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Abstract

The performance of nearest neighbor methods
is degraded by the presence of hubs, i.e., ob-
jects in the dataset that are similar to many
other objects. In this paper, we show that the
classical method of centering, the transforma-
tion that shifts the origin of the space to the
data centroid, provides an effective way to re-
duce hubs. We show analytically why hubs
emerge and why they are suppressed by cen-
tering, under a simple probabilistic model of
data. To further reduce hubs, we also move
the origin more aggressively towards hubs,
through weighted centering. Our experimental
results show that (weighted) centering is effec-
tive for natural language data; it improves the
performance of the k-nearest neighbor classi-
fiers considerably in word sense disambigua-
tion and document classification tasks.

1 Introduction

1.1 Background

The k-nearest neighbor (kNN) algorithm is a sim-
ple nonparametric method of classification. It has
been applied to various natural language process-
ing (NLP) tasks such as document classification
(Masand et al., 1992; Yang and Liu, 1999), part-
of-speech tagging (Sggaard, 2011), and word sense
disambiguation (Navigli, 2009).

To apply the kNN algorithm, data is typically rep-
resented as a vector object in a feature space, and
(dis)similarity between data is measured by the dis-
tance between the vectors, their inner product, or co-
sine of the angle between them (Jurafsky and Mar-
tin, 2008). With such a (dis)similarity measure, the
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unknown class label of a test object is predicted by
a majority vote of the classes of its k most similar
objects in the labeled training set.

Recent studies (Radovanovi¢ et al.,, 2010a;
Radovanovi¢ et al., 2010b) have shown that if the
feature space is high-dimensional, some objects in
the dataset emerge as hubs; i.e., these objects fre-
quently appear in the k nearest neighbors of other
objects.

The emergence of hubs may deteriorate the per-
formance of kNN classification and nearest neighbor
search in general:

o If hub objects exist in the training set, they have
a strong chance to be a kNN of many test ob-
jects. Because the class of a test object is pre-
dicted by a majority vote from its k nearest
neighbors, prediction is biased toward the la-
bels of the hubs.

e In information retrieval, nearest neighbor
search finds objects in the database that are
most relevant, or similar, to user-provided
queries. If particular objects, such as hubs, are
nearly always returned for any query, the re-
trieved results are probably not very useful.

These drawbacks may hinder application of near-
est neighbor methods in NLP, as typical natural lan-
guage data are extremely high-dimensional (Juraf-
sky and Martin, 2008) and thus prone to produce
hubs.

1.2 Contributions

Centering (Mardia et al., 1979; Fisher and Lenz,
1996; Eriksson et al., 2006) is a standard technique
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for removing observation bias in the data. It is a
transformation of feature space in a way that the ori-
gin of the space is moved to the data centroid (sam-
ple mean). The distance between data objects is not
changed by centering, but their inner product and co-
sine are affected; see Section 3 for detail.

In this paper, we advocate the use of centering as a
means of reducing hubs. Specifically, we propose to
measure the similarity of objects by the inner prod-
uct (not distance or cosine) in the centered feature
space.

Our approach is motivated by the observation that
the objects similar to the data centroid tend to be-
come hubs (Radovanovi¢ et al., 2010a). This ob-
servation suggests that the number of hubs may be
reduced if we can define a similarity measure that
makes all objects in a dataset equally similar to the
centroid (Suzuki et al., 2012). The inner product in
the centered space indeed enjoys this property.

In Section 4, we analyze why hubs emerge under
a simple probabilistic model of data, and also give
an account of why they are suppressed by centering.

Using both synthetic and real datasets, we show
that objects similar to the centroid also emerge as
hubs in multi-cluster data (Section 5), so the applica-
tion of centering is wider than expected. To further
reduce hubs, we also propose to move the origin of
the space more aggressively towards hubs, through
weighted centering (Section 6).

In Section 7, we show that centering and weighted
centering are effective for natural language data.
these methods markedly improve the performance
of kNN classifiers in word sense disambiguation and
document classification tasks.

2 Related work

Centering is a classical technique widely used in
many fields of science. For instance, centering
forms a preprocessing step in principal component
analysis and Fisher linear discriminant analysis.

