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Abstract

This paper proposes a multi-objective opti-
mization framework which supports heteroge-
neous information sources to improve align-
ment in machine translation system combi-
nation techniques. In this area, most of
techniques usually utilize confusion networks
(CN) as their central data structure to com-
pact an exponential number of an potential hy-
potheses, and because better hypothesis align-
ment may benefit constructing better quality
confusion networks, it is natural to add more
useful information to improve alignment re-
sults. However, these information may be het-
erogeneous, so the widely-used Viterbi algo-
rithm for searching the best alignment may
not apply here. In the multi-objective opti-
mization framework, each information source
is viewed as an independent objective, and
a new goal of improving all objectives can
be searched by mature algorithms. The so-
lutions from this framework, termed Pareto
optimal solutions, are then combined to con-
struct confusion networks. Experiments on
two Chinese-to-English translation datasets
show significant improvements, 0.97 and 1.06
BLEU points over a strong Indirected Hidden
Markov Model-based (IHMM) system, and
4.75 and 3.53 points over the best single ma-
chine translation systems.

1 Introduction

System combination (SC) techniques have the
power of boosting translation quality in BLEU by
several percent over the best among all input ma-
chine translation systems (Bangalore et al., 2001;

Matusov et al., 2006; Sim et al., 2007; Rosti et al.,
2007b; Rosti et al., 2007a; Huang and Papineni,
2007; He et al., 2008; Rosti et al., 2008; He and
Toutanova, 2009; Li et al., 2009; Feng et al., 2009;
Pauls et al., 2009). A central data structure in the
SC is the confusion network, and its quality greatly
affects the final performance. He et al. (2008) pro-
posed a new hypothesis alignment algorithm for
constructing high-quality confusion networks called
Indirect Hidden Markov Model (IHMM), which
does better in synonym matching compared with
the classic translation edit rate (TER) based algo-
rithm (Rosti et al., 2007b; Rosti et al., 2008; Sim et
al., 2007). Now, current state-of-the-art SC systems
have been using IHMM or variants in their align-
ment algorithms more or less (Li et al., 2009; Feng
et al., 2009).

Our motivation derives from an observation that
in an ideal alignment of a pair of sentences, many-to-
many alignments often exist. For instance, “be about
to” has the same meaning with “be on the point
of”. Because Hidden Markov Model based align-
ment algorithms, e.g. IHMM for system combina-
tion, HMM in GIZA++ software for statistical ma-
chine translation (SMT) (Och and Ney, 2000; Koehn
et al., 2003), are designed for one-to-many align-
ment, and running GIZA++ from two directions to
gain better performance turns into a standard opera-
tion in SMT, therefore we are seeking a way to em-
power IHMM by introducing bi-directional informa-
tion.

However, it appears to be intractable in an IHMM
model to search the optimal solution by simply
defining a new goal as a product of probabilities
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from two directions. To bypass this problem, Liang
et al. (2006) adopts a simple and effective variational
inference algorithm.

Further, different alignment algorithms capture
different information and linguistic phenomena for
a pair of sentences, hence more information would
be expected to benefit the final alignment. Liang’s
method may not be suitable for this expected out-
come.

We propose to adopt multi-objective optimiza-
tion framework to support heterogeneous informa-
tion sources which may induce difficulties in a
conventional search algorithm. In this framework,
there exist a variety of matured multi-objective op-
timization algorithms, e.g. evolutionary algorithm
(Deb et al., 2000; Deb et al., 2002), Tabu search
(Hansen, 1997), ants colony (Engelbrecht, 2005),
and simulated annealing (Serafini, 1994). In this
work, we select the multi-objective evolutionary al-
gorithm because of its public open source software
(http://www.iitk.ac.in/kangal/codes.shtml). On the
other hand, this framework is also totally unsuper-
vised. It prevents weights of a linearly combined
goal from training even if all information is homoge-
neous and applicable in a Viterbi search (Forney Jr,
1973). This framework views any useful informa-
tion benefiting alignment as an independent objec-
tive, and researchers just need to write short codes
for objective definitions. The search algorithm seeks
for potentially better solutions which are no worse
than the current solution set. The output from multi-
objective optimization algorithms includes a set of
solutions, called Pareto optimal solutions, each one
being a many-to-many alignment. We then com-
bine and normalize them into a unique one-to-one
alignment to perform confusion network construc-
tion (Section 3.3).

