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Abstract

Studies of the graph of dictionary definitions
(DD) (Picard et al., 2009; Levary et al., 2012)
have revealed strong semantic coherence of
local topological structures. The techniques
used in these papers are simple and the main
results are found by understanding the struc-
ture of cycles in the directed graph (where
words point to definitions). Based on our ear-
lier work (Levary et al., 2012), we study a dif-
ferent class of word definitions, namely those
of the Free Association (FA) dataset (Nelson
et al., 2004). These are responses by subjects
to a cue word, which are then summarized by
a directed, free association graph.

We find that the structure of this network is
quite different from both the Wordnet and the
dictionary networks. This difference can be
explained by the very nature of free associa-
tion as compared to the more “logical” con-
struction of dictionaries. It thus sheds some
(quantitative) light on the psychology of free
association.

In NLP, semantic groups or clusters are inter-
esting for various applications such as word
sense disambiguation. The FA graph is tighter
than the DD graph, because of the large num-
ber of triangles. This also makes drift of
meaning quite measurable so that FA graphs
provide a quantitative measure of the seman-
tic coherence of small groups of words.

1 Introduction

The computer study of semantic networks has been
around since the advent of computers (Brunet, 1974)

and has been used to study semantic relations be-
tween concepts and for analyzing semantic data.
Traditionally, a popular lexical database of English
is Wordnet (Miller, 1995; Miller and Fellbaum,
1998), which organizes the semantic network in
terms of graph theory. In contrast to manual ap-
proaches, the automatic analysis of semantically in-
teresting graph structures of language has received
increasing attention. For example, it has become
clear more recently that cycles and triangles play
an important role in semantic networks, see e.g.,
(Dorow et al., 2005). These results suggest that the
underlying semantic structure of language may be
discovered through graph-theoretical methods. This
is in line with similar findings in much wider realms
than NLP (Eckmann and Moses, 2002).

In this paper, we compare two different types
of association networks. The first network is con-
structed from an English dictionary (DD), the sec-
ond from a free association (FA) database (Nelson
et al., 2004). We represent both datasets through
directed graphs. For DD, the nodes are words and
the directed edges point from a word to its defini-
tion(s). For FA, the nodes are again words, and each
cue word has a directed edge to each association it
elicits.

Although the links in these graphs were not con-
structed by following a rational centralized process,
their graph exhibits very specific features and we
concentrate on the study of its topological proper-
ties. We will show that these graphs are quite dif-
ferent in global and local structure, and we inter-
pret this as a reflection of the different nature of
DD vs. FA. The first is an objective set of rela-
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tions between words and their meaning, as explained
by other words, while the second reveals the nature
of subjective reactions to cue words by individuals.
This matter of fact is reflected by several quantita-
tive differences in the structure of the corresponding
graphs.

The main contribution of this paper is an empiri-
cal analysis of the way semantic knowledge is struc-
tured, comparing two different types of association
networks (DD and FA). We conduct a mathemati-
cal analysis of the structure of the graphs to show
that the way humans express their thoughts exhibits
structural properties in which one can find seman-
tic patterns. We show that a simple graph-based
approach can leverage the information encoded in
free association to narrow down the ambiguity of
meaning, resulting in precise semantic groups. In
particular, we find that the main strongly connected
component of the FA graph (the so-called core) is
very cyclic in nature and contains a large predom-
inance of short cycles (i.e., co-links and triangles).
In contrast to the DD graph, bunches of triangles
form well-delimited lexical fields of collective se-
mantic knowledge. This property may be promising
for downstream tasks. Further, the methods devel-
oped in this paper may be applicable to graph rep-
resentations that occur in other problems such as
word sense disambiguation (e.g., (Heylighen, 2001;
Agirre and Soroa, 2009)) or sentiment polarity in-
duction (Hassan and Radev, 2010; Scheible, 2010).

To show the semantic coherence of these lexi-
cal fields of the FA graph, we perform an exper-
iment with human raters and find that cycles are
strongly semantically connected even when com-
pared to close neighbors in the graph.

The reader might wonder why sets of pairwise
associations can lead to any interesting structure.
One of the deep results in graph theory, (Bollobás,
2001), is that in sparse graphs, i.e., in graphs with
few links per node, the number of triangles is ex-
tremely rare. Therefore, if one does find many tri-
angles in a graph, they must be not only a signal
of non-randomness, but carry relevant information
about the domain of research as shown earlier (Eck-
mann and Moses, 2002).