In NLP, however, centering is seldom used; the
use of cosine and inner product similarities is quite
common, but they are nearly always used uncen-
tered. Non-centered cosine is used, for instance, in
word sense disambiguation (Schiitze, 1998; Navigli,
2009), paraphrasing (Erk and Padé, 2008; Thater
et al., 2010), and compositional semantics (Mitchell
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and Lapata, 2008), to name a few.

There have been several approaches to improv-
ing kNN classification: learning similarity/distance
measures from training data (metric learning)
(Weinberger and Saul, 2009; Qamar et al., 2008),
weighting nearest neighbors for similarity-based
classification (Chen et al., 2009), and neighbor-
hood size selection (Wang et al., 2006; Guo and
Chakraborty, 2010). However, none of these have
addressed the reduction of hubs.

More recently, Schnitzer et al. (2012) proposed
the Mutual Proximity transformation that rescales
distance measures to decrease hubs in a dataset.
Suzuki et al. (2012) showed that kernels based on
graph Laplacian, such as the commute-time kernels
(Saerens et al., 2004) and the regularized Laplacian
(Chebotarev and Shamis, 1997; Smola and Kondor,
2003), make all objects equally similar to the data
centroid, which in turn reduce hubs.

In Section 7, we evaluate centering, Mutual Prox-
imity, and Laplacian kernels in NLP tasks, and
demonstrate that centering is equally or even more
effective. Section 4 presents a theoretical justifica-
tion for using centering to reduce hubs, but this kind
of analysis is missing for the Laplacian kernels.

Centering is easier to compute as well. For a
dataset of n objects, it takes O(n?) time to com-
pute, whereas computing a Laplacian-based kernel
requires O(n®) time for matrix inversion. Mutual
Proximity also has a time complexity of O(n?).

3 Centering

Consider a dataset of n objects in an m-dimensional
feature space, xi,---,x, € R™. Throughout this
paper, we use the inner product (x;, x ;) as a measure
of similarity between x; and x ;. Let K be the Gram
matrix of the n feature vectors, i.e., the n X n matrix
whose (i, j) element holds (x;, x ;). Using m X n data
matrix X = [x1,- -, X,], we can write K as

K = XX,

where XT represents the matrix transpose of X.
Centering is a transformation in which the origin
of the feature space is shifted to the data centroid

1 n
n <
i=1

D



and object x is mapped to the centered feature vector

%M = x — . 2)
The similarity between two objects x and x’ is now
measured by (x®", ¥’y = (x — ¥, x’ — X).

After centering, the inner product between any
object and the data centroid (which is a zero vector
because ¥°®™ = ¥ — ¥ = 0) is uniformly 0; in other
words, all objects in the dataset have an equal simi-
larity to the centroid. According to the observation
that the objects similar to the centroid become hubs
(Radovanovi¢ et al., 2010a), we can expect hubs to

be reduced after centering.

Intuitively, centering reduces hubs because it
makes the length of the feature vector x°®" short
for (hub) objects x that lie close to the data centroid
X; see Eq. (2). And since we measure object simi-
larity by inner product, shorter vectors tend to pro-
duce smaller similarity scores. Hence objects close
to the data centroid become less similar to other ob-
jects after centering, and no longer be hubs. In Sec-
tion 4, we analyze the effect of centering on hubness
in more detail.

3.1 Centered Gram matrix

Let I be an n X n identity matrix and 1 be an n-
dimensional all-ones vector. The symmetric matrix
H=1I-(1/n)117 is called centering matrix, because
the centered data matrix X% = [xSem, ... xCen]
can be computed by X" = XH (Mardia et al.,
1979).

The Gram matrix K™ of the centered feature
vectors, whose (7, j) element holds the inner prod-
uct (x®eM, x?e”t), can be calculated from the original

Gram matrix K by
T
Keent — (Xcent) (Xcent) — HX'XH = HKH. (3)

Eq. (3) implies that the original data matrix X is
not needed to compute the centered Gram matrix
K°" provided that K is given. It is hence possi-
ble to use the so-called kernel trick; i.e., centering
can be applied even if data matrix X is not available
but the similarity of objects can be measured by a
kernel function in an implicit feature space.
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4 Theoretical analysis of the effect of
centering on hubness

We now analyze why objects most similar to the
centroid tend to be hubs in the dataset, and give an
explanation as to why centering may suppress the
emergence of hubs.

