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Abstract

This paper proposes a framework for automat-
ically engineering features for two important
tasks of question answering: answer sentence
selection and answer extraction. We represent
question and answer sentence pairs with lin-
guistic structures enriched by semantic infor-
mation, where the latter is produced by auto-
matic classifiers, e.g., question classifier and
Named Entity Recognizer. Tree kernels ap-
plied to such structures enable a simple way to
generate highly discriminative structural fea-
tures that combine syntactic and semantic in-
formation encoded in the input trees. We con-
duct experiments on a public benchmark from
TREC to compare with previous systems for
answer sentence selection and answer extrac-
tion. The results show that our models greatly
improve on the state of the art, e.g., up to 22%
on F1 (relative improvement) for answer ex-
traction, while using no additional resources
and no manual feature engineering.

1 Introduction

Question Answering (QA) systems are typically
built from three main macro-modules: (i) search and
retrieval of candidate passages; (ii) reranking or se-
lection of the most promising passages; and (iii) an-
swer extraction. The last two steps are the most in-
teresting from a Natural Language Processing view-
point since deep linguistic analysis can be carried
out as the input is just a limited set of candidates.

Answer sentence selection refers to the task of se-
lecting the sentence containing the correct answer

among the different sentence candidates retrieved by
a search engine.

Answer extraction is a final step, required for
factoid questions, consisting in extracting multi-
words constituting the synthetic answer, e.g., Barack
Obama for a question: Who is the US president?
The definition of rules for both tasks is conceptually
demanding and involves the use of syntactic and se-
mantic properties of the questions and its related an-
swer passages.

For example, given a question from TREC QA1:

Q: What was Johnny Appleseed’s real
name?

and a relevant passage, e.g., retrieved by a search
engine:

A: Appleseed, whose real name was John
Chapman, planted many trees in the early
1800s.

a rule detecting the semantic links between Johnny
Appleseed’s real name and the correct answer
John Chapman in the answer sentence has to
be engineered. This requires the definition of
other rules that associate the question pattern
real name ?(X) with real name is(X) of
the answer sentence. Although this can be done by
an expert NLP engineer, the effort for achieving the
necessary coverage and a reasonable accuracy is not
negligible.

An alternative to manual rule definition is the use
of machine learning, which often shifts the problem

1We use it as our running example in the rest of the paper.

458



to the easier task of feature engineering. Unfortu-
nately, when the learning task is semantically dif-
ficult such as in QA, e.g., features have to encode
combinations of syntactic and semantic properties.
Thus their extraction modules basically assume the
shape of high-level rules, which are, in any case, es-
sential to achieve state-of-the-art accuracy. For ex-
ample, the great IBM Watson system (Ferrucci et
al., 2010) uses a learning to rank algorithm fed with
hundreds of features. The extraction of some of the
latter requires articulated rules/algorithms, which,
in terms of complexity, are very similar to those
constituting typical handcrafted QA systems. An
immediate consequence is the reduced adaptability
to new domains, which requires a substantial re-
engineering work.

In this paper, we show that tree kernels (Collins
and Duffy, 2002; Moschitti, 2006) can be applied to
automatically learn complex structural patterns for
both answer sentence selection and answer extrac-
tion. Such patterns are syntactic/semantic structures
occurring in question and answer passages. To make
such information available to the tree kernel func-
tions, we rely on the shallow syntactic trees enriched
with semantic information (Severyn et al., 2013b;
Severyn et al., 2013a), e.g., Named Entities (NEs)
and question focus and category, automatically de-
rived by machine learning modules, e.g., question
classifier (QC) or focus classifier (FC).

More in detail, we (i) design a pair of shallow
syntactic trees (one for the question and one for the
answer sentence); (ii) connect them with relational
nodes (i.e., those matching the same words in the
question and in the answer passages); (iii) label the
tree nodes with semantic information such as ques-
tion category and focus and NEs; and (iv) use the NE
type to establish additional semantic links between
the candidate answer, i.e., an NE, and the focus word
of the question. Finally, for the task of answer ex-
traction we also connect such semantic information
to the answer sentence trees such that we can learn
factoid answer patterns.