2 The USF FA dataset

This dataset is one of the largest existing databases
of free associations (FA) and has been collected at
the University of South Florida since 1973 by re-
searchers in psychology (Nelson et al., 2004). Over
the years, more than 6’000 participants produced
about 750’000 responses to 5’019 stimulus words.

The procedure for collecting the data is called dis-
crete association task and consists in asking partici-
pants to give the first word that comes to mind (tar-
get) when presented a stimulus word (cue).

For creating the initial set of stimulus words,
the Jenkins and Palermo word association norms
(Palermo and Jenkins, 1964) proved useful but too
limited as they consist of only 200 words. For this
reason, additional words have been regularly added
to the pool of normed words, unfortunately without
well established rules being followed. For instance,
some were selected as potentially interesting cues,
some were added as responses to the first sets of cues
and, some others were collected for supporting new
studies on verbs. We still work with this database,
because of its breadth.

The final pool of stimuli comprises 5’019 words
of which 76% are nouns, 13% adjectives, and 7%
verbs. A word association is said to be normed
when the target is also part of the set of norms, i.e.,
a cue. The USF dataset of free associations con-
tains 72’176 cue-target pairs, 63’619 of which are
normed. As an example, the association puberty-sex
is normed whereas the association puberty-thirteen
is not, because thirteen is not a cue.

3 Mathematical definitions

We collect here those notions we need for the analy-
sis of the data.

A directed graph is a pair G = (V,E) of a set
V of vertices and, a set E of ordered pairs of ver-
tices also called directed edges. For a directed edge
(u, v) ∈ E, u is called the tail and v the head of
the edge. The number of edges incident to a vertex
v ∈ V is called the degree of v. The in-degree
(resp. out-degree) of a vertex v is the number of
edge heads (resp. edge tails) adjacent to it. A vertex
with null in-degree is called a source and a vertex
with null out-degree is called a sink.

A directed path is a sequence of vertices such
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that a directed edge exists between each consecutive
pair of vertices of the graph. A directed graph is
said to be strongly connected, (resp. weakly con-
nected) if for every pair of vertices in the graph,
there exists a directed path (resp. undirected path)
between them. A strongly connected component,
SCC, (resp. weakly connected component, WCC)
of a directed graph G is a maximal strongly con-
nected (resp. weakly connected) subgraph of G.

A directed cycle is a directed path such that its
start vertex is the same as its end vertex. A co-
link is a directed cycle of length 2 and a triangle a
directed cycle of length 3.

The distance between two vertices in a graph is
the number of edges in the shortest path connecting
them. The diameter of a graph G is the greatest
distance between any pair of vertices. The charac-
teristic path length is the average distance between
any two vertices of G.

The density of a directed graph G(V,E) is the
proportion of existing edges over the total number
of possible edges and is defined as:

d = |E|/(|V |(|V | − 1))

The neighborhoodNi of a vertex vi isNi = {vj :
eij ∈ E or eji ∈ E}.

The local clustering coefficient Ci for a vertex vi

corresponds to the density of its neighborhood sub-
graph. For a directed graph, it is thus given by:

Ci =
|{ejk : vj , vk ∈ Ni, ejk ∈ E}|

|Ni|(|Ni| − 1)

The clustering coefficient of a graph G is the aver-
age of the local clustering coefficients of all its ver-
tices.

The efficiency Eff of a directed graph G is an in-
dicator of the traffic capacity of a network. It is the
harmonic mean of the distance between any two ver-
tices of G. It is defined as:

Eff =
1

|V |(|V | − 1)

∑
i 6=j∈V

1

dij

The linear correlation coefficient between two
random variables X and Y is defined as:

ρ(X,Y ) = (E[XY ]− µXµY )/(σXσY )

where µX and σX are respectively the mean and
standard deviation of the random variable X .

