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Abstract

State-of-the-art systems for grammatical er-
ror correction are based on a collection of
independently-trained models for specific er-
rors. Such models ignore linguistic interac-
tions at the sentence level and thus do poorly
on mistakes that involve grammatical depen-
dencies among several words. In this paper,
we identify linguistic structures with interact-
ing grammatical properties and propose to ad-
dress such dependencies via joint inference
and joint learning.

We show that it is possible to identify interac-
tions well enough to facilitate a joint approach
and, consequently, that joint methods correct
incoherent predictions that independently-
trained classifiers tend to produce. Further-
more, because the joint learning model con-
siders interacting phenomena during training,
it is able to identify mistakes that require mak-
ing multiple changes simultaneously and that
standard approaches miss. Overall, our model
significantly outperforms the Illinois system
that placed first in the CoNLL-2013 shared
task on grammatical error correction.

1 Introduction

There has recently been a lot of work addressing er-
rors made by English as a Second Language (ESL)
learners. In the past two years, three competitions
devoted to grammatical error correction for non-
native writers took place: HOO-2011 (Dale and Kil-
garriff, 2011), HOO-2012 (Dale et al., 2012), and
the CoNLL-2013 shared task (Ng et al., 2013).
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Nowadays *phone/phones
functionalities, *included/including
camera and *@/a Wi-Fi receiver.

*has/have many
*Jla

Figure 1: Examples of representative ESL errors.

Most of the work in the area of ESL error cor-
rection has addressed the task by building statistical
models that specialize in correcting a specific type
of a mistake. Figure 1 illustrates several types of
errors common among non-native speakers of En-
glish: article, subject-verb agreement, noun num-
ber, and verb form. A significant proportion of re-
search has focused on correcting mistakes in article
and preposition usage (Izumi et al., 2003; Han et
al., 2006; Felice and Pulman, 2008; Gamon et al.,
2008; Tetreault and Chodorow, 2008; Gamon, 2010;
Rozovskaya and Roth, 2010b). Several studies also
consider verb-related and noun-related errors (Lee
and Seneff, 2008; Gamon et al., 2008; Dahlmeier
and Ng, 2012). The predictions made by individual
models are then applied independently (Rozovskaya
et al., 2011) or pipelined (Dahlmeier and Ng, 2012).

The standard approach of training individual clas-
sifiers considers each word independently and thus
assumes that there are no interactions between er-
rors and between grammatical phenomena. But an
ESL writer may make multiple mistakes in a single
sentence and these result in misleading local cues
given to individual classifiers. In the example shown
in Figure 1, the agreement error on the verb “have”
interacts with the noun number error: a correction
system that takes into account the context may in-
fer, because of the word “phone”, that the verb num-
ber is correct. For this reason, a system that consid-
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ers noun and agreement errors separately will fail to
identify and correct the interacting errors shown in
Fig. 1. Furthermore, it may also produce inconsis-
tent predictions.

Even though it is quite clear that grammatical er-
rors interact, for various conceptual and technical
reasons, this issue has not been addressed in a sig-
nificant way in the literature. We believe that the
reasons for that are three-fold: (1) Data: until very
recently we did not have data that jointly annotates
sufficiently many errors of interacting phenomena
(see Sec. 2). (2) Conceptual: Correcting errors in
interacting linguistic phenomena requires that one
identifies those phenomena and, more importantly,
can recognize reliably the interacting components
(e.g., given a verb, identify the subject to enable en-
forcing agreement). The perception has been that
this cannot be done reliably (Sec. 4). (3) Technical:
The NLP community has started to better understand
joint learning and inference and apply it to various
phenomena (Roth and Yih, 2004; Punyakanok et al.,
2008; Martins et al., 2011; Clarke and Lapata, 2007;
Sutton and McCallum, 2007) (Sec. 5).

In this paper we present, for the first time, a suc-
cessful approach to jointly resolving grammatical er-
rors. Specifically:

e We identify two pairs of interacting phenomena,
subject-verb and article-NPhead agreements; we
show how to reliably identify these pairs in noisy
ESL data, thereby facilitating the joint correction of
these phenomena.

e We propose two joint approaches: (1) a joint infer-
ence approach implemented on top of individually
learned models using an integer linear programming
formulation (ILP, (Roth and Yih, 2004)), and (2) a
model that jointly learns each pair of these phenom-
ena. We show that each of these methods has its ad-
vantages, and that both solve the two challenges out-
lined above: the joint models exclude inconsistent
predictions that violate linguistic constraints. The
joint learning model exhibits superior performance,
as it is also able to overcome the problem of the
noisy context encountered by the individual mod-
els and to identify errors in contexts, where multiple
changes need to be applied at the same time.