4.1 Before centering

Consider a dataset of m-dimensional feature vectors,
with each vector x € R" generated independently
from a distribution with a finite mean vector . In
other words, objects x in this dataset are drawn from
a distribution P(x), i.e.,

x ~ P(x),

and

4= Blx] = f x dP(x) 4

where E[-] denotes the expectation of a random vari-
able.

We will use the following elementary lemma on
the distributions of inner product subsequently.

Lemma 1. Let a € R™ be a fixed vector, and x € R™
be an object sampled according to distribution P(x).
Then the inner product {a, x) follows a distribution
with mean {a, ).

Proof. From the linearity of the inner product and
Eq. (4), we obtain

E[{a,x)] = f{a,x} dP(x)
={a, fde(x)) =<{a, p). O

Now, imagine that we have an object x sam-
pled from P(x), and we want to compute its nearest
neighbor in a dataset. Let & and £ be two fixed ob-
jects in the dataset, such that the inner product to the
true mean g is higher for & than for ¢, i.e.,

<h’ﬂ> - <[9ﬂ> > 0. (5)

We are interested in which of & and £ is more similar
to x (in terms of inner product), or in other words,
the difference of two inner products

z=(h,x)—(t,x) =(h—{,x). (6)



Because x is a random variable, so is z. Let Q(z) be
the distribution of z;i.e., z ~ Q(2).
Using Lemma 1 with @ = h — £, together with
Eq. (5), we have
Elz] =<h =&, p) = (h,p) = 6,1y > 0. (7)
Note that the above statement is only concerned
about the mean, so it does not in general assure that
(h,x) > (£, x) (®)
holds with high probability; there is a chance that
a small number of outliers are inflating the mean.
To assure that inequality (8) holds with probability
greater than 1/2 for instance, the median rather than
the mean of the distribution Q(z) must be greater
than 0.

If the distribution Q(z) is symmetric, the median
occurs at the same point as the mean, and the above
claim holds. Indeed, if the components of x are gen-
erated independently from (possibly non-identical)
normal distributions, we can show that Q(z) also
obeys a normal distribution. Because it is a symmet-
ric distribution, we can safely say that in this case,
Eq. (8) holds with probability greater than 1/2.

For a general non-symmetric distribution with a
finite variance, the median is known to be within the
standard deviation of the mean (Mallows, 1991), so
we could still say that Eq. (8) is likely to hold if (h —
¢, py is sufficiently large compared to the standard
deviation.

Now, if we let k be the object in a given dataset
with the highest similarity (inner product) to the
mean y, and let £ be any other object in the set, then
we see from the above discussion that & is likely to
have higher similarity to x, a test sample drawn from
distribution P(x). Because this holds for any ¢ in
the dataset, the conclusion is that the objects in the
dataset most similar to y are likely to become hubs.

4.2 After centering

Next let us investigate what happens if the dataset
is centered. Let X be the sample (empirical) mean
given by Eq. (1). After centering, the similarity of x
with each of the two fixed objects & and £ are evalu-
ated by (h — X, x —x) and ({ — X, x — X), respectively.
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Their difference z°°™ is given by

M= (h-xx-X) - -Xx—-X)
=(h—-{,x-X)
=(h—0,x)—(h—0,%)
=z—<(h—-1{,X).

The last equality follows from Eq. (6). By definition
we have z ~ Q(z), and since (h — £, X) is a constant,

M= (h-C,%) ~ Q@z+(h-1{%)).

In other words, the shape of the distribution does not
change, but the mean is shifted to

E[z°*™] = E[z] — (h - £, %)
=h—-Ctuy—<(h-€,X%)
= <h - f,ﬂ - -i:)’

where E[z] is given by Eq. (7). If the sample mean
X is close enough to the true mean y, i.e., ¥ = u, we
have an approximation

E[z**"] = (h — &,u — %) ~ 0. 9)

Thus, if the median and the mean of distribution
Q(z) are again not far apart, Eq. (9) suggests that
h — X and £ — X are about equally likely to be more
similar to x — X; i.e., neither has a greater chance to
become a hub.