The linear degree correlation coefficient of a
graph is called assortativity and is expressed as:

ρD =
∑
xy

xy(exy − axby)/(σaσb)

where exy is the fraction of all links that connect
nodes of degree x and y and where ax and by are re-
spectively the fraction of links whose tail is adjacent
to nodes with degree x and whose head is adjacent to
nodes with degree y, satisfying the following three
conditions:∑

xy

exy = 1, ax =
∑

y

exy, by =
∑

x

exy

When ρD is positive, the graph possesses assor-
tative mixing and high-degree nodes tend to con-
nect to other high-degree nodes. On the other hand,
when ρD is negative, the graph features disassorta-
tive mixing and high-degree nodes tend to connect
to low degree nodes.

The intersection graph of sets Ai, i = 1, . . . ,m,
is constructed by representing each setAi as a vertex
vi ∈ V and adding an edge for each pair of sets with
a non-empty intersection:

E = {(vi, vj) : Ai ∩Aj 6= ∅}

4 Graph topology analysis

4.1 Graph generation

Our goal being to study the FA network topology,
we first concentrate on the generation of an un-
weighted directed graph. We generate the corre-
sponding graph by adding a directed edge for each
cue-target pair of the dataset. We only consider pairs
whose target was normed in order to avoid overload-
ing the graph with noisy data (e.g., a response mean-
ingful only to a specific participant). The graph has
5’019 vertices and 63’619 edges. It is composed of
a single WCC and 166 SCCs.

For comparison with dictionary definitions (DD),
we construct a graph from the Wordnet2 dictionary
(nouns only), following (Levary et al., 2012). This
graph contains 54’453 vertices and 179’848 edges.
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4.2 Core extraction

The so-called core was defined previously in (Picard
et al., 2009; Levary et al., 2012) as that subset of
nodes in which a random walker gets trapped after
only a few steps.

The shave algorithm was used in (Levary et al.,
2012) to isolate this subset. It consists in recursively
removing the source and sink nodes from a weakly
connected directed graph and permits to get the sub-
graph induced by the union of its strongly connected
components. Note that the dictionary graph (DD)
has no sinks (i.e., words that never get defined) and
that it contains a giant SCC whose size is compara-
ble to the one of the initial graph.

It turns out that the FA graph also contains a giant
SCC, therefore getting the core consists more simply
in extracting the main SCC of the initial graph. We
use Tarjan’s algorithm (Tarjan, 1972) for isolating
the FA core.

4.3 Vertex degree analysis

The FA core has a maximum in-degree of 313, a
maximum out-degree of 33 and an average degree
of 25.42. The in-degree distribution follows a power
law (γ = 1.93) and the out-degrees are Poisson-like
distributed with a peak at 14 (Steyvers and Tenen-
baum, 2005; Gravino et al., 2012).

Words having a high in-degree are targets that
tend to be cited more frequently. On the other hand,
words having a high out-degree are cues that evoke
many different targets.

The most evocative cues are, in decreasing order
of out-degree: field (33), body (31), condemn (29),
farmer (29), crisis (28), plan (28), attention (27),
animal (27), and hang (27). Interestingly, the most
cited targets (i.e., targets with highest in-degree) are
in decreasing order: food (313), money (295), water
(271), car (251), good (246), bad (221), work (187),
house (183), school (182), love (179).

4.4 Cycle decomposition of the core

We define the vertex k-cycle multiplicity
(resp. edge k-cycle multiplicity) as the num-
ber of k-cycles a given vertex (resp. edge) belongs
to. We call core-ER the set of Erdös-Rényi (ER)
random graphs G(n,M) having the same number
of nodes and the same number of edges as the FA
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Figure 1: Distribution of shortest cycles lengths in the
core compared to equivalent ER models
One should bear in mind that we only consider the set of short-
est cycles. Thus, a k-cycle is not counted if each of its nodes
belongs to a cycle whose length is < k. Although the num-
ber of 4-shortest cycles is comparable in the core and core-ER
graphs for example, there are in reality far more 4-cycles in the
core (i.e., 42’738 versus 6’517). We see that when considering
shortest cycles, short cycles tend to hide long ones, and, as a
large proportion of nodes in the core belong to 2- and 3-cycles,
many longer cycles do not get counted at all.

core. We start by extracting the 2- and 3-cycles by
using a customized version of Johnson’s algorithm
(Johnson, 1975). The first thing we observe is that
the core has a very high density of short cycles: the
subset of nodes belonging to 2-cycles (i.e., nodes
with 2-cycle multiplicities > 0) cover 95% of the
core vertices and the 3-cycles cover 88% of the
core vertices. The corresponding core-ER graphs
have on average about 100 times fewer 2-cycles and
almost 20 times fewer 3-cycles.