We show that our models are very effective in pro-
ducing features for both answer selection and ex-
traction by experimenting with TREC QA corpora
and directly comparing with the state of the art,
e.g., (Wang et al., 2007; Yao et al., 2013). The re-
sults show that our methods greatly improve on both

tasks yielding a large improvement in Mean Average
Precision for answer selection and in F1 for answer
extraction: up to 22% of relative improvement in F1,
when small training data is used. Moreover, in con-
trast to the previous work, our model does not rely
on external resources, e.g., WordNet, or complex
features in addition to the structural kernel model.

The reminder of this paper is organized as fol-
lows, Sec. 2 describes our kernel-based classifiers,
Sec. 3 illustrates our question/answer relational
structures also enriched with semantic information,
Sec. 4 describes our model for answer selection and
extraction, Sec. 5 illustrates our comparative exper-
iments on TREC data, Sec. 6 reports on our error
analysis, Sec. 7 discusses the related work, and fi-
nally, Sec. 8 derives the conclusions.

2 Structural Kernels for classification

This section describes a kernel framework where the
input question/answer pairs are handled directly in
the form of syntactic/semantic structures.

2.1 Feature vector approach to object pair
classification

A conventional approach to represent a ques-
tion/answer pairs in linear models consists in defin-
ing a set of similarity features {xi} and computing
the simple scalar product h(xxx) = www · xxx =

∑
iwixi,

where www is the model weight vector learned on the
training data. Hence, the learning problem boils
down to estimating individual weights of each of
the similarity features xi. Such features often en-
code various types of lexical, syntactic and semantic
similarities shared between a question and its can-
didate. Previous work used a rich number of distri-
butional semantic, knowledge-based, translation and
paraphrase resources to build explicit feature vector
representations. One evident potential downside of
using feature vectors is that a great deal of structural
information encoded in a given text pair is lost.

2.2 Pair Classification using Structural Kernels
A more versatile approach in terms of the input
representation relies on kernels. A typical ker-
nel machine, e.g., SVM, classifies a test input xxx
using the following prediction function: h(xxx) =∑

i αiyiK(xxx,xxxi), where αi are the model parame-
ters estimated from the training data, yi are target
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variables, xxxi are support vectors, andK(·, ·) is a ker-
nel function. The latter can measure the similarity
between question and answer pairs.

We define each question/answer pair xxx as a triple
composed of a question treeTTT q and answer sentence
tree TTT s and a similarity feature vector vvv, i.e., xxx =
〈TTT q,TTT s, vvv〉. Given two triples xxxi and xxxj , we define
the following kernel:

K(xxxi,xxxj) = KTK(TTT i
q,TTT

j
q)

+ KTK(TTT i
s,TTT

j
s)

+ Kv(vvv
i, vvvj),

(1)

where KTK computes a structural kernel, e.g., tree
kernel, and Kv is a kernel over feature vectors, e.g.,
linear, polynomial, gaussian, etc. Structural kernels
can capture the structural representation of a ques-
tion/answer pair whereas traditional feature vectors
can encode some sort of similarity, e.g., lexical, syn-
tactic, semantic, between a question and its candi-
date answer.

We prefer to split the kernel computation over a
question/answer pair into two terms since tree ker-
nels are very efficient and there are no efficient
graph kernels that can encode exhaustively all graph
fragments. It should be noted that the tree kernel
sum does not capture feature pairs. Theoretically,
for such purpose, a kernel product should be used.
However, our experiments revealed that using the
product is actually worse in practice. In contrast,
we solve the lack of feature pairing by annotating
the trees with relational tags which are supposed
to link the question tree fragments with the related
fragments from the answer sentence.

Such relational information is very important to
improve the quality of the pair representation as well
as the implicitly generated features. In the next sec-
tion, we show simple structural models that we used
in our experiments for question and answer pair clas-
sification.