Our work is conducted on the classic pipeline
which has three modules, pair-wise hypothesis
alignment, confusion network construction, and
training. Now many work integrates neighboring
modules to avoid propagated errors to gain improved
performance. For example, Rosti et al. (2008), and
Li et al. (2009) combine the first and the second
module, and He and Toutanova (2009) combine all
modules into one directly. Nevertheless, the classic
structure also owns its merits. Because of the in-
dependence between modules, a system is relatively

simple to maintain, and improvements on each mod-
ule might contribute to final performance additively.
Based on our work, lattice-based minimum error
rate training (lattice-MERT) and minimum bayes
risk training techniques (Kumar et al., 2009) could
be adopted on the third module. And Feng et al.
(2009) in the second module adopts a different data
structure called lattice which could directly use our
better many-to-many alignment for construction.

Experiments on the Chinese-to-English task on
two datasets use four objectives, IHMM probabil-
ity (Section 3.2.1), and alignment probability from
GIZA++ (Section 3.2.2) from two directions. Re-
sults show multi-objective optimization framework
efficiently integrates different information to gain
approximately 1 BLEU point improvement over a
strong baseline.

2 Background

We briefly give an introduction to confusion net-
works, and because the IHMM based alignment is
an important objective in our multi-objective frame-
work, here we also provide detailed definition of for-
mulas for completeness of content.

2.1 Confusion Network
Table 1 shows hypotheses h1 and h2 are aligned to
selected backbone h0. When alignment algorithm
obtains good enough results, the expected output
“he prefers apples” is included in its corresponding
confusion network in Figure 1. This suggests de-
veloping better alignment algorithm may help creat-
ing high-quality confusion networks. This also mo-
tivates us to use the BLEU of oracle hypotheses to
approximately measure the quality of a set of CNs.
We hereafter call it an oracle BLEU of a CN. See
more in Section 5.1.

h0 :he feels like apples
h1 :he prefer ε apples
h2 :him prefers to apples

Table 1: A toy example of hypothesis alignment, where
h0 is the backbone hypothesis. h1and h2 are aligned to
the backbone separately. The resulting confusion net-
work is in Figure 1.

A confusion network G = (V,E) is a directed
acyclic graph with a unique source and sink vertex,
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Figure 1: A classic confusion network, and the bold path
the expected output.

formally a weighted finite state automation (FSA),
where V is the set of nodes andE is the set of edges.
Each edge is restricted to attach to a single word as
well as an associated probability. A special mark ε
is a place-holder denoting no word here.

2.2 IHMM-based Alignment

Indirected Hidden Markov Model (IHMM) was
firstly proposed by He et. al (2008). Compared with
TER-based alignment performing literal matching,
IHMM supports synonym comparison in redefining
emission probabilities in an IHMM model.

Let f I = (f1, . . . fI) be a backbone hypothesis,
and eJ = (e1, . . . eJ) be a hypothesis aligned to the
backbone, both being English sentences in our ex-
periments. Let aJ = {a1, . . . aj} be an alignment.
Suppose the aj th word in f I is aligned to jth word
in eJ , and the conditional probability that the hy-
pothesis is generated by the backbone, shown in the
upper graph of Figure 3, is given by

p(f I , eJ) =
∑
aJ

J∏
j=1

{pt(aj |aj−1, I)p
o(ej |faj )}

(1)
The distortion probability pt(aj |aj−1, I) from po-

sition aj−1 to aj , relies on jumped distance, which
is computed as follows:

pt(i
′ |i, I) =

c(i
′ − i)∑I

t=1 c(t− i)
(2)