This shows that the core is very cyclic in nature
and that it remains very well connected for short-
length cycles: most vertices of the core indeed be-
long to at least one co-link or triangle.

In order to limit computation times, we only con-
sidered shortest cycles for lengths ≥ 3 and analyzed
the distribution of the number of shortest cycles
in the core compared to equivalent random graphs.
Whereas there are many more short cycles in the
core, we observe a predominance of 4, 5 and 6-
cycles in core-ER graphs. However, we find again a
slight predominance of long cycles (length between
7 and 15) in the core (see Fig. 1). See (Levary et al.,
2012), Fig. 3, where the cycle distribution is very
different, with a minimum at length 5.
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4.5 Interpretation of cycles

2-cycles are composed of concretely related words
(e.g., drug-coke, destiny-fate, einstein-genius, . . . ).
The vertex with highest 2-cycle multiplicity is music
(22).

Words in 3- and 4-cycles often belong to the
same lexical field. Examples of 3-cycles: protect-
guard-defend or space-universe-star. The vertex
(resp. edge) with highest 3-cycle multiplicity is
car (86) (resp. bad-crime (11)). Examples of 4-
cycles: monster-dracula-vampire-ghost or flu-virus-
infection-sick.

Longer cycles are more difficult to describe: Re-
lations linking words of a given cycle exhibit se-
mantic drift with increasing length (cf. (Levary et
al., 2012)). Examples of 5-cycles: yellow-coward-
chicken-soup-noodles and sleep-relax-music-art-
beauty.

The cumulated set of free associations reflects the
way in which a group of people retrieved its seman-
tic knowledge. As the associated graph is highly
circular, this suggests that this knowledge is not
stored in a hierarchical way (Steyvers and Tenen-
baum, 2005). The large predominance of short cy-
cles in the core may indeed be a natural conse-
quence of the semantic information being acquired
by means of associative learning (Ashcraft and Rad-
vansky, 2009; Shanks, 1995).

4.6 FA core clustering

4.6.1 The walktrap community algorithm
Complex networks are globally sparse but con-

tain locally dense subgraphs. These groups of highly
interconnected vertices are called communities and
convey important properties of the network.

Although the notion of community is difficult to
define formally, the current consensus establishes
that a partition P = {C1, C2, . . . , Ck} of the ver-
tex set of a graph G represents a good community
structure if the proportion of edges inside the Ci is
higher than the proportion of edges between them
(Fortunato, 2010).

Computing such communities in a large graph is
generally computationally expensive (Lancichinetti
and Fortunato, 2009). We use the so-called ‘Walk-
trap’ community detection algorithm (Pons and Lat-
apy, 2006) for extracting communities from the FA

networks. The idea lying behind this algorithm is
that random walks on a graph will tend to get trapped
in the densely connected subgraphs.

Let P t
ij be the probability of going from vertex i

to vertex j through a random walk of length t. The
distance between two vertices i and j of the graph is
defined as:

rij(t) =

√√√√ n∑
k=1

(P t
ik − P t

jk)2

d(k)

where d(k) is the degree of vertex k.
One defines the probability P t

C,j to go from
community C to vertex j in t steps: P t

C,j =∑
i∈C P

t
ij/|C|, and then the distance is easily gen-

eralized for two communities C1, C2.
The algorithm starts with a partition P1 = {{v} ∈

V } of the initial graph into n communities each of
which is a single vertex. At each step, two communi-
ties are chosen and merged according to the criterion
described below and the distances between commu-
nities are updated. The process goes on until we ob-
tain the partition Pn = {V }.

In order to reduce complexity, only adjacent com-
munities are considered for merging. The decision
is then made according to Ward’s method (Everitt
et al., 2001): at each step k, the two communities
that minimize the mean σk of the squared distances
between each vertex and its community are merged:

σk =
1

n

∑
C∈Pk

∑
i∈C

r2iC

4.6.2 Clustering of the core
We first identify the communities of the FA core

using the Walktrap algorithm. We immediately
observe that when the path length parameter in-
creases, the number of identified communities de-
creases (i.e., for a length of 2, we find 35 communi-
ties whereas for a length of 9, we only find 8 com-
munities).

