
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 426–435,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Efficient Collective Entity Linking with Stacking

Zhengyan He† Shujie Liu‡ Yang Song† Mu Li‡ Ming Zhou‡ Houfeng Wang†∗

† Key Laboratory of Computational Linguistics (Peking University) Ministry of Education,China
‡ Microsoft Research Asia

hezhengyan.hit@gmail.com {shujliu,muli,mingzhou}@microsoft.com
songyangmagic@gmail.com wanghf@pku.edu.cn

Abstract

Entity disambiguation works by linking am-
biguous mentions in text to their correspond-
ing real-world entities in knowledge base. Re-
cent collective disambiguation methods en-
force coherence among contextual decisions
at the cost of non-trivial inference processes.
We propose a fast collective disambiguation
approach based on stacking. First, we train a
local predictor g0 with learning to rank as base
learner, to generate initial ranking list of can-
didates. Second, top k candidates of related
instances are searched for constructing expres-
sive global coherence features. A global pre-
dictor g1 is trained in the augmented feature
space and stacking is employed to tackle the
train/test mismatch problem. The proposed
method is fast and easy to implement. Exper-
iments show its effectiveness over various al-
gorithms on several public datasets. By learn-
ing a rich semantic relatedness measure be-
tween entity categories and context document,
performance is further improved.

1 Introduction

When extracting knowledge from natural language
text into a machine readable format, ambiguous
names must be resolved in order to tell which real-
world entity the name refers to. The task of linking
names to knowledge base is known as entity linking
or disambiguation (Ji et al., 2011). The resulting text
is populated with semantic rich links to knowledge
base like Wikipedia, and ready for various down-
stream NLP applications.

∗Corresponding author

Previous researches have proposed several kinds
of effective approaches for this problem. Learning
to rank (L2R) approaches use hand-crafted features
f(d, e) to describe the similarity or dissimilarity be-
tween contextual document d and entity definition
e. L2R approaches are very flexible and expres-
sive. Features like name matching, context similar-
ity (Li et al., 2009; Zheng et al., 2010; Lehmann et
al., 2010) and category context correlation (Bunescu
and Pasca, 2006) can be incorporated with ease.
Nevertheless, decisions are made independently and
inconsistent results are found from time to time.

Collective approaches utilize dependencies be-
tween different decisions and resolve all ambiguous
mentions within the same context simultaneously
(Han et al., 2011; Hoffart et al., 2011; Kulkarni
et al., 2009; Ratinov et al., 2011). Collective ap-
proaches can improve performance when local ev-
idence is not confident enough. They often utilize
semantic relations across different mentions, and is
why they are called global approaches, while L2R
methods fall into local approaches (Ratinov et al.,
2011). However, collective inference processes are
often expensive and involve an exponential search
space.

We propose a collective entity linking method
based on stacking. Stacked generalization (Wolpert,
1992) is a powerful meta learning algorithm that
uses two levels of learners. The predictions of the
first learner are taken as augmented features for the
second learner. The nice property of stacking is that
it does not restrict the form of the base learner. In
this paper, our base learner, an L2R ranker, is first
employed to generate a ranking list of candidates.
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At the next level, we search for semantic coherent
entities from the top k candidates of neighboring
mentions. The second learner is trained on the aug-
mented feature space to enforce semantic coherence.
Stacking is employed to handle train/test mismatch
problem. Compared with existing collective meth-
ods, the inference process of our method is much
faster because of the simple form of its base learner.

Wikipedians annotate each entity with categories
which provide another source of valuable seman-
tic information. (Bunescu and Pasca, 2006) pro-
pose to generalize beyond context-entity correla-
tion s(d, e) with word-category correlation s(w, c).
However, this method works at word level, and does
not scale well to large number of categories. We
explore a representation learning technique to learn
the category-context association in latent semantic
space, which scales much better to large knowledge
base.