2.3 Partial Tree Kernels

The above framework can use any kernel for
structural data. We use the Partial Tree Kernel
(PTK) (Moschitti, 2006) to compute KTK(·, ·) as it
is the most general convolution tree kernel, which
at the same time shows rather good efficiency. PTK
can be effectively applied to both constituency and

dependency parse trees. It generalizes the syntactic
tree kernel (STK) (Collins and Duffy, 2002), which
maps a tree into the space of all possible tree frag-
ments constrained by the rule that sibling nodes can-
not be separated. In contrast, the PTK fragments
can contain any subset of siblings, i.e., PTK allows
for breaking the production rules in syntactic trees.
Consequently, PTK generates an extremely rich fea-
ture space, which results in higher generalization
ability.

3 Relational Structures

This section introduces relational structures de-
signed to encode syntactic and shallow semantic
properties of question/answer pairs. We first define a
simple to construct shallow syntactic tree represen-
tation derived from a shallow parser. Next, we in-
troduce a relational linking scheme based on a plain
syntactic matching and further augment it with ad-
ditional semantic information.

3.1 Shallow syntactic tree

Our shallow tree structure is a two-level syntactic
hierarchy built from word lemmas (leaves), part-of-
speech tags that organized into chunks identified by
a shallow syntactic parser (Fig. 1). We defined a
similar structure in (Severyn and Moschitti, 2012)
for answer passage reranking, which improved on
feature vector baselines.

This simple linguistic representation is suitable
for building a rather expressive answer sentence se-
lection model. Moreover, the use of a shallow parser
is motivated by the need to generate text spans to
produce candidate answers required by an answer
extraction system.

3.2 Tree pairs enriched with relational links

It is important to establish a correspondence be-
tween question and answer sentence aligning related
concepts from both. We take on a two-level ap-
proach, where we first use plain lexical matching to
connect common lemmas from the question and its
candidate answer sentence. Secondly, we establish
semantic links between NEs extracted from the an-
swer sentence and the question focus word, which
encodes the expected lexical answer type (LAT). We
use the question categories to identify NEs that have
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Figure 1: Shallow tree representation of the example q/a pair from Sec. 1. Dashed arrows (red) indicate the tree
fragments (red dashed boxes) in the question and its answer sentence linked by the relational REL tag, which is
established via syntactic match on the word lemmas. Solid arrows (blue) connect a question focus word name with the
related named entities of type Person corresponding to the question category (HUM) via a relational tag REL-HUM.
Additional ANS tag is used to mark chunks containing candidate answer (here the correct answer John Chapman).

higher probability to be correct answers following a
mapping defined in Table 1.

Next, we briefly introduce our tree kernel-based
models for building question focus and category
classifiers.

Lexical Answer Type. Question Focus represents
a central entity or a property asked by a question
(Prager, 2006). It can be used to search for semanti-
cally compatible candidate answers, thus greatly re-
ducing the search space (Pinchak, 2006). While sev-
eral machine learning approaches based on manual
features and syntactic structures have been recently
explored, e.g. (Quarteroni et al., 2012; Damljanovic
et al., 2010; Bunescu and Huang, 2010), we opt for
the latter approach where tree kernels handle auto-
matic feature engineering.

To build an automatic Question Focus detector we
use a tree kernel approach as follows: we (i) parse
each question; (ii) create a set of positive trees by
labeling the node exactly covering the focus with
FC tag; (iii) build a set of negative trees by labeling
any other constituent node with FC; (iii) we train
the FC node classifier with tree kernels. At the test
time, we try to label each constituent node with FC
generating a set of candidate trees. Finally, we select
the tree and thus the constituent associated with the
highest SVM score.

Question classification. Our question classification
model is simpler than before: we use an SVM multi-
classifier with tree kernels to automatically extract
the question class. To build a multi-class classifier
we train a binary SVM for each of the classes and
apply a one-vs-all strategy to obtain the predicted

Table 1: Expected Answer Type (EAT) → named entity
types.

EAT Named Entity types
HUM Person
LOCATION Location
ENTITY Organization, Person, Misc
DATE Date, Time, Number
QUANTITY Number, Percentage
CURRENCY Money, Number

class. We use constituency trees as our input repre-
sentation.