We show that our joint models produce state-of-
the-art performance and, in particular, significantly
outperform the University of Illinois system that
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placed first in the CoNLL-2013 shared task, increas-
ing the F1 score by 2 and 4 points in different evalu-
ation settings.

2 Task Description and Motivation

To illustrate the utility of jointly addressing interact-
ing grammatical phenomena, we consider the cor-
pus of the CoNLL-2013 shared task on grammatical
error correction (Ng et al., 2013), which we found
to be particularly well-suited for addressing interac-
tions between grammatical phenomena. The task fo-
cuses on the following five common mistakes made
by ESL writers: article, preposition, noun number,
subject-verb agreement, and verb form, and we ad-
dress two interactions: article-NPhead and subject-
verb.

The training data for the task is from the NUCLE
corpus (Dahlmeier et al., 2013), an error-tagged col-
lection of essays written by non-native learners of
English. The test data is an additional set of essays
by learners from the same linguistic background.
The training and the test data contain 1.2M and 29K
words, respectively. Although the corpus contains
errors of other types, the task focuses on five types
of errors. Table 1 shows the number of mistakes' of
each type and the error rates, i.e. the percentage of
erroneous words by error type.

Error Number of errors and error rate
Training Test
Article 6658 (2.4%) 690 (10.0%)
Prep. 2404 (2.0%) 311 (10.7%)
Noun 3779 (1.6%) 396 (6.0%)
Verb Agr. 1527(2.0%) 124 (5.2%)
Verb Form | 1453 (0.8%) 122 (2.5%)

Table 1: Number of annotated errors in the CoNLL-
2013 shared task. Percentage denotes the error rates, i.e.
the number of erroneous instances with respect to the to-
tal number of relevant instances in the data. For example,
10.7% of prepositions in the test data are used incorrectly.
The numbers in the revised data set are slightly higher.

We note that the CoNLL-2013 data set is the first
annotated collection that makes a study like ours
feasible. The presence of a common test set that

''System performance in the shared task is evaluated on data
with and without additional revisions added based on the input
from participants. The number of mistakes in the revised test
data is slightly higher.



contains a good number of interacting errors — ar-
ticle, noun, and verb agreement mistakes — makes
the data set well-suited for studying which approach
works best for addressing interacting phenomena.
The HOO-2011 shared task collection (Dale and
Kilgarriff, 2011) contains a very small number of
noun and agreement errors (41 and 11 in test, re-
spectively), while the HOO-2012 competition (Dale
et al., 2012) only addresses article and preposition
mistakes. Indeed, in parallel to the work presented
here, Wu and Ng (2013) attempted the ILP-based
approach of Roth and Yih (2004) in this domain.
They were not able to show any improvement, for
two reasons. First, the HOO-2011 data set which
they used does not contain a good number of errors
in interacting structures. Second, and most impor-
tantly, they applied constraints in an indiscriminate
manner. In contrast, we show how to identify the
interacting structures’ components in a reliable way,
and this plays a key role in the joint modeling im-
provements.

Lack of data hindered other earlier efforts for
error correction beyond individual language phe-
nomena. Brockett et al. (2006) applied machine-
translation techniques to correct noun number errors
on mass nouns and article usage but their application
was restricted to a small set of constructions. Park
and Levy (2011) proposed a language-modeling ap-
proach to whole sentence error correction but their
model is not competitive with individually trained
models. Finally, Dahlmeier and Ng (2012) proposed
a decoder model, focusing on four types of errors
in the data set of the HOO-2011 competition (Dale
and Kilgarriff, 2011). The decoder optimized the se-
quence in which individual classifiers were to be ap-
plied to the sentence. However, because the decoder
still corrected mistakes in a pipeline fashion, one at
a time, it is unlikely that it could deal with cases that
require simultaneous changes.

3 The University of Illinois System

Below, we briefly describe the University of Illinois
system (henceforth Illinois; in the overview paper of
the shared task the system is referred to as UI) that
achieved the best result in the CoNLL-2013 shared
task and which we use as our baseline model. For
a complete description, we refer the reader to Ro-
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zovskaya et al. (2013).