5 Hubs in multi-cluster data

In this section, we discuss emergence of hubs when
the data consists of multiple clusters. In fact, the
analysis of Section 4 is distribution-free, and thus
also applies to the case of multi-modal P(x). How-
ever, one might still argue that objects similar to the
data centroid should hardly occur in that case. Us-
ing both synthetic and real datasets, we demonstrate
below that even in multi-cluster data, objects that
are only slightly more similar to the data mean (cen-
troid) may emerge as hubs.

5.1 Synthetic data

5.1.1 Data generation

We generated a high-dimensional multi-cluster
dataset by modeling it as a mixture of ten von Mises-
Fisher distributions (Mardia and Jupp, 2000) in
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Figure 1: 300-dimensional synthetic data. (a), (d): scatter plot of the Ny value of objects and their similarity to
centroid. (b), (e): kNN matrices. The points are colored according to the Nj( value of object x; warmer colors indicate
higher Ny values. (c), (f): the number of times (y-axis) an object (whose ID is on the x-axis) appears in the 10 nearest
neighbors of objects of the same cluster (black bars), and those of different clusters (magenta).

R3%. The von Mises-Fisher distribution is a distri-
bution of unit vectors (it can roughly be thought of
as a normal distribution on a unit hypersphere), so
for objects (feature vectors) sampled from this dis-
tribution, inner product reduces to cosine similarity.

We sampled! 100 objects from each of the ten dis-
tributions (clusters), and made a dataset of 1,000 ob-
jects in total.

The von Mises-Fisher distribution has two param-
eters, the mean direction vector u, and the concen-
tration parameter « characterizing how strongly the
population is concentrated around the direction pu.
We set k = 500 for all ten distributions, but the mean
directions u were made distinct; all mean direction

'We used the random sampling code available at http:
//people.kyb.tuebingen.mpg.de/suvrit/work/progs/movmf.html
(Banerjee et al., 2005).
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vectors had 30 components set to 0.5 while the re-
maining 270 components were set to 1, but the 30
components with value 0.5 were chosen to be dis-
tinct among the ten clusters. This configuration as-
sures that all ten mean directions have the same an-
gle from the all-ones vector [1,..., 117, which is the
direction of the mean of the entire data distribution.

Note that even though all sampled objects reside
on the surface of the unit hypersphere, the data cen-
troid lies not on the surface but inside the hyper-
sphere. And after centering, the length of the fea-
ture vectors may vary from one another, but we do
not normalize these vectors; i.e., object similarity is
measured by raw inner product, not by cosine.



5.1.2 Correlation between hubness and
centroid similarity

The scatter plot in Figure 1(a) shows the correla-
tion between the degree of hubness (N1p) of an ob-
ject and its inner product similarity to the data cen-
troid. The Ny value of an object is defined as the
number of times the object appears in the 10 nearest
neighbors of other objects in the dataset. It was used
in (Radovanovi¢ et al., 2010a) to measure the degree
of hubness of individual objects.

The plot clearly shows that the hub objects (i.e.,
those with high Njg) consist of objects that are simi-
lar to the centroid. Figure 1(d) shows the scatter plot
after the data is centered, created in the same way
as Figure 1(a). The similarity to the centroid is uni-
formly O as a result of centering, and no objects have
an Njg value greater than 33.

5.1.3 Influence of hubs on objects in different
clusters

The kKNN matrix of Figure 1(b) depicts the kNN
relations with £ = 10 among objects before center-
ing. In this matrix, both the x- and y- axes represent
the ID of the objects. If object x is in the 10 nearest
neighbors of object y, a point is plotted at coordi-
nates (x,y). As a result, there are exactly k = 10
points in each row. The color of points indicates the
degree of hubness of object x; warmer color repre-
sents higher Njg value of the object.

In this matrix, object IDs are sorted by the clus-
ter the objects belong to. Hence in the ideal case in
which the k nearest neighbors of every object consist
genuinely of objects from the same cluster, only the
diagonal blocks would be colored, and off-diagonal
areas would be left blank.

As Figure 1(b) shows, the actual situation is far
from ideal, even though ten diagonal blocks are still
identifiable. The presence of many warm colored
vertical lines suggests that many hub objects appear
in the 10 nearest neighbors of other objects that are
not in the same cluster as the hubs. Thus these hubs
may have a strong influence on the kNN prediction
of other objects.

Figure 1(e) shows the kNN matrix after centering.
The warm colored lines have disappeared, and the
diagonal blocks are now more visible.