Our question taxonomy is derived from the
UIUIC dataset (Li and Roth, 2002) which defines
6 coarse and 50 fine grain classes. In particular,
our set of question categories is formed by adopt-
ing 3 coarse classes: HUM (human), LOC (loca-
tion), ENTY (entities) and replacing the NUM (nu-
meric) coarse class with 3 fine-grain classes: CUR-
RENCY, DATE, QUANTITY2. This set of question
categories is sufficient to capture the coarse seman-
tic answer type of the candidate answers found in
TREC. Also using fewer question classes results in
a more accurate multi-class classifier.
Semantic tagging. Question focus word specifies
the lexical answer type capturing the target informa-
tion need posed by a question, but to make this piece
of information effective, the focus word needs to
be linked to the target candidate answer. The focus
word can be lexically matched with words present in

2This class is composed by including all the fine-grain
classes from NUMERIC coarse class except for CURRENCY
and DATE.
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the answer sentence, or the match can be established
using semantic information. Clearly, the latter ap-
proach is more appealing since it helps to alleviate
the lexical gap problem, i.e., it improves the cover-
age of the näive string matching of words between a
question and its answer.

Hence, we propose to exploit a question focus
along with the related named entities (according to
the mapping from Table 1) of the answer sentence
to establish relational links between the tree frag-
ments. In particular, once the question focus and
question category are determined, we link the fo-
cus word wfocus in the question, with all the named
entities whose type matches the question class (Ta-
ble 1). We perform tagging at the chunk level and
use a relational tag typed with a question class, e.g.,
REL-HUM. Fig. 1 shows an example q/a pair where
the typed relational tag is used in the shallow syntac-
tic tree representation to link the chunk containing
the question focus name with the named entities of
the corresponding type Person, i.e., Appleseed and
John Chapman.

4 Answer Sentence Selection and Answer
Keyword Extraction

This section describes our approach to (i) answer
sentence selection used to select the most promising
answer sentences; and (ii) answer extraction which
returns the answer keyword (for factoid questions).

4.1 Answer Sentence Selection

We cast the task of answer sentence selection as
a classification problem. Considering a supervised
learning scenario, we are given a set of questions
{qi}Ni=1 where each question qi is associated with
a list of candidate answer sentences {(ri, si)}Ni=1,
with ri ∈ {−1,+1} indicating if a given candidate
answer sentence si contains a correct answer (+1)
or not (−1). Using this labeled data, our goal is to
learn a classifier model to predict if a given pair of
a question and an answer sentence is correct or not.
We train a binary SVM with tree kernels3 to train an
answer sentence classifier. The prediction scores ob-
tained from a classifier are used to rerank the answer
candidates (pointwise reranking), s.t. the sentences
that are more likely to contain correct answers will

3disi.unitn.it/moschitti/Tree-Kernel.htm

be ranked higher than incorrect candidates. In addi-
tion to the structural representation, we augment our
model with basic bag-of-word features (unigram and
bigrams) computed over lemmas.

4.2 Answer Sentence Extraction

The goal of answer extraction is to extract a text span
from a given candidate answer sentence. Such span
represents a correct answer phrase for a given ques-
tion. Different from previous work that casts the an-
swer extraction task as a tagging problem and apply
a CRF to learn an answer phrase tagger (Yao et al.,
2013), we take on a simpler approach using a kernel-
based classifier.

In particular, we rely on the shallow tree represen-
tation, where text spans identified by a shallow syn-
tactic parser serve as a source of candidate answers.
Algorithm 1 specifies the steps to generate training
data for our classifier. In particular, for each ex-
ample representing a triple 〈a, Tq, Ts〉 composed of
the answer a, the question and the answer sentence
trees, we generate a set of training examples E with
every candidate chunk marked with an ANS tag (one
at a time). To reduce the number of generated exam-
ples for each answer sentence, we only consider NP
chunks, since other types of chunks, e.g., VP, ADJP,
typically do not contain factoid answers. Finally, an
original untagged tree is used to generate a positive
example (line 8), when the answer sentence contains
a correct answer, and a negative example (line 10),
when it does not contain a correct answer.