For a path length of 2, the algorithm extracts 35
communities, 7 of which contain more than 100 ver-
tices, 3 of which contain between 100 and 50 ver-
tices and 25 of which contain less than 50 vertices.

We observe that for most small communities (i.e.,
the ones containing less than 50 vertices), there ex-
ists a clear relation between the labels of their ver-
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tices. Typically, the labels are part of the same lexi-
cal field (e.g., all the planets (except earth) or related
by a common grammatical function (such as why,
where, what, . . . ).

4.6.3 Clustering of the core co-links
We define the k-cycle induced subgraph of a

graph G as the subgraph of G induced by the set
of its vertices with k-cycle multiplicity > 0.

The co-link graph of a graphG(V,E) is the undi-
rected graph obtained by replacing each co-link (i.e.,
2-cycle) of the 2-cycle induced subgraph of G by a
single undirected edge and removing all other edges.

The co-link graph of the FA core has 4’508 ver-
tices and 8’309 edges for a density of 8×10−4. It
is composed of a single weakly connected compo-
nent that can be seen as a projection of the strongest
semantic links from the original graph. Extracting
the co-link graph is thus an efficient way of select-
ing the set of most important semantic links (i.e., the
set of 2-cycles that appear in large predominance in
the core compared to what is found in an equivalent
random graph) while filtering out the noisy or negli-
gible ones.

The sets of communities extracted by the Walk-
trap algorithm exhibit different degrees of granular-
ity depending on the length parameter. For short
paths, a large number of very small communities are
returned (e.g., 923 communities when length equals
2) whereas for longer paths the average size of the
communities increases more and more.

The community detection exhibits thus a far finer
degree of granularity for the core co-links graph than
for the core itself. The size of the communities being
much smaller in average, it is striking to notice to
which extent the words of a given community are
semantically related.

Examples of communities found in the core co-
links graph include (standards, values, morals,
ethics), (hopeless, romantic, worthless, useless),
(thesaurus, dictionary, vocabulary, encyclopedia)
or (molecule, atom, electron, nucleus, proton, neu-
tron).

4.6.4 DD core clustering vs FA core clustering
The clustering of both cores has very different

characteristics: We illustrate the neighborhoods of
conflict for both cases in Fig. 2 and 3.
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fight
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battle
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problem

Figure 2: Neighborhood of conflict in the FA core
The set of words belonging to the neighborhood of conflict are
clearly part of the same lexical field. The high density of co-
links leads to cyclicity and we see that many directed triangles
are present in the local subgraph (e.g., conflict-trouble-fight,
conflict-argument-disagree). We can even find triangles of co-
links that link together words semantically strongly related (e.g.,
fight-war-battle, fight-quarrel-argument). Nodes that are part of
the neighborhood of conflict in both FA and DD are in empty
circles.

On one hand, the words in communities of the DD
core are in most cases either synonyms, e.g., (decla-
ration, assertion, claim) or an instance-of kind of
relation, e.g., (signal, gesture, motion) or (zero, inte-
ger).

On the other hand, communities of the FA core
are generally composed of words belonging to the
same lexical field and sharing the same level of ab-
straction.

Moreover, we notice that it is often difficult to es-
tablish the semantic relation existing between words
of many small communities (i.e., containing less
than 10 words) of the DD core. Two such examples
are: (choice, probate, executor, chosen, certificate,
testator, will) and (numeral, monarchy, monarch,
crown, significance, autocracy, symbol, interpreta-
tion).

The comparison of DD and FA reveals, in a quan-
titative way, fundamental differences between the
two realms. The interesting data are shown in ta-
ble 1.
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Figure 3: Neighborhood conflict in the DD core
First, we note that the neighborhood has a lower density than
in the FA core. We also see that there is no cycle and there
seems to be a flow going from source nodes to sink nodes. As
it generally happens in the neighborhood subgraphs of the DD
core, source nodes are rather specific words whereas sink nodes
are generic words.

