the length of the paths
that are considered. In order to have a manageable
set of features to compute, we first perform a feature
selection step. The goal of this step is to select for
computation only those path types that commonly
connect sources and targets of relation r. We per-
form this feature selection by doing length-bounded
random walks from a given list of source and tar-
get nodes, keeping track of how frequently each path
type leads from a source node to a target node. The
most common m path types are selected for the set
B.

Training: We perform standard logistic regres-
sion with L2 regularization to learn the weights θrπ.
We follow the strategy in (Lao and Cohen, 2010) to
generate positive and negative training instances.

3.2 PRAsyntactic

In this section, we shall extend the knowledge graph
G = (V,E, T ) from the previous section with an
augmented graph G

′
= (V,E

′
, T

′
), where E ⊂ E

′

and T ⊂ T ′
, with the set of vertices unchanged.

In order to get the edges in E
′ − E, we first

collect a set of Subject-Verb-Object (SVO) triples
D = {(s, v, o, c)} from a large dependency parsed

text corpus, with c ∈ R+ denoting the frequency
of this triple in the corpus. The additional edge
set is then defined as Esyntactic = E

′ − E =
{(s, v, o) | ∃(s, v, o, c) ∈ D, s, o ∈ V }. We de-
fine S = {v | ∃(s, v, o) ∈ Esyntactic} and set
T

′
= T ∪ S. In other words, for each pair of

directly connected nodes in the KB graph G, we add
an additional edge between those two nodes for each
verb which takes the NPs represented by two nodes
as subjects and objects (or vice versa) as observed in
a text corpus. In Figure 1, (Alex Rodriguez, “plays
for”, NY Yankees) is an example of such an edge.

PRA is then applied over this augmented graph
G

′
, over the same set of prediction types R as be-

fore. We shall refer to this version of PRA as
PRAsyntactic. For the experiments in this paper, we
collected |D| = 600 million SVO triples1 from the
entire ClueWeb corpus (Callan et al., 2009), parsed
using the Malt parser (Nivre et al., 2007) by the
Hazy project (Kumar et al., 2013).

3.3 PRAlatent

In this section we construct G
′′

= (V,E′′, T
′′
),

another syntactic-information-induced extension of
the knowledge graph G, but instead of using the sur-
face forms of verbs in S (see previous section) as
edge types, we derive those edges types T

′′
based

on latent embeddings of those verbs. We note that
E ⊂ E′′

, and T ⊂ T ′′
.

In order to learn the latent or low dimensional em-
beddings of the verbs in S, we first define QS =
{(s, o) | ∃(s, v, o, c) ∈ D, v ∈ S}, the set of
subject-object tuples in D which are connected by
at least one verb in S. We now construct a matrix
X|S|×|QS | whose entry Xv,q = c, where v ∈ S, q =
(s, o) ∈ QS , and (s, v, o, c) ∈ D. After row normal-
izing and centering matrix X , we apply PCA on this
matrix. Let A|S|×d with d << |QS | be the low di-
mensional embeddings of the verbs in S as induced
by PCA. We use two strategies to derive mappings
for verbs from matrix A.

• PRAlatentc : The verb is mapped to concatena-
tion of the k

2 most positive columns in the row
in A that corresponds to the verb. Similarly, for
the most negative k

2 columns.
1This data and other resources from the paper are publicly

available at http://rtw.ml.cmu.edu/emnlp2013 pra/.
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Precision Recall F1
PRA 0.800 0.331 0.468
PRAsyntactic 0.804 0.271 0.405
PRAlatentc 0.885 0.334 0.485
PRAlatentd

0.868 0.424 0.570

Table 1: Comparison of performance of different variants
of PRA micro averaged across 15 NELL relations. We
find that use of latent edge labels, in particular the pro-
posed approach PRAlatentd

, significantly outperforms
other approaches. This is our main result. (See Section 4)

• PRAlatentd
: The verb is mapped to disjunction

of top-k most positive and negative columns in
the row in A that corresponds to the verb.

4 Experiments

We compared the various methods using 15 NELL
relations. For each relation, we split NELL’s known
relation instances into 90% training and 10% testing.
For each method, we then selected 750 path features
and trained the model, as described in Section 3, us-
ing GraphChi (Kyrola et al., 2012) to perform the
random walk graph computations. To evaluate the
model, we took all source nodes in the testing data
and used the model to predict target nodes. We re-
port the precision and recall (on the set of known tar-
get nodes) of the set of predictions for each model
that are above a certain confidence threshold. Be-
cause we used strong regularization, we picked for
our threshold a model score of 0.405, correspond-
ing to 60% probability of the relation instance being
true; values higher than this left many relations with-
out any predictions. Table 1 contains the results.