At the classification time, given a question and a
candidate answer sentence, all NP nodes of the sen-
tence are marked with ANS (one at a time) as the
possible answer, generating a set of tree candidates.
Then, such trees are classified (using the kernel from
Eq. 1) and the one with the highest score is selected.
If no tree is classified as positive example we do not
extract any answer.

5 Experiments

We provide the results on two related yet different
tasks: answer sentence selection and answer extrac-
tion. The goal of the former is to learn a model
scoring correct question and answer sentence pairs
to bring in the top positions sentences containing the
correct answers. Answer extraction derives the cor-
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Algorithm 1 Generate training data for answer ex-
traction

1: for all 〈a, Tq, Ts〉 ∈DDD do
2: E ← ∅
3: for all chunk ∈ extract chunks(Ts) do
4: if not chunk == NP then
5: continue
6: T ′

s ← tagAnswerChunk(Ts, chunk)
7: if contains answer(a, chunk) then
8: label← +1
9: else

10: label← −1
11: e← build example(Tq, T

′
s, label)

12: E ← E ∪ {e}
13: return E

rect answer keywords, i.e., a text span such as multi-
words or constituents, from a given sentence.

5.1 Semantic Annotation

We briefly describe the experiments of training auto-
matic question category and focus classifiers, which
are more extensively described in (Severyn et al.,
2013b).
Question Focus detection. We used three datasets
for training and evaluating the performance of our
focus detector: SeCo-600 (Quarteroni et al., 2012),
Mooney GeoQuery (Damljanovic et al., 2010) and
the dataset from (Bunescu and Huang, 2010). The
SeCo dataset contains 600 questions. The Mooney
GeoQuery contains 250 question targeted at ge-
ographical information in the U.S. The first two
datasets are very domain specific, while the dataset
from (Bunescu and Huang, 2010) is more generic
containing the first 2,000 questions from the answer
type dataset from Li and Roth annotated with fo-
cus words. We removed questions with implicit and
multiple focuses.
Question Classification. We used the UIUIC
dataset (Li and Roth, 2002) which contains 5,952
factoid questions 4 to train a multi-class question
classifier.

Table 2 summarizes the results of question focus
and category classification.

4We excluded questions from TREC to ensure there is no
overlap with the data used for testing models trained on TREC
QA.

Table 2: Accuracy (%) of focus (FC) and question classi-
fiers (QC) using PTK.

TASK SET PTK

FC
MOONEY 80.5

SECO-600 90.0
BUNESCU 96.9

QC
UIUIC 85.9

TREC 11-12 78.1

5.2 Answer Sentence Selection

We used the train and test data from (Wang et al.,
2007) to enable direct comparison with previous
work on answer sentence selection. The training
data is composed by questions drawn from TREC
8-12 while questions from TREC 13 are used for
testing. The data provided for training comes as
two sets: a small set of 94 questions (TRAIN) that
were manually curated for errors5 and 1,229 ques-
tions from the entire TREC 8-12 that contain at least
one correct answer sentence (ALL). The latter set
represents a more noisy setting, since many answer
sentences are marked erroneously as correct as they
simply match a regular expression. Table 3 summa-
rizes the data used for training and testing.

Table 4 compares our kernel-based structural
model with the previous state-of-the-art systems for
answer sentence selection. In particular, we com-
pare with four most recent state of the art answer
sentence reranker models (Wang et al., 2007; Heil-
man and Smith, 2010; Wang and Manning, 2010;
Yao et al., 2013), which report their performance on
the same questions and candidate sets from TREC
13 as provided by (Wang et al., 2007).

Our simple shallow tree representation (Severyn
and Moschitti, 2012) delivers state-of-the-art ac-
curacy largely improving on previous work. Fi-
nally, augmenting the structure with semantic link-
ing (Severyn et al., 2013b) yields additional im-
provement in MAP and MRR. This suggests the
utility of using supervised components, e.g., ques-
tion focus and question category classifiers coupled
with NERs, to establish semantic mapping between
words in a q/a pair.