Our contributions are as follows: (1) We pro-
pose a fast and accurate stacking-based collective
entity linking method, which combines the benefits
of both coherence modeling of collective approaches
and expressivity of L2R methods. We show an
effective usage of ranking list as global features,
which is a key improvement for the global predictor.
(2) To overcome problems of scalability and shal-
low word-level comparison, we learn the category-
context correlation with recent advances of repre-
sentation learning, and show that this extra seman-
tic information indeed helps improve entity linking
performance.

2 Related Work

Most popular entity linking systems use the L2R
framework (Bunescu and Pasca, 2006; Li et al.,
2009; Zheng et al., 2010; Lehmann et al., 2010).
Its discriminative nature gives the model enough
flexibility and expressivity. It can include any fea-
tures that describe the similarity or dissimilarity of
context d and candidate entity e. They often per-
form well even on small training set, with carefully-
designed features. This category falls into the local
approach as the decision processes for each mention
are made independently (Ratinov et al., 2011).

(Cucerzan, 2007) first suggests to optimize an ob-
jective function that is similar to the collective ap-

proach. However, the author adopts an approxi-
mation method because of the large search space
(which is O(nm) for a document with m mentions,
each with n candidates). Various other methods
like integer linear programming (Kulkarni et al.,
2009), personalized PageRank (Han et al., 2011) and
greedy graph cutting (Hoffart et al., 2011) have been
explored in literature. Our method without stacking
resembles the method of (Ratinov et al., 2011) in
that they use the predictions of a local ranker to gen-
erate features for global ranker. The differences are
that we use stacking to train the local ranker to han-
dle the train/test mismatch problem and top k candi-
dates to generate features for the global ranker.

Stacked generalization (Wolpert, 1992) is a meta
learning algorithm that uses multiple learners out-
puts to augment the feature space of subsequent
learners. It utilizes a cross-validation strategy to ad-
dress the train set / testset label mismatch problem.
Various applications of stacking in NLP have been
proposed, such as collective document classification
(Kou and Cohen, 2007), stacked dependency parsing
(Martins et al., 2008) and joint Chinese word seg-
mentation and part-of-speech tagging (Sun, 2011).
(Kou and Cohen, 2007) propose stacked graphical
learning which captures dependencies between data
with relational template. Our method is inspired by
their approach. The difference is our base learner is
an L2R model. We search related entity candidates
in a large semantic relatedness graph, based on the
assumption that true candidates are often semanti-
cally correlated while false ones scattered around.

Wikipedians annotate entries in Wikipedia with
category network. This valuable information gener-
alizes entity-context correlation to category-context
correlation. (Bunescu and Pasca, 2006) utilize
category-word as features in their ranking model.
(Kataria et al., 2011) employ a hierarchical topic
model where each inner node in the hierarchy is a
category. Both approaches must rely on pruned cate-
gories because the large number of noisy categories.
We try to address this problem with recent advances
of representation learning (Bai et al., 2009), which
learns the relatedness of category and context in la-
tent continuous space. This method scales well to
potentially large knowledge base.
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3 Method

In this section, we first introduce our base learner
and local features used; next, the stacking train-
ing strategy is given, followed by an explana-
tion of our global coherence model with aug-
mented feature space; finally we explain how to
learn category-context correlation with representa-
tion learning technique.

3.1 Base learner and local predictor g0

Entity linking is formalized as follows: given
an ambiguous name mention m with its con-
textual document d, a list of candidate entities
e1, e2, . . . , en(m) ∈ C(m) is generated for m, our
predictor g will generate a ranking score g(ei) for
each candidate ei. The ranking score will be used
to construct augmented features for the next level
learner, or used by our end system to select the an-
swer:

ê = arg max
e∈C(m)

g(e) (1)

In an L2R framework, the model is often defined
as a linear combination of features. Here, our fea-
tures f⃗(d, e) are derived from document d and can-
didate e. The model is defined as g(e) = w⃗f⃗(d, e).
In our problem, we are given a list of training data
D = {(di, ei)}. We want to optimize the parameter
w⃗, such that the correct entity has a higher score over
negative ones. This is done via a preference learning
technique SV M rank, first introduced by (Joachims,
2002). The following margin based loss is mini-
mized w.r.t w⃗:

L =
1

2
∥w⃗∥2 + C

∑
ξd,e′ (2)

s.t. w⃗(f⃗(d, e)− f⃗(d, e′)) ≥ 1− ξd,e′ (3)

ξd,e′ ≥ 0 (4)

where C is a trade-off between training error and
margin size; ξ is slacking variable and loops over
all query documents d and negative candidates e′ ∈
C(m)− {e}.

This model is expressive enough to include any
form of features describing the similarity and dis-
similarity of d and e. We only include some typical
features seen in literature. The inclusion of these
features is not meant to be exhaustive. Our purpose
is to build a moderate model in which some of the

Surface matching:
1. mention string m exactly matches candidate
e, i.e. m = e
2. neither m is a substring of e nor e is a sub-
string of m
3. m ̸= e and m is a substring of e
4. m ̸= e and e is a substring of m
5. m ̸= e and m is a redirect pointing to e in
Wikipedia
6. m ̸= e and e starts with m
7. m ̸= e and e ends with m

Context matching:
1. cosine similarity of TF-IDF score between
context and entire Wikipedia page of candidate
2. cosine similarity of TF-IDF score between
context and introduction of Wikipedia page
3. jaccard distance between context and entire
Wikipedia page of candidate
4. jaccard distance between context and intro-
duction of Wikipedia page
Popularity or prominence feature:
percentage of Wikipedia hyperlinks pointing to
e given mention m, i.e. P(e|m)
Category-context coherence model:
cat0 and cat1 (details in Section 3.4)

Table 1: Features for local predictor g0.

useful features like string matching and entity pop-
ularity cannot be easily expressed by collective ap-
proaches like (Hoffart et al., 2011; Han et al., 2011).
The features for level 0 predictor g0 are described
in Table 1. The reader can consult (Li et al., 2009;
Zheng et al., 2010; Lehmann et al., 2010) for further
reference.

3.2 Stacking training for global predictor g1

Stacked generalization (Wolpert, 1992) is a meta
learning algorithm that stacks two “levels” of pre-
dictors. Level 0 includes one or more predictors
h

(0)
1 , h

(0)
2 , . . . , h

(0)
K : Rd → R, each one is trained on

the original d-dimensional feature space. The level
1 predictor h(1) : Rd+K → R is trained in the aug-
mented (d+K)-dimensional feature space, in which
predictions at level 0 are taken as extra features in
h(1).

(Kou and Cohen, 2007) proposed stacked graphi-
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cal learning for learning and inference on relational
data. In stacked graphical learning, dependencies
among data are captured by relational template, with
which one searches for related instances of the cur-
rent instance. The augmented feature space does
not necessarily to be d + K. Instead, one can con-
struct any declarative feature with the original data
and predictions of related instances. For instance,
in collective document classification (Kou and Co-
hen, 2007) employ relational template to extract
documents that link to this document, then apply a
COUNT aggregator over each category on neighbor-
ing documents as level 1 features.

In our entity linking task, we use a single predic-
tor g0 trained with local features at level 0. Com-
pared with (Kou and Cohen, 2007), both g0 and g1

are L2R models rather than classifier. At level 1, for
each document-candidate entity pair, we use the re-
lational templateN (x) to find related entities for en-
tity x, and construct global features with some func-
tion G({g0(n)|n ∈ N (x)}) (details in Sec. 3.3).
The global predictor g1 receives as input the origi-
nal features plus G.