The bar graphs of Figures 1(c) and (f) plot the N1g
value of each object (whose ID is on the x-axis). Re-
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call that Nyg is the number of times an object appears
in the 10 nearest neighbors of other objects. The
bar for each object is broken down by whether the
object and its neighbors belong to the same cluster
(black bar) or in different clusters (magenta bar). In
terms of kNN classification, having a large number
of nearest neighbors with the same class improves
the classification performance, so longer black bars
and shorter magenta bars are more desirable.

Before centering (Figure 1(c)), hub objects with
large Ny values are similar not only to objects be-
longing to the same cluster (as indicated by black
bars), but also to objects belonging to different clus-
ters (magenta bars). After centering (Figure 1(f)),
the number of tall magenta bars decreases.

Before centering, 22.7% of the 10 nearest neigh-
bors of an object have the same class label as the
object (as indicated by the ratio of the total height of
black bars relative to that of all bars in Figure 1(c)).
After centering, the percentage increases to 31.6%.

5.2 Real dataset

We did the same analysis as Sections 5.1.2-5.1.3
to a real dataset with multiple-cluster structure: the
Reuters Transcribed dataset. This multi-class docu-
ment classification dataset has ten classes, and each
class roughly forms a cluster. We will also use this
dataset in an experiment in Section 7.2.

The results are shown in Figure 2. We can ob-
serve the same trends as we saw in Figure 1 for the
synthetic data: positive correlation between hubness
(N1p) and inner product with the data centroid be-
fore centering; hubs appearing in the nearest neigh-
bors of many objects of different classes; and both
are reduced after centering.

The ratio of the height of black bars to that of
all bars in Figure 2(c) is 38.4% before centering,
whereas it improves to 41.0% after centering (Fig-

ure 2(f)).

6 Hubness weighted centering

Centering shifts the origin of the space to the data
centroid, and objects similar to the centroid tend to
become hubs. Thus in a sense, centering can be
interpreted as an operation that shifts the origin to-
wards hubs.

In this section, we extrapolate this interpretation,
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Figure 2: Reuters Transcribed data.

and move the origin more actively towards hub ob-
jects in the dataset, rather than towards the data cen-
troid. To this end, we consider weighted centering,
a variation of centering in which each object is asso-
ciated with a weight, and the origin is shifted to the
weighted mean of the data. Specifically, we define
the weight of an object as the sum of the similarities
(inner products) between the object and all objects,
regarding this sum as the index of how likely the ob-
ject can be a hub.

6.1 Weighted centering

In weighted centering, we associate weight w; to
each object i in the dataset, and move the origin to
the weighted centroid

n
gWeighted _ Z Wik
i=1
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where 37 w; =1land0 <w; < 1fori=1,...,n.
Thus, object x is mapped to a new feature vector

n
xWeighted _ . yweighted _ . Z WiXi.

i=1

Notice that the original centering formula (2) is re-
covered by letting w; = 1/nforalli=1,...,n.

Weighted centering can also be kernelized by us-
ing the weighted centering matrix H(w) = I — 1w?
in place of H in Eq. (3). The resulting Gram matrix
is

KWeighted — gy )KH(w)". (10)

6.2 Similarity-dependent weighting

To move the origin towards hubs more aggressively,
we place more weights on objects that are more
likely to become hubs. This likelihood is estimated
by the similarity of individual objects to all objects
in the data set.



Let d; be the sum of the similarity between object
x; and all objects in the dataset. So,

n n
1
d; = E <xi,xj>:n<xi,; E X;).
=1 =1

As seen from the last equation, d; is proportional to
the similarity (inner product) between object x; and
the data centroid.

Now we define {w;}! | from {d;}}_, by

Y
di
w; =

T yn Y
J=1 dj

where 7y is a parameter controlling how much we
emphasize the effect of d;. Setting y = 0 results in
w; = 1 for every 7, and hence is equivalent to normal
centering. When y > 0, weighted centering moves
the origin closer to the objects with a large d; than
normal centering would.

7 Experiments

We evaluated the effect of centering in two natural
language tasks: word sense disambiguation (WSD)
and document classification. We are interested in
whether hubs are actually reduced after centering,
and whether the performance of kNN classification
is improved.