The Illinois system implements five machine-
learning independently-trained classifiers that fol-
low the popular approach to ESL error correction
borrowed from the context-sensitive spelling correc-
tion task (Golding and Roth, 1999; Carlson et al.,
2001). A confusion set is defined that specifies a
list of confusable words. Each occurrence of a con-
fusable word in text is represented as a vector of
features derived from a context window around the
target. The problem is cast as a multi-class classi-
fication task and a classifier is trained on native or
learner data. At prediction time, the model selects
the most likely candidate from the confusion set.

The confusion set for prepositions includes the
top 12 most frequent English prepositions. The arti-
cle confusion set is as follows: {a,the,&}?. The con-
fusion sets for noun, agreement, and form modules
depend on the target word and include its morpho-
logical variants (Table 2).

“Hence, the environmental *factor/factors also
*contributes/contribute to various difficulties,
*included/including problems in nuclear technol-

2

ogy.

Error type | Confusion set

Noun {factor, factors}

Verb Agr. {contribute, contributes}

Verb Form | {included, including, includes, include}

Table 2: Confusion sets for noun number, agreement,
and form classifiers.

The article classifier is a discriminative model
that draws on the state-of-the-art approach described
in Rozovskaya et al. (2012). The model makes use
of the Averaged Perceptron algorithm (Freund and
Schapire, 1996) and is trained on the training data of
the shared task with rich features.

The other models are trained on native English
data, the Google Web 1T 5-gram corpus (henceforth,
Google, (Brants and Franz, 2006)) with the Naive
Bayes (NB) algorithm. All models use word n-gram
features derived from the 4-word window around the
target word. In the preposition model, priors for
preposition preferences are learned from the shared

task training data (Rozovskaya and Roth, 2011).

2@ denotes noun-phrase-initial contexts where an article is
pn

likely to have been omitted. The variants “a” and “an” are con-
flated and are restored later.



Example

Predictions made by the Illinois system

“They believe that such situation must be avoided.”

such situation — such a situations

“Nevertheless , electric cars is still regarded as a great trial innovation.”

cars is — car are

“Every students have appointments with the head of the department.”

No change

Table 3: Examples of predictions of the Illinois system that combines independently-trained models.

The words that are selected as input to classifiers
are called candidates. Article and preposition can-
didates are identified with a closed list of words;
noun-phrase-initial contexts for the article classifier
are determined using a shallow parser® (Punyakanok
and Roth, 2001). Candidates for the noun, agree-
ment, and form classifiers are identified with a part-
of-speech tagger®, e.g. noun candidates are words
that are tagged as NN or NNS. Table 4 shows the
total number of candidates for each classifier.

Classifier
Art. P N Agr. F
Train | 254K | 103K | 240K | 75K | 175K
Test 6K 2.5K | 2.6K | 24K | 4.8K

Table 4: Number of candidate words by classifier type
in training and test data.

4 Interacting Mistakes

The approach of addressing each type of mistake in-
dividually is problematic when multiple phenomena
interact. Consider the examples in Table 3 and the
predictions made by the Illinois system. In the first
and second sentences, there are two possible ways
to correct the structures “such situation” and “cars
18”. In the former, either the article or the noun num-
ber should be changed; in the latter, either the noun
number or the verb agreement marker>. In these ex-
amples, each of the independently-trained classifiers
identifies the problem because each system makes a
decision using the second error as part of its contex-
tual cues, and thus the individual systems produce
inconsistent predictions.

*http://cogcomp.cs.illinois.edu/page/
software_view/Chunker

*nttp://cogcomp.cs.illinois.edu/page/
software_view/POS

SBoth of these solutions will result in grammatical output
and the specific choice between the two depends on the wider
essay context.
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The second type of interaction concerns cases that
require correcting more than one word at a time:
the last example in Table 3 requires making changes
both to the verb and the subject. Since each of the in-
dependent classifiers (for nouns and for verb agree-
ment) takes into account the other word as part of
its features, they both infer that the verb number is
correct and that the grammatical subject “student”
should be plural.

We refer to the words whose grammatical prop-
erties interact as structures. The independently-
trained classifiers tend to fail to provide valid cor-
rections in contexts where it is important to consider
both words of the structure.

4.1 Structures for Joint Modeling

We address two linguistic structures that are relevant
for the grammatical phenomena considered: article-
NPhead and subject-verb. In the article-NPhead
structures, the interaction is between the head of
the noun phrase (NP) and the article that refers to
the NP (first example in Table 3). In particular,
the model should take into account that the article
“a” cannot be combined with a noun in plural form.
For subject-verb agreement, the subject and the verb
should agree in number.