The distortion parameters c(d) are grouped into
11 buckets, c(≤ −4),c(−3),c(−2). . .c(5),c(≥ 6).
Because all the hypotheses in system combina-
tion are in the same language, the IHMM model
would support more monotonic alignments, and
non-monotonic alignments will be penalized.

c(d) = (1 + |d− 1|)−K , d = −4 . . . 6 (3)

where K is tuned on held-out data.
Let p0 be the probability of jumping to a null

word state, which is also tuned on held-out data, and
the accurate transition probability becomes:

pt(i
′ |i, I) =

{
p0 if i

′
= null

(1− p0)p
t(i
′ |i, I) otherwise

(4)
The output probability po(e|f) from the state

word f to the observation word e, also called trans-
lation probability, is a linear interpolation of se-
mantic similarity psem(e|f) and surface similarity
psur(e|f), and α is the interpolation factor:

po(e|f) = αpsem(e|f) + (1− α)psur(e|f) (5)

When calculating semantic similarity psem(e|f),
source sentence src is needed, and a bilingual prob-
abilistic dictionary pdic(w1|w2) is necessary.

psem(e|f) ≈
∑
c∈src

pdic(c|f) · pdic(e|c) (6)

Note that psem(e|f) has been updated with differ-
ent source sentences.

The surface similarity psur(e|f) is measured by
the literal matching rate:

psur(e, f) = exp{ρ[ LMP(f, e)

max(|f |, |e|)
− 1]} (7)

where LMP(f, e) is the length of the longest
matched prefix, and ρ is a smoothing parameter.

3 Multi-objective Optimization

Many decision making problems in the real world
consider more than one objective. One natural way
is to scalarize multiple objectives into one by assign-
ing it with a weight vector. This method allows a
simple optimization algorithm in many cases, while
in system combination, it would cause problems.

In the first module, in order to train suitable
weights of objectives, extra labeled data is needed,
besides that, the efficient Viterbi algorithm for
searching the optimal alignment would not work for
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the alignment objectives in this work. More, the pa-
rameter training in the third module relies on the
CNs constructed from the output of the first mod-
ule, which increases the instability of the whole sys-
tem. Therefore, an unsupervised multi-objective al-
gorithm may be a good choice allowing for more
alignment information.

There exist other alternative optimization algo-
rithms in the multi-objective optimization frame-
work, though the evolutionary algorithm is adopted
here, we only introduce some general concepts.

3.1 Pareto Optimal Solutions

A general multi-objective optimization problem
consists of a number of objectives and is associated
with a number of constraints. Mathematically, the
problem can be written as follows (Deb, 2001)

Maximize fi(x) i = 1 . . .M

s.t. gj(x) ≤ 0 j = 1 . . . N

hk(x) = 0 k = 1 . . .K

where x denotes a potential solution, its structure re-
lying on different problems, and the number of con-
straints M,N,K depend on different problems. All
the functions fi, gj , hk map a solution x into a scalar.
We will explain them in terms of system combina-
tion.

In this work, we refer to x = {xi,j |xi,j ∈ {0, 1}}
as a potential alignment of a pair of hypotheses,
where xi,j is a boolean value to denote whether the
ith word in the first hypothesis is aligned to the jth
word in the second hypothesis. Here the definition of
x seems different from that of a in Formula 1, and
they could convert to each other. Using a line-based
access style, a matrix can be unfolded as a vector.
We refer to f as IHMM alignment probability (He et
al., 2008) and GIZA++ alignment probability (Chen
et al., 2009), total four objectives from two direc-
tions, and the larger the objectives, the better. The
gjs and hks serve as the role of checking if x repre-
sents a legal alignment. For instance, the subscripts
of xi,j are not in bounds.