One problem is that if we use g0 trained on the en-
tire training set to predict related instances in train-
ing set, the accuracy can be somehow different (typ-
ically lower) for future unseen data. g1 with this pre-
diction as input doesn’t generalize well to test data.
This is known as train/test mismatch problem. To
mimic test time behavior, training is performed in a
cross-validation-like way. Let D be the entire train-
ing set:

1. Split D into L partitions {D1, . . . ,DL}

2. For each split Di:

2.1 Train an instance of g0 on D −Di

2.2 Predict all related instances inDi with this
predictor g0

2.3 Augment feature space for x ∈ Di, with G
applied on predictions of N (x)

3. Train level 0 predictor g0 on entire D, for ex-
panding feature space for test data

4. Train level 1 predictor g1 on entire D, in the
augmented feature space.

In the next subsection, we will describe how to
construct global features from the predictions of g0

on neighbors N (x) with G.

3.3 Enforcing coherence with global features G
If one wants to identify the correct entity for an am-
biguous name, he would possibly look for related
entities in its surrounding context. However, sur-
rounding entities can also exhibit some degree of
ambiguity. In ideal cases, most true candidates are
inter-connected with semantic links while negative
candidates are scattered around (Fig. 1). Thus, we
ask the following question: Is there any highly rele-
vant entity to this candidate in context? Or, is there
any mention with highly relevant entity to this can-
didate in the top k ranking list of this mention? And
how many those mentions are? The reason to look
up top k candidates is to improve recall. g0 may not
perfectly rank related entity at the first place, e.g.
“Mitt Romney” in Figure 1.

Assume the ambiguous mention set is M . For
each mention mi ∈ M , we rank each entity ei,j ∈
C(mi) by its score g0(ei,j). Denote its rank as
Rank(ei,j). For each entity e in the candidate set
E = {ei,j |∀ei,j ∈ C(mi), ∀mi ∈ M}, we search
related instances for e as follows:

1. search in E for entities with semantic related-
ness above a threshold ({0.1,0.3,0.5,0.7,0.9});

2. select those entities in step (1) with Rank(e)
less than or equal to k (k ∈ {1, 3, 5});

3. map entities in step (2) to unique set of men-
tions U , excluding current m, i.e. e ∈ C(m).

This process is relatively fast. It only involves a
sparse matrix slicing operation on the large pre-
computed semantic relatedness matrix in step (1),
and logical operation in step (2,3). The following
features are fired concerning the unique set U :

- if U is empty;

- if U is not empty;

- if the percentage |U |/|M | is above a threshold
(e.g. 0.3).

The above process generates a total of 45 (5×3×3)
global features.
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Barack Obama Democratic Party (United States)

Mitt Romney

Republican Party (United States)

Obama, Fukui

Obama, Nagasaki

Democratic Party (Italy)

Democratic Party (Serbia)

Republican Party of Minnesota

Republicanism

Romney, West Virginia

HMS Romney (1694)

... ... ... ...

received national attention during his campaign  ...  with his vectory in the March   [[Obama|Barack Obama]]

[[Democratic Party|Democratic Party (United States)]] primary  ...  He was re-elected president in November

2012, defeating [[Republican|Republican Party (United States)]] nominee [[Romney|Mitt Romney]]

Figure 1: Semantic links for collective entity linking. Annotation [[mention|entity]] follows Wikipedia conventions.

Finally, the semantic relatedness measure of two
entities ei,ej is defined as the common in-links of ei

and ej in Wikipedia (Milne and Witten, 2008; Han
et al., 2011):

SR(ei, ej) = 1− log(max(|A|, |B|))− log(|A ∩B|)
log(|W |)− log(min(|A|, |B|))

(5)
where A and B are the set of in-links for entity ei

and ej respectively, and W is the set of all Wikipedia
pages.

Our method is a trade-off between exact collec-
tive inference and approximating related instance
with top ranked entities produced by g0. Most
collective approaches take all ambiguous mentions
into consideration and disambiguate them simulta-
neously, resulting in difficulty when inference in
large search space (Kulkarni et al., 2009; Hoffart
et al., 2011). Others resolve to some kinds of ap-
proximation. (Cucerzan, 2007) construct features as
the average of all candidates for one mention, in-
troducing considerable noise. (Ratinov et al., 2011)
also employ a two level architecture but only take
top 1 prediction for features. This most resembles
our approach, except we use stacking to tackle the
train/test mismatch problem, and construct different
set of features from top k candidates predicted by
g0. We will show in our experiments that this indeed
helps boost performance.