FA core DD core
# vertices 4’843 1’496
# edges 61’544 4’766
density 2.5×10−3 2.1×10−3

avg degree 25.4 6.37
max in-degree 313 59
directed diameter 10 29
characteristic path length 4.26 10.42
efficiency 2.5×10−1 1.2×10−1

clustering coefficient 8.5×10−2 5.1×10−2

assortativity 5.5×10−2 6.1×10−2

Table 1: Comparison FA vs DD

Note that while the FA core is in fact larger than
the DD core, its diameter is smaller. This illustrates
in a beautiful way the nature of free association as
compared to the more neutral dictionary. In par-
ticular, the characteristic path length is smaller in
the FA graph, because humans use generalized event
knowledge (McRae and Matsuki, 2009) in free asso-
ciation, producing semantic shortcuts. For example,
FA contains a direct link mirage→water, whereas
in DD, the shortest path between the two words is
mirage→refraction→wave→water.

5 The Bricks of Meaning

5.1 Extraction of the seed
We already saw that most vertices of the core be-
long to directed 2- and 3-cycles. Whereas 2-cycles

establish strong semantic links (i.e., synonymy or
antonymy relations) and provide cyclicity to the un-
derlying directed graph, we claim that 3-cycles (i.e.,
triangles) form the set of elementary concepts of the
core.

These structues are common to DD and to FA, but
we will see that the links in FA are somehow more
direct than in DD.

We call seed the subgraph of the core induced by
the set V3 of vertices belonging to directed triangles
and shell the subgraph of the core induced by the
set V \V3 (i.e., the set of vertices with a null 3-cycle
multiplicity), see Fig. 4.

Initial graph

core

sh
el
l

se
ed

Figure 4: Composition of the FA graph
The graph of FA contains a giant SCC (the core). The subgraph
of the core induced by the set of nodes belonging to at least one
triangle also forms a giant component we call the ‘seed’. The
subgraph of the core induced by the set of nodes not belonging
to any triangle is called the ‘shell’ and is composed of many
small SCCs, including single vertices. Although the shell has a
low density, its nodes are very well connected to the seed.

The shell contains 530 nodes and 309 edges.
There are 7’035 edges connecting the shell to the
seed. The shell consists of of many small SCCs and
although its average degree is low (1.17), its ver-
tices have on average many (13.27) connections to
the seed.

The seed contains 4’313 vertices (89% of the
core) and 54’197 edges. The first thing to notice
is that it has 100 times more co-links (7’895) and
20 times more triangles (13’119) than an equivalent
random graph. We call shortcuts the 32’773 edges
of the seed that do not belong to 3-cycles, see Fig. 5.

The seed obviously also contains cycles whose
length is greater than 3. One can check that there ex-
ist only 5 basic motifs involving 2 attached triangles
and 1 shortcut for creating 4- and 5-cycles, and that
linking 2 isolated triangles with 2 shortcuts also per-
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S

Figure 5: Shortcut edges between two triangles sharing a
single vertex S
Two triangles can share 0, 1 or 2 vertices. For each of these three
basic motifs, we count the maximum number of shortcut edges
(i.e., edges not belonging to 3-cycles) that can be added. By
linking two triangles, these shortcuts permit to move two basic
semantic units closer together and create longer cycles (i.e., 4,
5, and 6-cycles). Long cycles can be thus considered as group-
ings of basic semantic units. In the case of two triangles sharing
one vertex for example, it is possible to add at most 6 short-
cuts, whereas, for two triangles sharing two vertices, at most 2
shortcuts can be added.

mit to form 4-, 5- and 6-cycles. All longer cycles are
simply made of a juxtaposition of these basic motifs.

Furthermore, there is a limit on the number of
shortcuts that can possibly be added in the seed be-
fore it gets saturated, as all its vertices belong to at
least one triangle. We show that at most 16 shortcuts
can be added between two isolated triangles, at most
6 between 2 triangles sharing 2 vertex and at most 2
between 2 triangles sharing 2 vertices (see Fig. 5).

5.2 The elementary lexical fields

Once the seed is isolated, we go on digging into its
structure. We focus on the arrangements of triangles
as they constitute the set of elementary concepts.

We start by removing all shortcuts from the seed
and convert it then to an undirected graph, in order
to get a homogeneous simplicial 2-complex.

Let t be the graph operator which transforms a
graph G into the intersection graph tG of its 2-
simplices (i.e., triangles sharing an edge). We apply
t to the homogeneous simplicial 2-complex found
previously. The result represents the links between
the basic semantic units of the seed. We call seed-
crux the giant WCC in the intersection graph.