Definition 1. Let x, x′ be two potential align-
ments. If fi(x) ≥ fi(x

′) holds for all i, we call
the alignment x dominates the alignment x′. If there
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Figure 2: Sample solutions with only two objectives.
Pareto Optimal Solutions p1, p3, p5, p7. Other points
p2, p4, p6 are dominated by at least one point in the Pareto
optimal solutions.

does not exist any alignment x′′ to dominate x, we
call the alignment x to be non-dominated.

Definition 2. A alignment x is said to be Pareto
optimal if there is no other alignment x′ found to
dominate x.

In Figure 2, p1 dominates p2, and p2 dominates
p4. To summarize, a point is dominated by the ones
on its upper and right side with ties. In this example,
p1, p3, p5, p7 are Pareto optimal.

In some cases, Pareto optimal solutions can be
used for good candidate solutions. Considering
the IHMM model, maximizing Y axis, the top-4
best alignments are p1, p2, p3, p4. But from the
view of Pareto optimal, the top-4 alignments would
be p1, p3, p5, p7 without order, which considers a
greater range than a single optimization model. In
our method, we just combine these Pareto optimal
solutions equally into a unique alignment (Section
3.3).

Our adopted multi-objective optimization search-
ing algorithm is the non-dominated sorting ge-
netic algorithm II (NSGA-II) (Deb et al., 2000;
Deb et al., 2002) with an open source software
(http://www.iitk.ac.in/kangal/codes.shtml). NSGA-
II has a complexity of O(mn2), wherem is the num-
ber of objectives and n is the population size in an
evolutionary algorithm.

3.2 Objectives in Evolutionary Algorithm

The optimization objectives in our experiments can
be categorized as an IHMM alignment probability
(He et al., 2008) and GIZA++ alignment probability
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Figure 3: The same alignment (f1, e1)(f1, e2)(f2, e3) in
two IHMM models. The upper one is a typical example
in IHMM, and in the bottom one, because any word in the
observation is required not to correspond to two statuses,
it has a minor trouble. S: status sequence, O: observation
sequence.

(Chen et al., 2009), total four from two directions.

3.2.1 IHMM Probability
A typical IHMM alignment is demonstrated

in the upper graph of Figure 3, where a
backbone is acting the role of a status se-
quence. The unnormalized conditional align-
ment probability is [pt(1|null)] · [pt(1|1)pt(2|1)] ·
[po(e1|f1)p

o(e2|f1)p
o(e3|f2)]. However, the same

alignment (f1, e1)(f1, e2)(f2, e3), if we change the
alignment direction, the backbone being observa-
tions, would be a bit different. We offer a minor
modification to Formula 1.

Look at the bottom graph of Figure 3, the obser-
vation f1 has two statuses, e1 and e2 at the same
time, it becomes ambiguous to compute the tran-
sitional probability between pt(3|1) and pt(3|2).
This is because IHMM algorithm deals with one-
to-many alignments, and MOEA permits many-to-
many alignments.

We hence empirically modify the IHMM model
to support many-to-many alignments. A new status
is defined, rather than a single position pt(j|i), but
as a set of positions pt({j}|{i}). The positions in
one status need not to be adjacent to each other.

The redefined transitional probability

pt({j}|{i}) =
1

|{j}| · |{i}|
∑
i,j

pt(j|i)

The redefined emission probability

po(j|{i}) =
∏

i

po(j|i)

We need to note that there is no guarantee on

the closed property of probabilities, though these
approximations prove to be effective in a practical
sense. Straightforwardly, when there is only one po-
sition in a new status, the expanded IHMM degener-
ates to the standard IHMM.

Let us return to the second IHMM ex-
ample. The new probability becomes
[pt(1|null)pt(2|null)] · [12p

t(3|1)pt(3|2) ·pt(null|3)] ·
[po(f1|e1)po(f1|e2)po(f2|e3)po(f3|null)].

3.2.2 Alignment Probability

GIZA++ considers very different and more in-
formation in alignment, we attempt to utilize them.
All probabilities appearing in below formulas can be
looked up in GIZA++.