3.4 Learning category-context coherence
model cat

Entities in Wikipedia are annotated with rich se-
mantic structures. Category network provides us
with another valuable information for entity link-
ing. Take the mention “Romney” as an exam-

ple, one candidate “Mitt Romney” with category
“Republican party presidential nominee” co-occurs
frequently with context like “election” and “cam-
paign”, while another candidate “Milton Romney”
with category “Utah Utes football players” is fre-
quently observed with context like “quarterback”
and “backfield”. The category network forms a di-
rected acyclic graph (DAG). Some entities can share
category through the network, e.g. “Barack Obama”
with category “Democratic Party presidential nom-
inees” shares the category “United States presiden-
tial candidates by party” with “Mitt Romney” when
travelling two levels up the network.

(Bunescu and Pasca, 2006) propose to learn the
category-context correlation at word level through
category-word pair features. This method creates
sparsity problem and does not scale well because
the number of features grows linearly with both the
number of categories and the vocabulary size. More-
over, the category network is somewhat noisy, e.g.
travelling up four levels of the hierarchy can result
in over ten thousand categories, with many irrelevant
ones.

Rather than learning the correlation at word level,
we explore a representation learning method that
learns category-context correlation in the latent se-
mantic space. Supervised Semantic Indexing (SSI)
(Bai et al., 2009) is trained on query-document pairs
to predict their degree of matching. The compar-
ison is performed in the latent semantic space, so
that synonymy and polysemy are implicitly handled
by its inner mechanism. The score function between
query q and document d is defined as:

f(q, d) = qT Wd (6)
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where W is learned with supervision like click-
through data.

Given training data {(qi, di)}, training is done by
randomly sampling a negative target d−. The model
optimizes W such that f(q, d+) > f(q, d−). Thus,
the training objective is to minimize the following
margin-based loss function:∑

q,d+,d−

max(0, 1− f(q, d+) + f(q, d−)) (7)

which is also known as contrastive estimation
(Smith and Eisner, 2005).

W can become very large and inefficient when we
have a big vocabulary size. This is addressed by re-
placing W with its low rank approximation:

W = UT V + I (8)

here, the identity term I is a trade-off between the
latent space model and a vector space model. The
gradient step is performed with Stochastic Gradient
Descent (SGD):

U ←U + λV (d+ − d−)qT ,

if 1− f(q, d+) + f(q, d−) > 0 (9)

V ←V + λUq(d+ − d−)T ,

if 1− f(q, d+) + f(q, d−) > 0. (10)

where λ is the learning rate.
The query and document are not necessary real

query and document. In our case, we treat our
problem as: given the occurring context of an en-
tity, retrieving categories corresponding to this en-
tity. Thus, we use context as query q and the cat-
egories of this candidate entity as d. We also treat
the definition page of an entity as its context, and
first train the model with definition pages, because
definition pages exhibit more focused topic. This
considerably accelerates the training process. To
reduce noise, We input the categories directly con-
nected with one entity as a word vector. The input
can be a TF-IDF vector or binary vector. We denote
model trained with normalized TF-IDF and with bi-
nary input as cat0 and cat1 respectively.

4 Experiments

4.1 Datasets
Previous researches have used diverse datasets for
evaluation, which makes it hard for comparison

with others’ approaches. TAC-KBP has several
years of data for evaluating entity linking system,
but is not well suited for evaluating collective ap-
proaches. Recently, (Hoffart et al., 2011) anno-
tated a clean and much larger dataset AIDA 1 for
collective approaches evaluation based on CoNLL
2003 NER dataset. (Ratinov et al., 2011) also re-
fined previous work and contribute four publicly
available datasets 2. Thanks to their great works,
we have enough data to evaluate against. Accord-
ing to the setting of (Hoffart et al., 2011), we
split the AIDA dataset for train/development/test
with 946/216/231 documents. We train a separate
model on the Wikipedia training set for evaluating
ACE/QUAINT/WIKI dataset (Ratinov et al., 2011).
Table 2 gives a brief overview of the datasets used.