We enumerate the 8’380 maximal cliques of FA
seed-crux and get the list of words composing each

Distance Acc κ KS
original – 0.404 30
1 74 0.522 42
2 97 0.899 89
∞ 99 0.899 89

Table 2: Accuracy, κ, and count(p < 0.05) for KS

clique. By removing the ones that are subsets of big-
ger lists, we finally obtain 3’577 lists of words .

These lists of words have a rather small and ho-
mogeneous size (between 4 and 17) and 95% have
a size comprised between 4 and 10. More in-
terestingly, they clearly define well-delimited lexi-
cal fields. We will show this through two experi-
ments in the following sections. A few examples
include (honest, trustworthy, reliable, responsible),
(stress, problem, worry, frustration) and (data, pro-
cess, computer, information).

From a topological perspective, we deduce that
bunches of triangles (i.e., cliques of elementary con-
cepts) span the seed in a homogeneous way. These
bunches form a set of cohesive lexical fields and
constitute essential bricks of semantic knowledge.

5.3 Semantic similarity of the lexical fields

In order to quantify the relative meaning of words
in the lexical fields of the seed-crux, we define the
following semantic similarity metric based on the
Wordnet WUP metric (Wu and Palmer, 1994) for a
given set of words L:

S`(L) = 2
∑

wi,wj∈L,wi 6=wj

Sw(wi, wj)/(|L|(|L| − 1))

where Sw(wi, wj) = max
Sk3wiandS`3wj

{wup(Sk, S`)}

and wup is the WUP semantic metric and Sk and S`

are Wordnet synsets.
The average value of S` for the set of cliques of

seed-crux is 0.6 whereas it is only 0.43 for randomly
sampled set of words. This suggests the correspond-
ing lists of words are indeed semantically related.
We will show the strength of this relation in the fol-
lowing experiment with human raters.

5.4 Human evaluation of the lexical fields

To validate our findings, we conducted an empirical
evaluation through human annotators. Starting from
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the 1’204 4-groups, we designed the following ex-
periment: We corrupt the groups by exchanging one
of the 4 elements with a randomly chosen word at a
distance from the group of 1, 2, and “infinity” (i.e.,
any word of the whole core). We presented 100 ran-
dom samples for each of the 3 distances as well as
100 unperturbed groups (original) to annotators at
Amazon Mechanical Turk1, asking which word fits
the group the least. Intuitively, the closer the ran-
domly chosen words get to the group, the closer the
distribution of the votes for each sample should be
to the uniform distribution. We collected 10 votes
for each of the 4 problems of 100 random samples.
We calculated accuracy (i.e., the relative frequency
of correctly identified random words) for the 3 ran-
dom confounder experiments and Fleiss’ κ. Fur-
ther, we used the Kolmogorov-Smirnov (KS) test for
how uniform the label distribution is, reporting the
relative frequency of samples that are significantly
(p < 0.05) different from the uniform distribution.
The results of this experiment are summarized in Ta-
ble 2 and show clearly that the certainty about the
“odd man out” increases together with the distance.

5.5 Error analysis

If we view our results as a resource for a downstream
task, it is important to know about possible down-
sides. First, we note that there are words which are
not in a triangle and will thus be missing in the in-
tersection graph. This is an indication that the corre-
sponding word is less well embedded contextually,
so conversely, any prediction made about it from the
data may be less reliable. Additionally, semantic
leaps caused by generalized event knowledge may
lead to lesser-connected groups such as (steel, pipe,
lead, copper). Jumps like these may or may not be
desired in a subsequent application.

6 The Case of the EAT FA dataset

The Edinburgh Associative Thesaurus (EAT) (Kiss
et al., 1973) is a large dataset of free associations.
We extract the EAT FA seed-crux with the previ-
ously described methods.

We start by generating the initial graph (23’219
vertices and 325’589 edges), then extract its core
(7’754 vertices and 247’172 edges) and its seed

1http://www.mturk.com

(7’500 vertices and 238’677 edges). It is interest-
ing to notice at this stage that the EAT seed contains
74% of the words belonging to the USF seed. Af-
ter generating the seed-crux which contains 63’363
vertices, 6’825’731 edges, and 342’490 maximal
cliques, we finally obtain 40’998 lists of words.