Given a pair of hypotheses f I = (f1, . . . fI),
eJ = (e1, . . . eJ), and their alignment a, the align-
ment probability could be calculated as follows

pGiza(eJ |f I ,a) =
∏
ei

T (ei|f I ,a)

T (ei|f I ,a) =

{
n(φi|ei)

∑
(j,i)∈a t(ei|fj)a(j|i)/φi ifφi 6= 0

n(0|ei)t(ei|null)a(0|i) otherwise

φi = |{j|(i, j) ∈ a}|

where φi is the fertility number, t(e|c) the transla-
tion probability for the word pair, z(j|i) alignment
probability to show how likely a target word at posi-
tion i could be translated into a source word at posi-
tion j, and n(φ|e) is the fertility probability to show
how likely a given target word e is translated into φ
source words.

In order to increase the coverage of words, we col-
lect all the hypothesis pairs in both the tuning set
and the test set and feed them into GIZA++. This
is an off-line operation, which makes it not suitable
for an online translation system. In some circum-
stances, users submit a pile of documents in the hope
of high-quality translations, thus more useful knowl-
edge sources would be helpful. In our experiments,
a pure GIZA++ based system combination does not
perform as well as IHMM based, but does benefit
the final translation quality if combined in our multi-
objective optimization framework.
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3.3 Configuration of Evolutionary Algorithm

3.3.1 Encoding
Given a sentence pair <f I , eJ>, we define a two-

dimensional matrix x = {zi,j |zij ∈ {0, 1}} to en-
code a set of possible alignments. Using a line-based
access style, the matrix could be unfolded as a vector
with |I| · |J | bits of length.

3.3.2 Initialization
Because in NSGA-II software the initial popu-

lation are generated at random. In order to make
NSGA-II more consistent and flexible, better initial
seeds should be fed with, thus we combine an ex-
isting word alignment results as input. Here we use
together two N-best lists generated from directional
HMM and reversed HMM respectively for initializa-
tion.

3.3.3 Normalization of Pareto Optimal
Solutions

Multi-objective optimization algorithms do not
pose weights on objectives, thus they output a set
of so-called Pareto optimal solutions, each of which
is a many-to-many alignment. We can understand
them as an N-best alignment list without explicit
preferences. We also empirically compare it with the
idea that directly cuts an N-best list from the IHMM
based alignment.

We describe a two-stage strategy for normaliza-
tion. Firstly, we use a simple and effective voting
strategy to combine a set of many-to-many align-
ments into a single many-to-many alignment, and
Secondly we normalize it into a one-to-one align-
ment for confusion network construction. In the first
stage, we count the number of word-to-word align-
ments on each position pair (i, j). If there is more
than a half number of alignments, then we output 1,
otherwise 0. In the second stage, if any word relates
to more than one word alignment, the one with the
highest posterior probability is selected (He et al.,
2008; Feng et al., 2009). The posterior probabili-
ties can be computed in a classic forward-backward
procedure in IHMM (He et al., 2008).

4 Training and Decoding

Our work does not change the classic pipeline, thus
the model and features are nearly identical to the

ones in (Rosti et al., 2007b; He et al., 2008), which
are modeled in a log-linear fashion in Eq. 8. Trans-
lation on a CN is just a concatenation of edges tra-
versed, on which 4 categories of features are defined.

1. word posterior probabilities. In Eq. 8,
p(w|sys, span) are word confidence scores. If
the word w comes from the kth hypothesis of
thesys-th system, the raw score should be 1

k+1 ,
and then it would be normalized by the same
sys and span. The same word coming from
different systems owns a different score, so
there are sys system weights λsys.

2. logarithm of language model score, L(h).

3. number of null edge, Numnull.

4. number of words, Numw.

log(h) =
∑

span log(
∑

sys λsysp(w|sys, span))

+ w0L(h) + w1Numnull + w2Numw

(8)
Decoding a confusion network is straightforward,

traversing each node from left to right, and the beam
search algorithm will retain for each node an N-
best list. The final N-best can be acquired following
(Huang and Chiang, 2005).