We now need to identify all pairs of candidates
that form the relevant structures. Article-NPhead
structures are pairs of words, such that the first word
is a candidate of type article, while the second word
i1s a noun candidate. Given an article candidate, the
head of its NP is determined using the POS infor-
mation (this information is obtained from the article
feature vector because the NP head is a feature used
by the article system)®. Subject-verb structures are
pairs of noun-agreement candidates. Given a verb,
its subject is identified with a dependency parser
(Marneffe et al., 2006).

To evaluate the accuracy of subject and NP head

®Some heads are not identified or belong to a different part
of speech.




predictions, a random sample of 500 structures of
each type from the training data was examined by
a human annotator with formal training in Linguis-
tics. The human annotations were then compared
against the automatic predictions. The results of
the evaluation for subject-verb and article-NPhead
structures are shown in Tables 5 and 6, respectively.
Although the overall accuracy is above 90% for both
structures, the accuracy varies by the distance be-
tween the structure components and drops signifi-
cantly as the distance increases. For article-NPhead
structures, distance indicates the position of the NP
head with respect to the article, e.g. distance of 1
means that the head immediately follows the arti-
cle. For subject-verb structures, distance is shown
with respect to the verb: a distance of -1 means that
the subject immediately precedes the verb. Although
in most cases the subject is located to the left of
the verb, in some constructions, such as existential
clauses and inversions, it occurs after the verb.

Based on the accuracy results for identifying the
structure components, we select those structures
where the components are reliably identified. For
article-NPhead, valid structures are those where the
distance is at most three words. For subject-verb, we
consider as valid those structures where the identi-
fied subject is located within two words to the left or
three words to the right of the verb.

The valid structures are selected as input to the
joint model (Sec. 5). The joint learning model con-
siders only those valid structures whose components
are adjacent. In adjacent structures the NP head im-
mediately follows the article, and the verb immedi-
ately follows the subject. Joint inference is not re-
stricted to adjacent structures.

The last column of Table 5 shows that valid
subject-verb structures account for 67.5% of all
verbs whose subjects are common nouns (51.7% are
cases where the words are adjacent). Verbs whose
subjects are common nouns account for 57.8% of all
verbs that have subjects (verbs with different types
of subjects, most of which are personal pronouns,
are not considered here, since these subjects are not
part of the noun classifier).

Valid article-NPhead structures account for
98.0% of all articles whose NP heads are common
nouns (47.5% of those are adjacent structures), as
shown in the last column of Table 6. 71.0% of arti-
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cles in the training data belong to an NP whose head
is a common noun; NPs whose heads belong to dif-
ferent parts of speech are not considered.

Note also that because a noun may belong both to
an article-NPhead and a subject-verb structure, the
structures contain an overlap.

Distance | Accuracy | % of all subj. | Cumul.
predictions

-1 97.6% 51.7% 51.7%

1,2,3 100.0% 8.9% 60.6%

-2 88.2% 6.9% 67.5%

Other 80.8% 32.5% 100.0%

Table 5: Accuracy of subject identification on a random
sample of subject-verb structures from the training data.
The overall accuracy is 91.52%. For each distance, the follow-
ing are shown: accuracy based on comparison with human eval-
uation; the percentage of all predictions that have this distance;

the cumulative percentage.

Distance | Accuracy | % of all head | Cumul.
predictions
1 94.8% 47.5% 47.5%
2 94.4% 44.0% 91.5%
3 92.3% 6.5% 98.0%
Other 89.1% 2.0% 100%

Table 6: Accuracy of NP head identification on a random
sample of article-NPhead structures from training data. The
overall accuracy is 94.45%. For each distance, the following are
shown: accuracy based on comparison with human evaluation;
the percentage of all predictions that have this distance; the cu-
mulative percentage.

5 The Joint Model

In this section, we present the joint inference and
the joint learning approaches. In the joint inference
approach, we use the independently-learned models
from the Illinois system, and the interacting target
words identified earlier are considered only at infer-
ence stage. In the joint learning method, we jointly
learn a model for the interacting phenomena.

The label space in the joint models corresponds
to sequences of labels from the confusion sets of
the individual classifiers: {a — sing,a — pl,the —
sing,the — pl, @ — sing,@ — pl} and {sing —
sing, sing—pl, pl—sing, pl—pl } for article-NPhead
and subject-verb structures, respectively’. Invalid

7“sing” and “pl” refer to the grammatical number of noun



structures, such as pl-sing are excluded via hard con-
straints (when we run joint inference) or via implicit
soft constraints (when we use joint learning).