As can be seen in the table, PRAsyntactic on av-
erage performs slightly worse than PRA. While
the extra syntactic features are very informative for
some relations, they also introduce a lot of spar-
sity, which makes the model perform worse on other
relations. When using latent factorization meth-
ods to reduce the sparsity of the syntactic features,
we see a significant improvement in performance.
PRAlatentc has a 45% reduction in precision er-
rors vs. PRA while maintaining the same recall,
and PRAlatentd

reduces precision errors by 35%
while improving recall by 27%. Section 4.1 con-
tains some qualitative analysis of how sparsity is re-
duced with the latent methods. As a piece quanti-
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Figure 2: Precision (y axis) - Recall (x axis) plots for the
relations cityLiesOnRiver (top) and athletePlaysForTeam
(bottom). PRAlatentd

(rightmost plot), the proposed ap-
proach which exploits latent edge labels, outperforms
other alternatives.

tative analysis, there were 908 possible path types
found in the feature selection step with PRA on the
relation cityLiesOnRiver (of which we then selected
750). For PRAsyntactic, there were 73,820, while
PRAlatentc had 47,554 and PRAlatentd

had 58,414.
Table 2 shows F1 scores for each model on

each relation, and Figure 2 shows representative
Precision-Recall plots for two NELL relations. In
both cases, we find that PRAlatentd

significantly
outperforms other baselines.

4.1 Discussion

While examining the model weights for each of
the methods, we saw a few occasions where sur-
face relations and NELL relations combined to form
interpretable path types. For example, in ath-
letePlaysForTeam, some highly weighted features
took the form of 〈athletePlaysSport, “(sport) played
by (team)”〉. A high weight on this feature would
bias the prediction towards teams that are known to
play the same sport as the athlete.

For PRA, the top features for the best performing
relations are path types that contain a single edge
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PRA PRAsyntactic PRAlatentc PRAlatentd

animalIsTypeOfAnimal 0.52 0.50 0.47 0.53
athletePlaysForTeam 0.22 0.21 0.56 0.64
athletePlaysInLeague 0.81 0.75 0.73 0.74
cityLiesOnRiver 0.05 0 0.07 0.31
cityLocatedInCountry 0.15 0.20 0.45 0.55
companyCeo 0.29 0.18 0.25 0.35
countryHasCompanyOffice 0 0 0 0
drugHasSideEffect 0.96 0.95 0.94 0.94
headquarteredIn 0.31 0.11 0.41 0.64
locationLocatedWithinLocation 0.40 0.38 0.38 0.41
publicationJournalist 0.10 0.06 0.10 0.16
roomCanContainFurniture 0.72 0.70 0.71 0.73
stadiumLocatedInCity 0.53 0 0.13 0.67
teamPlaysAgainstTeam 0.47 0.24 0.26 0.21
writerWroteBook 0.59 0.62 0.73 0.80

Table 2: F1 performance of different variants of PRA for all 15 relations tested.

which is a supertype or subtype of the relation be-
ing predicted. For instance, for the relation ath-
letePlaysForTeam (shown in Figure 2), the highest-
weighted features in PRA are athleteLedSport-
sTeam (more specific than athletePlaysForTeam)
and personBelongsToOrganization (more general
than athletePlaysForTeam). For the same rela-
tion, PRAsyntactic has features like “scored for”,
“signed”, “have”, and “led”. When using a latent
embedding of these verb phrases, “signed”, “have”,
and “led” all have the same representation in the la-
tent space, and so it seems clear that PRAlatent gains
a lot by reducing the sparsity inherent in using sur-
face verb forms.

For cityLiesOnRiver, where PRA does not per-
form as well, there is no NELL relation that is an im-
mediate supertype or subtype, and so PRA does not
have as much evidence to use. It finds features that,
e.g., are analogous to the statement “cities in the
same state probably lie on the same river”. Adding
lexical labels gives the model edges to use like “lies
on”, “runs through”, “flows through”, “starts in”
and “reaches”, and these features give a significant
boost in performance to PRAsyntactic. Once again,
almost all of those verb phrases share the same latent
embedding, and so PRAlatent gains another signifi-
cant boost in performance by combining them into a
single feature.

5 Conclusion

In this paper, we introduced the use of latent lexi-
cal edge labels for PRA-based inference over knowl-
edge bases. We obtained such latent edge labels
by mining a large dependency parsed corpus of
500 million web documents and performing PCA
on the result. Through extensive experiments on
real datasets, we demonstrated that the proposed ap-
proach significantly outperforms previous state-of-
the-art baselines.
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