Throughout this section, K denotes cosine simi-
larity matrix; i.e., inner product of feature vectors
normalized to unit length; K" denotes the cen-
tered similarity matrix computed by Eq. (3) from K;
KWeighted denotes its hubness weighted variant given
by Eq. (10). Depending on context, these symbols
are also used to denote kNN classifiers using respec-
tive similarity measures.

For comparison, we also tested two recently pro-
posed approaches to hub reduction: transformation
of the base similarity measure (in our case, K) by
Mutual Proximity (Schnitzer et al., 2012)2, and the
one (Suzuki et al., 2012) based on graph Laplacian
kernels. Since the Laplacian kernels are defined for
graph nodes, we computed them by taking the co-
sine similarity matrix K as the weighted adjacency
(affinity) matrix of a graph. For Laplacian kernels,

2We used the Matlab script downloaded from http://www.
ofai.at/~dominik.schnitzer/mp/.
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we computed both the regularized Laplacian ker-
nel (Chebotarev and Shamis, 1997; Smola and Kon-
dor, 2003) with several parameter values, as well as
the commute-time kernel (Saerens et al., 2004), but
present only the best results among these kernels.

7.1 Word sense disambiguation

7.1.1 Task and dataset

In the WSD experiment, we used the dataset for
the Senseval-3 English Lexical Sample (ELS) task
(Mihalcea et al., 2004). It is a collection of sen-
tences containing 57 polysemous words, and each
of these sentences is annotated with a gold standard
sense of the target word. The goal of the ELS task
is to build a classifier for each target word, which,
given a context around the word, predicts a sense
from the known set of senses.

We used a basic bag-of-words representation for
the context surrounding a target word (Mihalcea,
2004; Navigli, 2009). A context is thus represented
as a high-dimensional feature vector holding the tf-
idf weighted frequency of words> in context.

7.1.2 Compared methods

We applied kNN classification using cosine sim-
ilarity K, and its four transformed similarity mea-
sures: centered similarity K", its weighted vari-
ant K"¢i9"ed Mutual Proximity and graph Laplacian
kernels. The sense of a test object was predicted by
voting from the k training objects most similar to the
test object, as measured by the respective similarity
measures.

We used leave-one-out cross validation within the
training data to tune neighborhood size k for the
kNN classification and the voting scheme, i.e., ei-
ther (unweighted) majority vote, or weighted vote in
which votes from individual objects are weighted by
their similarity score to the test objects. We also se-
lected parameter y in K"®9"ed and the best graph
Laplacian kernel among the regularized Laplacian
and commute time kernels using the training data.

7.1.3 Evaluation

We computed two indices for each similarity mea-
sure: (i) skewness of the N distribution to evaluate

3We removed stop words listed in the on-line appendix of
(Lewis et al., 2004).



Method F1 score | Skewness Dataset ‘ #classes #objects #features
K 60.3 4.55 Reuters Transcribed 10 201 2730
Keen 64.0 1.19 Mini Newsgroups 20 2000 8811
Kweighted 64.8 1.02

Mutual Proximity 63.0 1.00 Table 2: Document classification datasets: Number of
Graph Laplacian 61.2 4.51 classes, data size, and number of features.

GAMBL (Decadt et al., 2004) 64.5 —

Table 1: WSD results: Macro-averaged F1 score (points)
of the compared methods (larger is better) and empirical
skewness of the Ny distribution for each similarity mea-
sure (smaller is better).

the emergence of hubs, and (ii) macro-averaged F1
score to evaluate the classification performance.

Skewness To evaluate the degree of hub emer-
gence for each similarity measure, we followed
(Radovanovi¢ et al., 2010a) and counted N(x), the
number of times object x occurs in the kNN lists
of other objects in the dataset (we fix k = 10 be-
low). The emergence of hubs in a dataset can then
be quantified with skewness, defined as follows:

E[(Nk _/JNk)3]
SNk = —3

TN,

In this equation, E[ - ] denotes expectation, and
and o, are the mean and the standard deviation of
the N; distribution, respectively.

When hubs exist in a dataset, the distribution of
Ny is expected to skew to the right, and yields a large
Sn, (Radovanovi¢ et al., 2010a). In other words,
similarity measures that yield smaller S 5, are more
desirable in terms of hub reduction.