5.1 Joint Inference

In the individual model approach, decisions are
made for each word independently, ignoring the in-
teractions among linguistic phenomena. The pur-
pose of joint inference is to include linguistic (i.e.
structural) knowledge, such as “plural nouns do not
take an indefinite article”, and “agreement consis-
tency between the verb and the subject that controls
it”. This knowledge should be useful for resolving
inconsistencies produced by individual classifiers.

The inference approach we develop in this paper
follows the one proposed by Roth and Yih (2004)
of training individual models and combining them
at decision time via joint inference. The advantage
of this method is that it allows us to build upon
any existing independently-learned models that pro-
vide a distribution over their outcome, and produce
a coherent global output that respects our declarative
constraints. We formulate our component inference
problems as integer linear program (ILP) instances
as in Roth and Yih (2004).

The inference takes as input the individual clas-
sifiers’ confidence scores for each prediction, along
with a list of constraints. The output is the optimal
solution that maximizes the linear sum of the confi-
dence scores, subject to the constraints that encode
the interactions. The joint model thus selects a hy-
pothesis that both obtains the best score according
to the individual models and satisfies the constraints
that reflect the interactions among the grammatical
phenomena at the level of linguistic structures, as
defined in Sec. 4.

Inference The joint inference is enforced at the
level of structures, and each structure corresponds
to one ILP instance. All structures consist of two or
three words: when an article-NPhead structure and
a subject-verb structure include the same noun, the
structure input to the ILP consists of an article-noun-

and verb agreement candidates. The candidates themselves are
the surface forms of specific words that realize these grammat-
ical properties. Note that a subject in subject-verb structures is
always third person, since all subjects in subject-verb structures
are common nouns; other subjects, including pronouns, are ex-
cluded. Thus the agreement distinction is singular vs. plural.
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verb triple. We formulate the inference problem as
follows: Given a structure s that consists of n words,
let w; correspond to the i** word in the structure. Let
h denote a hypothesis from the hypothesis space H
for s, and score(w;, h, ') denote the score assigned
by the appropriate error-specific model to w; under
h for label [ from the confusion set of word w;. We
denote by e,,; the Boolean variable that indicates
whether the prediction on word w is assigned the
value [ (e, = 1) or not (e,,; = 0).

We assume that each independent classifier re-
turns a score that corresponds to the likelihood of
word w; under h being labeled *. The softmax func-
tion (Bishop, 1995) is used to convert raw activation
scores to conditional probabilities for the discrimi-
native article model. The NB scores are also normal-
ized and correspond to probabilities. Then the infer-
ence task is solved by maximizing the overall score
of a candidate assignment of labels [ to words w (this
set of feasible assignments is denoted H here) sub-
ject to the constraints C' for the structure s:

h = arg max score(h) =
heH

n
= arg max Z score(w, h, li)ewhli
heH
subject to C'(s)
Constraints In the {0, 1} linear programming for-
mulation described above, we can encode linguis-
tic constraints that reflect the interactions among the
linguistic phenomena. The inference enforces the
following structural and linguistic constraints:

1. The indefinite article “a” cannot refer to an NP headed by
a plural noun.

2. Subject and verb must agree in number.

In addition, we encode “legitimacy” constraints, that
make sure that each w is assigned a single label. All
constraints are encoded as hard constraints.

5.2 Joint Learning

We now describe how we learn the subject-verb and
article-NPhead structures jointly. The joint model is
implemented as a NB classifier and is trained in the
same way as the independent models on the Google
corpus with word n-gram features. Unlike the inde-
pendent models, where the target corresponds to one



System Adjacent structures All distances

F1 (Orig.) | F1 (Revised) | F1 (Orig.) F1 (Revised)
Illinois 31.20 42.14 31.20 42.14
NaiveVerb 31.19 42.20 31.13 42.16
NaiveNoun 31.03 41.87 30.91 41.70

This paper joint systems

Joint Inference (adjacent)

Joint Inference (all distances)

F1 (Orig.) | F1 (Revised) | F1 (Orig.) F1 (Revised)
Subject-verb 31.90 42.94 31.97 42.86
Article-NPhead 31.63 42.48 31.79 42.59
Subject-verb + article-NPhead 32.35 43.16 32.51 43.19

Table 7: Joint Inference Results. All results are on the CONLL-2013 test data using the original and revised gold annotations.
Adjacent denotes a setting, where the joint inference is applied to structures with consecutive components (article-NPhead or
subject-verb). All distances denotes a setting, where the constraints are applied to all valid structures, as described in Sec. 4.1.
llinois denotes the result obtained by the top CoNLL-2013 shared task system. In all cases, the candidates that are not part of the
structures are handled by the respective components of the Illinois system. NaiveVerb and NaiveNoun denote heuristics, where a
verb or subject are changed to ensure agreement. All improvements over the Illinois system are statistically significant (McNemar’s

test, p < 0.01).