These lists comprise between 4 and 233 words but
80% of them have a relatively small size between 4
and 20. Although we find exceptions for this graph,
most of the extracted lists again form well-delimited
lexical fields (e.g., (health, resort, spa, bath, salts) or
(god, devil, angel, satan).

Comparing the two association experiments, we
see that the local topologies are quite similar. Both
FA cores have a high density of connected trian-
gles, whereas cycles in the DD graph tend to be
longer and most triangles are isolated. This can be
attributed to the different ways in which DD and FA
are obtained, the former being built rationally by fol-
lowing a humanly-driven process and the latter re-
flecting an implicit collective semantic knowledge.

7 Related Work

A number of metrics like Latent Semantic Analy-
sis (Deerwester et al., 1990) and Word Association
Spaces (Steyvers et al., 2004) have been recently
developed for quantifying the relative meaning of
words. As the topological properties of free associ-
ation graphs reflect key aspects of semantic knowl-
edge, we believe some graph theory metrics could
be used efficiently to derive new ways of measuring
semantic similarity between words.

Topological analysis of the Florida Word Associa-
tions (FA) was started by (Steyvers and Tenenbaum,
2005; Gravino et al., 2012), who extracted global
statistics. We follow the basic methodology of these
studies, but extend their approach. First, we conduct
deeper analyses by examining the neighborhood of
nodes and extracting the statistics of cycles. Second,
we compare the properties of FA and DD graphs.

Word clustering based on graphs has been the sub-
ject of various earlier studies. Close to our work
is (Widdows and Dorow, 2002). These authors rec-
ognize that nearest-neighbor-based clustering of co-
occurrence give rise to semantic groups. This type of
approach has since been applied in various modified
forms, e.g., by (Biemann, 2006) who performs label-
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propagation based on randomized nearest neighbors,
or Matsuo et al. (2006) who perform greedy cluster-
ing. Hierarchical clustering algorithms (e.g., (Jonyer
et al., 2002; Manning et al., 2008)) are related as
well, however, the key difference is that in hierarchi-
cal clustering, the granularity of a cluster is difficult
to determine.

Dorow et al. (2005) recognize that triangles form
semantically strongly cohesive groups and apply
clustering coefficients for word sense disambigua-
tion. Their work focuses on undirected graphs of
corpus co-occurrences whereas our work builds on
directed associations. Building on this work, we
take finer topological graph structures into account,
which is one of the main contributions in this paper.

8 Conclusion

The cognitive process of discrete free association be-
ing an epiphenomenon of our semantic memory at
work, the cumulative set of free associations of the
USF dataset can be viewed as the projection of a col-
lective semantic memory.

To analyze the semantic memory, we use the tools
of graph theory, and compare it also to dictionary
graphs. In both cases, triangles play a crucial role
in the local topology and they form the set of ele-
mentary concepts of the underlying graph. We also
show that cohesive lexical fields (taking the form
of cliques of concepts) constitute essential bricks of
meaning, and span the core homogeneously at the
global level; 89% of all words in the core belong
to at least one triangle, and 77% belong to cliques
of triangles containing 4 words (i.e., pairs of trian-
gles sharing an edge or forming tetrahedras). As the
words of a graph of free associations acquire their
meaning from the set of associations they are in-
volved in (Deese, 1962), we go a step further by
examining the neighborhood of nodes and extracting
the statistics of cycles. We further check through hu-
man evaluation that the clustering is strongly related
to meaning, and furthermore, the meaning becomes
measurably more confused as one walks away from
a cluster.

-¿ -¿I call the pairs of triangles sharing an edge
the 2-clovers ;-)

Comparing dictionaries to free association, we
find the free association graph being more concept

driven, with words in small clusters being on the
same level of abstraction. Moreover, we think that
graphs of free associations could find interesting
applications for Word Sense Disambiguation (e.g.,
(Heylighen, 2001; Agirre and Soroa, 2009)), and
could be used for detecting psychological disorders
(e.g., depression, psychopathy) or whether someone
is lying (Hancock et al., 2013; Kent and Rosanoff,
1910).

Finally, we believe that studying the dynamics of
graphs of free associations may be of particular in-
terest for observing the change in meaning of certain
words (Deese, 1967), or more generally to follow the
cultural evolution arising among a social group.
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