5In TREC correct answers are identified by regex matching
using the provided answer pattern files
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Table 3: Summary of TREC data for answer extraction
used in (Yao et al., 2013).

data questions candidates correct
TRAIN 94 4718 348
ALL 1229 53417 6410
TEST 89 1517 284

Table 4: Answer sentence reranking on TREC 13.

System MAP MRR
Wang et al. (2007) 0.6029 0.6852
Heilman & Smith (2010) 0.6091 0.6917
Wang & Manning (2010) 0.5951 0.6951
Yao et al. (2013) 0.6319 0.7270

+ WN 0.6371 0.7301
shallow tree (S&M, 2012) 0.6485 0.7244

+ semantic tagging 0.6781 0.7358

It is worth noting that our kernel-based classifier
is conceptually simpler than approaches in the previ-
ous work, as it relies on the structural kernels, e.g.,
PTK, to automatically extract salient syntactic pat-
terns relating questions and answers. Our model
only includes the most basic feature vector (uni- and
bi-grams) and does not rely on external sources such
as WordNet.

5.3 Answer Extraction
Our experiments on answer extraction replicate the
setting of (Yao et al., 2013), which is the most recent
work on answer extraction reporting state-of-the-art
results.

Table 5 reports the accuracy of our model in re-
covering correct answers from a set of candidate an-
swer sentences for a given question. Here the fo-
cus is on the ability of an answer extraction system
to recuperate as many correct answers as possible
from each answer sentence candidate. The set of
extracted candidate answers can then be used to se-
lect a single best answer, which is the final output
of the QA system for factoid questions. Recall (R)
encodes the percentage of correct answer sentences
for which the system correctly extracts an answer
(for TREC 13 there are a total of 284 correct answer
sentences), while Precision (P) reflects how many
answers extracted by the system are actually correct.

Clearly, having a high recall system, allows for cor-
rectly answering more questions. On the other hand,
a high precision system would attempt to answer less
questions (extracting no answers at all) but get them
right.

We compare our results to a CRF model of (Yao et
al., 2013) augmented with WordNet features (with-
out forced voting) 6. Unlike the CRF model which
obtains higher values of precision, our system acts
as a high recall system able to recover most of the
answers from the correct answer sentences. Having
higher recall is favorable to high precision in answer
extraction since producing more correct answers can
help in the final voting scheme to come up with a
single best answer. To solve the low recall problem
of their CRF model, Yao et al. (2013) apply fairly
complex outlier resolution techniques to force an-
swer predictions, thus aiming at increasing the num-
ber of extracted answers.

To further boost the number of answers produced
by our system we exclude negative examples (an-
swer sentences not containing the correct answer)
from training, which slightly increases the number
of pairs with correctly recovered answers. Never-
theless, it has a substantial effect on the number of
questions that can be answered correctly (assuming
perfect single best answer selection). Clearly, our
system is able to recover a large number of answers
from the correct answer sentences, while low pre-
cision, i.e., extracting answer candidates from sen-
tences that do not contain a correct answer, can be
overcome by further applying various best answer
selection strategies, which we explore in the next
section.

5.4 Best Answer Selection
Since the final step of the answer extraction module
is to select for each question a single best answer
from a set of extracted candidate answers, an answer
selection scheme is required.

We adopt a simple majority voting strategy, where
we aggregate the extracted answers produced by our
answer extraction model. Answers sharing simi-
lar lemmas (excluding stop words) are grouped to-
gether. The prediction scores obtained by the an-

6We could not replicate the results obtained in (Yao et al.,
2013) with the forced voting strategy. Thus such result is not
included in Table 5.
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Table 5: Results on answer extraction. P/R - precision
and recall; pairs - number of QA pairs with a correctly ex-
tracted answer, q - number of questions with at least one
correct answer extracted, F1 sets an upper bound on the
performance assuming the selected best answer among
extracted candidates is always correct. *-marks the set-
ting where we exclude incorrect question answer pairs
from training.