word, here the target corresponds to two words that
are part of the structure and the label space of the
model is modified accordingly. Since we use fea-
tures that can be computed from the small windows
in the Google corpus, the joint learning model han-
dles only adjacent structures (Sec. 4.1). Because the
target consists of two words and the Google corpus
contains counts for n-grams of length at most five,
the features are collected in the three word window
around the target.?

Unlike with the joint inference, here we do not
explicitly encode linguistic constraints. One reason
for this is that the NP head and subject predictions
are not 100% accurate, so input structures will have
noise. However, the joint model learns these con-
straints through the evidence seen in training.

6 Experiments

In this section, we describe our experimental setup
and evaluate the performance of the joint approach.
In the joint approach, the joint components pre-
sented in Sec. 5 handle the interacting structures de-
scribed in Sec. 4. The individual classifiers of the
[linois system make predictions for the remaining
words. The research question addressed by the ex-
periments is the following: Given independently-
trained systems for different types of errors, can we
improve the performance by considering the phe-

8 Also note that when the article is @, the surface form of
the structure corresponds to the NP head alone; this does not
present a problem because in the NB model the context counts
are normalized with the prior counts.
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nomena that interact jointly? To address this, we
report the results in the following settings:

1. Joint Inference: we compare the Illinois sys-
tem that is a collection of individually-trained mod-
els that are applied independently with a model
that uses joint inference encoded as declarative con-
straints in the ILP formulation and show that using
joint inference results in a strong performance gain.
2. Joint Learning: we compare the Illinois system
with a model that incorporates jointly-trained com-
ponents for the two linguistic structures that we de-
scribed in Sec. 4. We show that joint training pro-
duces an even stronger gain in performance com-
pared to the Illinois model.

2. Joint Learning and Inference: we apply joint in-
ference to the output of the joint learning system to
account for dependencies not covered by the joint
learning model.

We report F1 performance scored using the offi-
cial scorer from the shared task (Dahlmeier and Ng,
2012). The task reports two types of evaluation: on
the original gold data and on gold data with addi-
tional corrections. We refer to the results as Origi-
nal and Revised.

6.1 Joint Inference Results

Table 7 shows the results of applying joint infer-
ence to the Illinois system. Both the article-NPhead
and the subject-verb constraints improve the perfor-
mance. The results for the joint inference are shown
in two settings, adjacent and all structures, so that
later we can compare joint inference with the joint
learning model that handles only adjacent structures.



F1 (Orig.)

Ilinois system

Illinois-NBArticle

F1 (Revised) | F1 (Orig.) | F1 (Revised)

Illinois 31.20

42.14 31.71 41.38

This paper joint systems

Joint Learning (adjacent)

Joint Learning (adjacent)

F1 (Orig.) | F1 (Revised) | F1 (Orig.) | F1 (Revised)
Subject-verb 32.64% 43.37%* 33.09* 42.78%*
Article-NPhead 33.89% 42.57%* 33.16%* 41.51
Subject-verb + article-NPhead 35.12% 43.73%* 34.41% 42.76%*

Table 8: Joint Learning Results. All results are on the CoNLL-2013 test data using the original and revised gold annotations.
Lllinois-NBArticle denotes the Illinois system, where the discriminative article model is replaced with a NB classifier. Adjacent
denotes a setting, where the structure components are consecutive (article-NPhead or subject-verb), as described in Sec. 4.1.
llinois denotes the result obtained by the top CoNLL-2013 shared task system. In all cases, the candidates that are not part of the
structures are handled by the respective components of the Illinois system. Statistically significant improvements (McNemar’s test,

p < 0.01) over the Illinois system are marked with an asterisk (*).

It is also interesting to note that the key improvement
comes from considering structures whose compo-
nents are adjacent. This is not surprising given that
the accuracy for subject and NP head identification
drops as the distance increases.

For subject-verb constraints, we also implement
a naive approach that looks for contradictions and
changes either the verb or the subject if they do not
satisfy the number agreement. These two heuris-
tics are denoted as NaiveVerb and NaiveNoun. The
heuristics differ from the joint inference in that they
enforce agreement by always changing either the
noun (NaiveNoun) or the verb (NaiveVerb), while
the joint inference does this using the scores pro-
duced by the independent models. In other words,
the key is the objective function, while the compo-
nents of the objective function are the same in the
heuristics and the joint inference. The results in Ta-
ble 7 show that simply enforcing agreement does not
work well and that the ILP formulation is indeed ef-
fective and improves over the independently-trained
models in all cases.