For knowledge base, we use the Wikipedia XML
dump 3 to extract over 3.3 million entities. We use
annotation from Wikipedia to build a name dictio-
nary from mention string m to entity e for can-
didate generation, including redirects, disambigua-
tion pages and hyperlinks, follows the approach of
(Cucerzan, 2007). For candidate generation, we
keep the top 30 candidates by popularity (Tbl. 1).
Note that our name dictionary is different from
(Ratinov et al., 2011) and has a much higher recall.
Since (Ratinov et al., 2011) evaluate on “solvable”
mentions and we have no way to recover those men-
tions, we re-implement their global features and the
final scores are not directly comparable to theirs.

4.2 Methods under comparison

We compare our algorithm with several state-of-the-
art collective entity disambiguation systems. The
AIDA system proposed by (Hoffart et al., 2011) use
a greedy graph cutting algorithm that iteratively re-
move entities with low confidence scores. (Han et
al., 2011) employ personalized PageRank to prop-
agate evidence between different decisions. Both
algorithms use simple local features without dis-
criminative training. (Kulkarni et al., 2009) pro-
pose to use integer linear programming (ILP) for
inference. Except our re-implementation of Han’s

1available at http://www.mpi-inf.mpg.de/yago-naga/aida/
2http://cogcomp.cs.illinois.edu/Data, we don’t find the

MSNBC dataset in the zip file.
3available at http://dumps.wikimedia.org/enwiki/, we use

the 20110405 xml dump.
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Dataset ndocs non-
NIL

identified solvable

AIDA dev 216 4791 4791 4707
AIDA test 231 4485 4485 4411
ACE 36 257 238 209(185)
AQUAINT 50 727 697 668(588)
Wikipedia 40 928 918 854(843)

Table 2: Number of mentions in each dataset. “identi-
fied” means the mention exists in our name dictionary
and “solvable” means the true entity are among the top 30
candidates by popularity. Number in parenthesis shows
the results of (Ratinov et al., 2011).

method, both AIDA and ILP solution are quite slow
at running time. The online demo of AIDA takes
over 10 sec to process one document with mod-
erate size, while the ILP solution takes around 2-
3 sec/doc. In contrast, our method takes only 0.3
sec/doc, and is easy to implement.

(Ratinov et al., 2011) also utilize a two layer
learner architecture. The difference is that their
method use top 1 candidate generated by local
learner for global feature generation , while we
search the top k candidates. Moreover, stacking is
used to tackle the train/test mismatch problem in
our model. We re-implement the global features of
(Ratinov et al., 2011) and use our local predictor
g0 for level 0 predictor. Note that we only imple-
ment their global features concerning common in-
links and inter-connection (totally 9 features) for fair
comparison because all other models don’t use com-
mon outgoing links for global coherence.

4.3 Settings

We implement SV M rank with an adaptation of lin-
ear SVM in scikit-learn (which is a wrapper of Li-
blinear). The category-context coherence model is
implemented with Numpy configured with Open-
Blas library, and we train this model on the entire
Wikipedia hyperlink annotation. It takes about 1.5d
for one pass over the entire dataset. The learning
rate λ is set to 1e-4 and training cost before update
is below 0.02.

Parameter tuning: there aren’t many parameters
to tune for both g0 and g1. The context document
window size is fixed as 100 for compatibility with

(Ratinov et al., 2011; Hoffart et al., 2011). The num-
ber of candidates is fixed to top 30 ranked by entity’s
popularity. Increase this value will generally boost
recall at the cost of lower precision.