set P R pairs q F1
Yao et al. (2013) 25.7 23.4 73 33 -

+ WN 26.7 24.3 76 35 -
TRAIN 29.6 64.4 183 58 65.2
TRAIN* 15.7 71.8 204 66 74.1
Yao et al. (2013) 35.2 35.1 100 38 -

+ WN 34.5 34.7 98 38 -
ALL 29.4 74.6 212 69 77.5
ALL* 15.8 76.7 218 73 82.0

Table 6: Results on finding the best answer with voting.

system set P R F1
Yao et al. (2013)

TRAIN

55.7 43.8 49.1
+ forced 54.5 53.9 54.2
+ WN 55.2 53.9 54.5

this work 66.2 66.2 66.2
Yao et al. (2013)

ALL

67.2 50.6 57.7
+ forced 60.9 59.6 60.2
+ WN 63.6 62.9 63.3

this work 70.8 70.8 70.8

swer extraction classifier are used as votes to decide
on the final rank to select the best single answer.

Table 6 shows the results after the majority vot-
ing is applied to select a single best answer for each
candidate. A rather naı̈ve majority voting scheme
already produces satisfactory outcome demonstrat-
ing better results than the previous work. Our vot-
ing scheme is similar to the one used by (Yao et al.,
2013), yet it is much simpler since we do not per-
form any additional hand tuning to account for the
weight of the “forced” votes or take any additional
steps to catch additional answers using outlier detec-
tion techniques applied in the previous work.

6 Discussion and Error Analysis

There are several sources of errors affecting the fi-
nal performance of our answer extraction system: (i)
chunking, (ii) named entity recognition and seman-
tic linking, (iii) answer extraction, (iv) single best
answer selection.
Chunking. Our system uses text spans identified by
a chunker to extract answer candidates, which makes
it impossible to extract answers that lie outside the
chunk boundaries. Nevertheless, we found this to
be a minor concern since for 279 out of total 284
candidate sentences from TREC 13 the answers are
recoverable within the chunk spans.
Semantic linking. Our structural model relies heav-
ily on the ability of NER to identify the relevant en-
tities in the candidate sentence that can be further
linked to the focus word of the question. While
our answer extraction model is working on all the
NP chunks, the semantic tags from NER serve as a
strong cue for the classifier that a given chunk has
a high probability of containing an answer. Typical
off-the-shelf NER taggers have good precision and
low recall, s.t. many entities as potential answers are
missed. In this respect, a high recall entity linking
system, e.g., linking to wikipedia entities (Ratinov
et al., 2011), is required to boost the quality of can-
didates considered for answer extraction. Finally,
improving the accuracy of question and focus clas-
sifiers would allow for having more accurate input
representations fed to the learning algorithm.
Answer Extraction. Our answer extraction model
acts as a high recall system, while it suffers from
low precision in extracting answers for many incor-
rect sentences. Improving the precision without sac-
rificing the recall would ease the successive task of
best answer selection, since having less incorrect an-
swer candidates would result in a better final per-
formance. Introducing additional constraints in the
form of semantic tags to allow for better selection of
answer candidates could also improve our system.
Best Answer Selection. We apply a naı̈ve majority
voting scheme to select a single best answer from
a set of extracted answer candidates. This step has
a dramatic impact on the final performance of the
answer extraction system resulting in a large drop
of recall, i.e., from 82.0 to 70.8 before and after vot-
ing respectively. Hence, a more involved model, i.e.,
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performing joint answer sentence re-ranking and an-
swer extraction, is required to yield a better perfor-
mance.

7 Related Work

Tree kernel methods have found many applications
for the task of answer reranking which are reported
in (Moschitti, 2008; Moschitti, 2009; Moschitti and
Quarteroni, 2008; Severyn and Moschitti, 2012).
However, their methods lack the use of important
relational information between a question and a can-
didate answer, which is essential to learn accurate
relational patterns. In this respect, a solution based
on enumerating relational links was given in (Zan-
zotto and Moschitti, 2006; Zanzotto et al., 2009) for
the textual entailment task but it is computationally
too expensive for the large dataset of QA. A few so-
lutions to overcome computational issues were sug-
gested in (Zanzotto et al., 2010).