Recall that valid structures include only those
whose components can be identified in a reliable
way (Sec. 4.1). To evaluate the impact of that filter-
ing, we perform two experiments with subject-verb
structures (long-distance dependencies are more
common in those constructions than in the article-
NPhead structures): first, we apply joint inference
to all subject-verb structures. We obtain F1 scores of
31.61 and 42.28, on original and revised gold data,
respectively, which is significantly worse than the
results on subject-verb structures in Table 7 (31.97
and 42.86, respectively) and only slightly better than
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the baseline performance of the Illinois system. Fur-
thermore, when we apply joint inference to those
structures which were excluded by filtering in Sec.
4.1, we find that the performance degrades com-
pared to the Illinois system (30.85 and 41.58). These
results demonstrate that the joint inference improve-
ments are due to structures whose components can
be identified with high accuracy and that it is essen-
tial to identify these structures; bad structures, on the
other hand, hurt performance.

6.2 Joint Learning Results

Now we show experimental results of the joint learn-
ing (Table 8). Note that the joint learning component
considers only those structures where the words are
adjacent. Because the Illinois system presented in
Sec. 3 makes use of a discriminative article model,
while the joint model uses NB, we also show results,
where the article model is replaced by a NB classi-
fier trained on the Google corpus. In all cases, joint
learning demonstrates a strong performance gain.

6.3 Joint Learning and Inference Results

Finally, we apply joint inference to the output of the
joint learning system in Sec. 6.2. Table 9 shows
the results of the Illinois model, the model that ap-
plies joint inference and joint learning separately,
and both. Even though the joint learning performs
better than the joint inference, the joint learning
covers only adjacent structures. Furthermore, joint
learning does not address overlapping structures of
triples that consist of article, subject, and verb (6%
of all structures). Joint inference allows us to ensure
consistent predictions in cases not addressed by the



Example

Illinois system JL and JI

different natural disasters.

“Moreover, the increased technologies help people to overcome

No change technology helps

criminals are more difficult to hide.”

“At that time,... there are surveillances in everyone’s heart and

there are* surveillance* | there is surveillance

“In such situation, individuals will lose their basic privacy.”

such a* situations* such a situation

thieves.”

“In supermarket monitor is needed because we have to track

No change monitors are

Table 10: Examples of mistakes that are corrected by the joint model but not by the Illinois model. /l/inois denotes the result
obtained by the top CoNLL-2013 shared task system from the University of Illinois. JL and JI stand for joint learning and joint

inference, respectively. Inconsistent predictions are starred.

F1 (Orig.) | F1 (Revised)
Illinois 31.20 42.14
Joint Inference 32.51 43.19
Joint Learning 35.12 43.73
Joint Learn. + Inf. 35.21 43.74

Table 9: Joint Learning and Inference. All results are on the
CoNLL-2013 test data using the original and revised gold anno-
tations. Results of the joint models that include the joint infer-
ence component are shown for structures of all distances. li-
nois denotes the result obtained by the top CoNLL-2013 shared
task system. All joint systems demonstrate a statistically sig-
nificant improvement over the Illinois system; joint learning
improvements are also statistically significant compared to the
joint inference results (McNemar’s test, p < 0.01).

joint learning model. Indeed, we can get a small im-
provement by adding joint inference on top of the
joint learning on original annotations. Since the re-
vised corrections are based on the participants’ input
and are most likely biased towards system predic-
tions for corrections missed by the original annota-
tors (Ng et al., 2013), it is more difficult to show
improvement on revised data.

7 Discussion and Error Analysis

In the previous section, we evaluated the proposed
joint inference and joint learning models that han-
dle interacting grammatical phenomena. We showed
that the joint models produce significant improve-
ments over the highest-scoring CoNLL-2013 shared
task system that consists of independently-trained
classifiers: the joint approaches increase the F1
score by 4 F1 points on the original gold data and
almost 2 points on the revised data (Table 9).

These results are interesting from the point of
view of developing a practical error correction sys-
tem. However, recall that the errors in the interact-
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ing structures are only a subset of mistakes in the
CoNLL-2013 data set but the evaluation in Sec. 6 is
performed with respect to all of these errors. From
a scientific point of view, it is interesting to evalu-
ate the impact of the joint models more precisely by
considering the improvements on the relevant struc-
tures only. Table 11 shows how much the joint learn-
ing approach improves on the subset of relevant mis-
takes.