The training process follows minimum error rate
training (MERT) described in (Och, 2003; Koehn et
al., 2003). In each iteration, the Powell algorithm
would attempt to predict the optimal parameters on
the cumulative N-best list.

5 Experiments

We evaluate our method in two datasets in the
Chinese-to-English task. In the first one, NIST MT
2002 and 2005 are used for tuning and testing re-
spectively, and in the second, the newswire part of
MT 2006 and 2008 are for tuning and testing. A 5-
gram language model is trained on the Xinhua por-
tion of the Gigaword corpus. We report the case-
sensitive NIST-BLEU score.

Four single machine translation systems partici-
pating in the system combination consist of a BTG-
based system using a Max-Entropy based reordering
model, a hierarchical phrase-based system, a Moses
decoder and a syntax-based system. 10-best unique
hypotheses from a single system on the development
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SYSTEM MT 2005 MT 2008(news)
best single 0.3207 0.3016

IHMM* 0.3585(+3.78%) 0.3263(+2.47%)

IncIHMM 0.3639(+4.32%) 0.3320(+3.04%)

GIZA++ 0.3438(+2.31%) 0.3166(+1.50%)

PPBD 0.3619(+4.10%) 0.3306(+2.90%)

N-best IHMM 0.3590(+3.83%) 0.3270(+2.54%)

dH+rH 0.3604 0.3284

dH+dT 0.3610 0.3290

dH+rH+dT 0.3609 0.3289

dH+rH+rT 0.3630∗(+4.27%) 0.3320∗(+3.04%)

dH+rH+dT+rT 0.3682∗∗(+4.75%) 0.3369∗∗(+3.53%)

Table 2: PPBD is a posterior probabilistic-based decod-
ing (section 5.3). N-best IHMM simulates the Pareto op-
timal solutions in our method (section 5.3). The last five
systems adopt different objective combinations. The im-
provement percents in parentheses are compared to the
best single. dH: directed IHMM, rH: reversed IHMM,
dT: directed translation probability, rT: reversed transla-
tion probability. ∗∗ significance at 0.01 level, and ∗ sig-
nificance at 0.05 level over the IHMM model.

and test sets are collected as the input of the system
combination.

Our baseline systems are described as follows.
Two main baseline systems are IHMM based and in-
cremental IHMM (Li et al., 2009). The first system
differs from our method just in hypothesis alignment
algorithm, and the second combines the first and sec-
ond module of the system combination pipeline.

Because our method utilizes bidirectional infor-
mation, we also provide another two alternative
systems for comparison, which are GIZA++ based
alignment and the posterior probability based align-
ment (Liang et al., 2006). Finally, we also provide
an N-best alignment IHMM system, which com-
bines an N-best alignment list to simulate the Pareto
optimal solutions in our method.

The method that linearly combines all objectives
is not listed as our baseline like (Duh et al., 2012)
does, because their algorithm finds the best weighted
solution in a fixed and small solution set, while
in our problem, the solution space is a trellis-style
structure consisting of an exponential number of so-
lutions, and no efficient algorithms apply here.

The IHMM based alignment utilizes typical set-
tings (He et al., 2008; Feng et al., 2009). The

smoothing factor for the surface similarity model,
and ρ = 3 the controlling factor for the distor-
tion model, K = 2. The bilingual probabilistic
dictionary is trained in the FBIS corpus which in-
cludes about 230k parallel sentence pairs. GIZA++
based system is to run GIZA++ from two directions
to align all the hypotheses, and make the intersec-
tion using grow-diag-final heuristics (Koehn et al.,
2003). The many-to-many alignments are normal-
ized with the same method with ours. Our system
employs NSGA-II software to realize the MOEA al-
gorithm. The main parameters, generation number,
cross probability and mutation probability, and pop-
ulation size, are empirically set as 100, 0.9, 0.001
and 40, and we examine the influence of difference
populations sizes in the full system combination.