In contrast, this paper relies on structures directly
encoding the output of question and focus classifiers
to connect focus word and good candidate answer
keywords (represented by NEs) of the answer pas-
sage. This provides more effective relational infor-
mation, which allows our model to significantly im-
prove on previous rerankers. Additionally, previous
work on kernel-based approaches does not target an-
swer extraction.

One of the best models for answer sentence selec-
tion has been proposed in (Wang et al., 2007). They
use the paradigm of quasi-synchronous grammar to
model relations between a question and a candidate
answer with syntactic transformations. (Heilman
and Smith, 2010) develop an improved Tree Edit
Distance (TED) model for learning tree transforma-
tions in a q/a pair. They search for a good sequence
of tree edit operations using complex and com-
putationally expensive Tree Kernel-based heuristic.
(Wang and Manning, 2010) develop a probabilistic
model to learn tree-edit operations on dependency
parse trees. They cast the problem into the frame-
work of structured output learning with latent vari-
ables. The model of (Yao et al., 2013) has reported
an improvement over the Wang’s et al. (2007) sys-
tem. It applies linear chain CRFs with features de-
rived from TED and WordNet to automatically learn
associations between questions and candidate an-

swers.
Different from previous approaches that use tree-

edit information derived from syntactic trees, our
kernel-based learning approach also use tree struc-
tures but with rather different learning methods, i.e.,
SVMs and structural kernels, to automatically ex-
tract salient syntactic patterns relating questions and
answers. In (Severyn et al., 2013c), we have shown
that such relational structures encoding input text
pairs can be directly used within the kernel learning
framework to build state-of-the-art models for pre-
dicting semantic textual similarity. Furthermore, se-
mantically enriched relational structures, where au-
tomatic have been previously explored for answer
passage reranking in (Severyn et al., 2013b; Sev-
eryn et al., 2013a). This paper demonstrates that this
model also works for building a reranker on the sen-
tence level, and extends the previous work by apply-
ing the idea of automatic feature engineering with
tree kernels to answer extraction.

8 Conclusions

Our paper demonstrates the effectiveness of han-
dling the input structures representing QA pairs di-
rectly vs. using explicit feature vector representa-
tions, which typically require substantial feature en-
gineering effort. Our approach relies on a kernel-
based learning framework, where structural kernels,
e.g., tree kernels, are used to handle automatic fea-
ture engineering. It is enough to specify the desired
type of structures, e.g., shallow, constituency, de-
pendency trees, representing question and its can-
didate answer sentences and let the kernel learning
framework learn to use discriminative tree fragments
for the target task.

An important feature of our approach is that it
can effectively combine together different types of
syntactic and semantic information, also generated
by additional automatic classifiers, e.g., focus and
question classifiers. We augment the basic struc-
tures with additional relational and semantic infor-
mation by introducing special tag markers into the
tree nodes. Using the structures directly in the ker-
nel learning framework makes it easy to integrate
additional relational constraints and semantic infor-
mation directly in the structures.

The comparison with previous work on a public
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benchmark from TREC suggests that our approach
is very promising as we can improve the state of the
art in both answer selection and extraction by a large
margin (up to 22% of relative improvement in F1 for
answer extraction). Our approach makes it relatively
easy to integrate other sources of semantic informa-
tion, among which the use of Linked Open Data can
be the most promising to enrich the structural repre-
sentation of q/a pairs.

To achieve state-of-the-art results in answer sen-
tence selection and answer extraction, it is sufficient
to provide our model with a suitable tree structure
encoding relevant syntactic information, e.g., using
shallow, constituency or dependency formalisms.
Moreover, additional semantic and relational infor-
mation can be easily plugged in by marking tree
nodes with special tags. We believe this approach
greatly eases the task of tedious feature engineering
that will find its applications well beyond QA tasks.
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