Structure Performance (F1)
Illinois | Joint Learning
Subject-verb 39.64 52.25
Article-NPhead | 30.65 35.90

Table 11: Evaluation of the joint learning performance on
the subset of the data containing interacting errors. All re-
sults are on the CoNLL-2013 test data using the original anno-
tations. /llinois denotes the result obtained by the top CoNLL-
2013 shared task system. All improvements are statistically sig-
nificant over the Illinois system (McNemar’s test, p < 0.01).

Error Analysis To better understand where the joint
models have an advantage over the independently-
trained classifiers, we analyze the output produced
by each of the approaches. In Table 10 we show
examples of mistakes that the model that uses joint
learning and inference is able to identify correctly,
along with the original predictions made by the Illi-
nois system.

Joint Inference vs. Joint Learning We wish
to stress that the joint approaches do not simply
perform better but also make coherent decisions
by disallowing illegitimate outputs. The joint in-
ference approach does this by enforcing linguis-
tic constraints on the output. The joint learning
model, while not explicitly encoding these con-
straints, learns them from the distribution of the
training data.




Joint inference is a less expensive model, since it
uses the scores produced by the individual classifiers
and thus does not require additional training. Joint
learning, on the other hand, is superior to joint infer-
ence, since it is better at modeling interactions where
multiple errors occur simultaneously — it eliminates
the noisy context present when learning the inde-
pendent classifiers. Consider the first example from
Table 10, where both the noun and the agreement
classifiers receive noisy input: the verb “help” and
the noun “technologies” act as part of input features
for the noun and agreement classifiers, respectively.
The noisy features prevent both modules from iden-
tifying the two errors.

Finally, an important distinction of the joint learn-
ing method is that it considers all possible output se-
quences in training, and thus it is able to better iden-
tify errors that require multiple changes, such as the
last example in Table 10, where the Illinois system
proposes no changes.

7.1 Error Correction: Challenges

We finalize our discussion with a few comments on
the challenges of the error correction task.
Task Difficulty As shown in Table 1 in Sec. 2, only
a small percentage of words have mistakes, while
over 90% (about 98% in training) are used correctly.
The low error rates are the key reason the error cor-
rection task is so difficult: it is quite challenging for
a system to improve over a writer that already per-
forms at the level of over 90%. Indeed, very few
NLP tasks already have systems that perform at that
level, even when the data is not as noisy as the ESL
data.
Evaluation Metrics In the CoNLL-2013 competi-
tion, as well as the competitions alluded to earlier,
systems were compared on F1 performance, and,
consequently, this is the metric we optimize in this
paper. Practical error correction systems, however,
should be tuned to minimize recall to guarantee that
the overall quality of the text does not go down. In-
deed, the error sparsity makes it very challenging to
identify mistakes accurately, and no system in the
shared task achieves a precision over 50%. How-
ever, once the precision drops below 50%, the sys-
tem introduces more mistakes than it identifies.
Clearly, optimizing the F1 measure does not en-
sure that the quality of the text improves as a re-
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sult of running the system. Thus, it can be argued
that the F1 measure is not the right measure for er-
ror correction. A different evaluation metric based
on the accuracy of the data before and after running
the system was proposed in Rozovskaya and Roth
(2010c). When optimizing for this metric, the noun
module, for instance, at recall point 20%, achieves
a precision of 63.93%. This translates into accuracy
of 94.46%, while the baseline on noun errors in the
test data (i.e. the accuracy of the data before running
the system) is 94.0% (Table 1). This means that the
system improves the quality of the data.
Annotation Lastly, we believe that it is important
to provide alternative corrections, as the agreement
on what constitutes a mistake even among native
English speakers can be quite low (Madnani et al.,
2011).

8 Conclusion

This work presented the first successful study that
jointly corrects grammatical mistakes. We ad-
dressed two pairs of interacting phenomena and
showed that it is possible to reliably identify their
components, thereby facilitating the joint approach.
We described two joint methods: a joint in-
ference approach implemented via ILP and a
joint learning model. The joint inference en-
forces constraints using the scores produced by the
independently-trained models. The joint learning
model learns the interacting phenomena as struc-
tures. The joint methods produce a significant im-
provement over a state-of-the-art system that com-
bines independently-trained models and, impor-
tantly, produce linguistically legitimate output.
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