Skewness can only be computed for each dataset,
and in the WSD task, each target word has its own
dataset. Hence we computed the skewness S y,, for
each word and then took average.

Macro-averaged F1 score Classification perfor-
mance was measured by the F1 score macro-
averaged over all the 57 target words in the Senseval-
3 ELS dataset. The standard Senseval-3 ELS scor-
ing method is based on micro average, but we used
macro average to make the evaluation consistent
with skewness computation, which, as mentioned
above, can only be computed for each dataset (i.e.,
word).
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7.1.4 Result

Table 1 shows the F1 scores and the skewness of
the Njg distributions, macro averaged over the 57
target words. The table also includes the macro-
averaged F1 score* of the GAMBL system, the best
memory-based system participated in the Senseval-
3 ELS task. Note however that GAMBL uses more
elaborate features (e.g., part-of-speech of words)
than just a plain bag-of-words used by other methods
in this comparison. GAMBL also employs complex
post-processing of the kNN outputs.

After centering (K°™" and K"¢'9"€d) skewness
became markedly smaller than that of the non-
centered cosine K. F1 score also improved with the
decrease in skewness. In particular, weighted cen-
tering (K"®'9"ed) glightly outperformed GAMBL,
though the difference was small. Recall however
that K°" and K¥el9hed only use naive bag-of-words
features, unlike GAMBL.

7.2 Document classification
7.2.1 Task and dataset

Two multiclass document classification datasets
were used: Reuters Transcribed and Mini News-
groups, distributed at http://archive.ics.uci.edu/ml/.
The properties of the datasets are summarized in Ta-
ble 2.

7.2.2 Evaluation

The performance was evaluated by the F1 score
(equivalent to accuracy in this task) of prediction us-
ing leave-one-out cross validation, due to the limited
number of documents.

7.2.3 Compared methods

We used the cosine similarity as the base sim-
ilarity matrix (K). The centered similarity matrix
(K°™) and its weighted variant (K"¢'9"¢d) Mutual

4The macro-averaged F1 of GAMBL was calculated from
the per-word F1 scores listed in Table 1 of (Decadt et al., 2004).



Method F1 score | Skewness
K 56.7 1.61
Koent 61.2 0.11
KWeighted 60.2 0.04
Mutual Proximity 60.2 -0.10
Graph Laplacian 57.2 0.37
(a) Reuters Transcribed
Method | Fl score | Skewness
K 76.5 4.37
Koent 79.0 1.56
Keighted 79.4 1.68
Mutual Proximity 79.0 0.49
Graph Laplacian 77.6 2.13

(b) Mini Newsgroups

Table 3: Document classification results: F1 score (%)
(larger is better) and skewness of the N distribution for
each similarity measure (smaller is better).

Proximity, and graph Laplacian based kernels were
computed from K.

kNN classification was done in a standard way:
The class of object x is predicted by the majority
vote from k = 10 objects most similar to x, mea-
sured by a specified similarity measure. The param-
eter k for the kNN classification, the voting scheme
(i.e., either unweighted or weighted majority vote),
y in KWei9Med " and the best graph Laplacian kernel
were selected by leave-one-out cross validation.

7.2.4 Result

Table 3 shows the F1 score and the skewness of
the Njo distribution of the respective methods in
document classification. Centered cosine (K®")
outperformed uncentered cosine similarity K, and
achieved an F1 score comparable to Mutual Proxim-
ity. Weighted centering (K"¢19"€d) fyrther improved
F1 on the Mini Newsgroups data.

8 Conclusion

We have shown that centering similarity matrices re-
duces the emergence of hubs in the data, and conse-
quently improves the accuracy of nearest neighbor
classification. We have theoretically analyzed why
objects most similar to the mean tend to make hubs,
and also proved that centering cancels the bias in the
distribution of inner products, and thus is expected
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to reduce hubs.

In WSD and document classification tasks, kNN
classifiers showed much better performance with
centered similarity measures than non-centered
ones. Weighted centering shifts the origin towards
hubs more aggressively, and further improved the
classification performance in some cases.

In future work, we plan to exploit the class distri-
bution in the dataset to make more effective similar-
ity measures; notice that the hubness weighted cen-
tering of Section 6 is an unsupervised method, in the
sense that class information was not used for deter-
mining weights. We will investigate if more effec-
tive weighting can be done using this information.
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