5.1 The Quality of Confusion Networks
This experiment shows the relationship between hy-
pothesis alignment and confusion network. Intu-
itively, we expect a better hypothesis alignment
would reduce the error in constructing confusion
networks, and then improve the final translation
quality.

We first use the alignment error rate (AER) (Och
and Ney, 2000), which is widely used to measure
the quality of hypothesis alignment. The smaller,
the better. For convenience, we only examine exact
literal matching. IHMM based alignment reaches
around 0.15 in AER, and our method 0.145.

As the AER may not vividly reflect the relations
between alignment and the final BLEU of systems,
and the quality of confusion network is hard to mea-
sure directly, we assume that the quality of confu-
sion networks could be measured by the oracle hy-
potheses that could be generated from them. We test
the BLEU of the oracle hypotheses.

From this angle, we demonstrate several oracle
BLEU of CNs generated from some conventional
alignment algorithms. The results are shown in Ta-
ble 3.

We find the confusion network from IHMM based
alignment (He et al., 2008) is better than that from
TER based alignment (Rosti et al., 2007b) by about
1 point in both two datasets. These quantities agree
with the final improvements in the BLEU score in
(He et al., 2008). As confusion networks from
MOEA based alignment also show superiority over
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alignment MT02 MT05
GIZA++ 0.5690 0.5228

TER 0.5720 0.5270

IHMM 0.5883 0.5382

IncIHMM 0.5931 0.5453

MOEA 0.6017 0.5526

Table 3: Oracle BLEUs of CNs. GIZA++: invoking
GIZA++ software. TER: minimum translation edit rate.
IHMM: indirect hidden markov model. IncIHMM: in-
cremental indirect hidden markov model. MOEA: multi-
objective evolution algorithm.

that from IHMM based in the oracle BLEU, we ex-
pect our final translation quality would be improved.

In Table 3, GIZA++ and TER perform simi-
larly, because the former is more capable of tackling
many-to-many alignments over the latter, while lat-
ter based might obtain relatively more precise align-
ment information. Both of the two do not consider
synonym matching compared to IHMM.

Our method and IncIHMM overpass IHMM on
this metric due to different strategies. Obtaining bet-
ter hypothesis alignment or better construction of
confusion networks benefit the quality of CNs.

5.2 Different Objective Combinations

As our framework is convenient to support different
alignment information, we test the influence of dif-
ferent objective combinations to the final translation
quality. We adopt four objectives to depict the can-
didate alignment, directed IHMM probability (dH),
reversed IHMM probability (rH), directed alignment
probability (dT), and reversed alignment probability
(rT). Table 2 demonstrates all the results.

We can see that the IHMM based system out-
performs the GIZA++ based system by about 1-1.5
points in BLEU, which agrees with the difference of
oracle BLEU in Table 1. From (He et al., 2008), the
IHMM based system outperforms the TER based by
1 point, which also agrees with our results in Table
1. Our system, using dH + rH + dT + rT, improves
BLEU score by about 1 points over the IHMM based
system. This comparison verifies our assumption,
improving the quality of the confusion network does
improve system performance.

The different feature combinations exhibit inter-
esting results. The system with dH + rH + dT is

0.05 point better than the system with dH + rH, and
the system dH + rH + rT is 0.3 point better than sys-
tem with dH + rH, so the contributions of feature
dT and rT are 0.05 and 0.3 respectively. While the
two features are used together in the fourth system,
the contribution is about 0.8 point, rather than 0.35.
This phenomenon also proves the correlations be-
tween different features.

Our method explores a way to integrate GIZA++
and IHMM, and is supportive of useful features.
Compared to the classic and powerful IHMM based
system, we obtained an improvement of 0.97 points
on MT 05 and 1.06 points on news of MT 2008,
and equivalently over the best single system by 4.75
points and 3.53 points respectively. More, compared
with the incremental IHMM, our system also shows
moderate improvement, though not much. We hope
these two ideas could be effectively combined in the
future work.

5.3 Comparison with Other Bi-directional
Alignment Methods

Our method introduces multiple alignment infor-
mation into system combination to obtain improve-
ments, thus it would be interesting to explore other
alternative methods for utilizing this information.
We provide three alternative methods similar to our
motivations, and they fall into two categories.

The first category is from the angle of bi-
directional alignment. We use GiZA++ alignment
and the posterior probability decoding-based align-
ment for comparison. The basic idea for the lat-
ter is setting a word-to-word alignment xi,j as 1,
if its approximate posterior marginal probability
q(xi,j , x) = pd(xi,j |x, θd) · pr(xi,j |x, θr) is greater
than a threshold δ, where pd and pr are posterior
marginal probabilities from directed and reversed
IHMM models, which could be conveniently com-
puted with a forward-backward algorithm, and the δ
is tuned on a validation-set optimized data. We just
list some δ values to examine its best performance
shown in Table 4.

The second class is because our method combines
the Pareto optimal solutions that consist of several
candidate alignments, thus for fairness we also use
a 100-best outputs from the directed IHMM model
and conduct the same normalization technique.

The general results are shown in Table 2. We can
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δ MT 2005 MT 2008
IHMM 0.3585 0.3263

0.15 0.3556 0.3391
0.2 0.3619 0.3306
0.25 0.3575 0.3278

0.3 0.3608 0.3259

Table 4: Posterior decoding. When threshold δ are set
to suitable values, simple bi-directional alignment could
overpass the baseline.

see that, GIZA++ leads to the worst performance,
which can be explained as GIZA++ does not support
synonym matching like IHMM. The N-best IHMM
has a minor improvement over the IHMM method.
We found differences in the N-best list are not obvi-
ous enough. In comparison, the posterior decoding
method brings relatively significant improvements
on both datasets. However, the threshold δ must
be selected suitably. Table 4 lists the ideal results,
which will be hampered when tuning on a validation
set.

All of the three candidate methods can not conve-
niently support extra alignment information, and a
linear model poses restrictions on features to get an
efficient decoding, the multi-objective optimization
may be a good selection as an inference algorithm in
many circumstances.

5.4 Population Size

We test the influence of final translation quality and
time consumed by different population size.

population BLEU
size MT 2005

20 0.3597

40 0.3682

60 0.3655

Table 5: Big population size consumes more CPU time.
In our experiments, we use a multi-thread technique to
speed up the alignment, and choose 40 as the parameter
to leverage the time and BLEU.

We expect enlarging the population size would
improve the translation quality, but the BLEU in
population size set as 60 does not overpass when set
as 40. We conjecture that, in our code, if the N-best
size from IHMM (we set as 50-best) does not reach

the population size, we would use randomly gener-
ated seeds, which may hamper the performance of
MOEA. We also tried a larger population in MOEA,
but did not receive obvious improvement on perfor-
mance.

We exerted a hard restriction on the genes in evo-
lutionary algorithm, that is many-to-many discon-
tiguous alignment is forbidden. This trick speeds up
running by about 20 times, and does not harm sys-
tem performance. Now our method runs about 0.9
seconds to align a pair of hypotheses. In practice,
we utilize multi-thread to speed up.

6 Conclusion

In this paper, we explore a multi-objective frame-
work to conveniently support more useful alignment
objectives to improve the hypothesis alignment. By
a minor modification of the first module in the
classic pipeline, we successfully combine GIZA++
and IHMM to obtain significant improvement over
a powerful and state-of-the-art IHMM based sys-
tem. In comparison with another genre of improving
system combination by combing adjacent modules
of the pipeline, more powerful incremental IHMM
here, our system also show moderate improvement.
Though, our best system may not overpass He and
Toutanova (2009) who combine all the modules into
a unified training procedure, we believe our method
could boost many work on the higher modules of the
pipeline to obtain a further improvement to match
their work.
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