We introduce the following default parameter for
global features in g1. The number of fold for stack-
ing is set to {1,5,10} (see Table 4, default is 10; 1
means no stacking, i.e. training g0 with all training
data and generating level 1 features for training data
directly with this g0). The number k for searching
neighboring entities with relational template is set
to {1,3,5,7} (e.g. in step 2 of Section 3.3 k = 5;
default is 5).

For category-context modeling, the vocabulary
sizes of context and category are set to top 10k and
6k unigrams by frequency. The latent dimension of
low rank approximation is set to 200.

Performance measures: For all non-NIL
queries, we evaluate performance with micro pre-
cision averaged over queries and macro precision
averaged over documents. Mean Reciprocal Rank
(MRR) is an information retrieval measure and is
defined as 1

|Q|
∑|Q|

i
1

ranki
, where ranki is the rank

of correct answer in response to query i. For
ACE/AQUAINT/WIKI we also give the accuracy of
“solvable” mentions, but this is not directly compa-
rable to (Ratinov et al., 2011). Our name dictionary
is different from theirs and ours has a higher recall
rate (Tbl. 2). Hence, the “solvable” set is different.

k recall k recall

1 78.56 6 96.31
2 89.59 7 97.04
3 93.01 8 97.37
4 94.97 9 97.62
5 95.78 10 97.81

Table 3: Top k recall for local predictor g0.

4.4 Discussions
Table 4 shows the evaluation results on AIDA
dataset and Table 5 shows results on datasets
ACE/AQUAINT/WIKI.

Effect of cat:The first group in Table 4 shows
some baseline features for comparison. We can see
even if the categories only carry incomplete and
noisy information about an entity, it performs much
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Methods Devset Testset

micro
p@1

macro
p@1

MRR micro
p@1

macro
p@1

MRR

cosine 33.25 28.61 46.03 33.33 28.63 46.54
jaccard 44.71 36.56 57.76 45.66 36.89 57.08
cat0 54.75 47.14 67.70 61.52 54.72 72.55
cat1 60.15 54.64 72.98 65.46 61.04 76.84
popularity 69.21 67.59 79.26 69.07 72.63 79.45
g0 76.04 73.63 84.21 76.16 78.17 84.58
g0+global(Ratinov) 81.30 78.03 88.14 81.45 81.89 88.70
g1+1fold 82.01 78.52 88.90 83.59 83.58 90.05
g1+5fold 81.99 78.42 88.87 83.52 83.37 89.99
g1+10fold 82.01 78.53 88.91 83.59 83.55 90.03
g1+top1 81.65 78.76 88.51 81.81 82.55 89.06
g1+top3 82.20 78.64 88.98 83.52 83.34 89.94
g1+top5 82.01 78.57 88.90 83.63 83.76 90.05
g1+top7 82.05 78.40 88.90 83.75 83.58 90.08
g0+cat 79.36 76.14 86.66 79.64 80.47 87.32
g1+cat 82.24 78.49 89.02 84.88 84.49 90.65
g1+cat+all context 82.99 78.56 89.51 86.49 85.11 91.55

(Hoffart et al., 2011) - - - 82.29 82.02 -
(Shirakawa et al., 2011) - - - 81.40 83.57 -
(Kulkarni et al., 2009) - - - 72.87 76.74 -
(Han et al., 2011) - - - 78.97 75.77 -

Table 4: Performance on AIDA dataset. Maximal value in each group are highlighted with bold font. top k means up
to k candidates are used for searching related instances with relational template.

better than word level features. Group 5 in Table
4 shows cat information generally boosts perfor-
mance for both predictor g0 and g1.

Effect of stacking: Group 3 in Table 4 shows the
results with different fold in stacking training. 1 fold
means training g0 with all training data and directly
augment training data with this g0. Surprisingly, we
do not observe any substantial difference with vari-
ous fold size. We deduce it is possible the way we
fire global features with top k candidates that alle-
viates the problem of train/test mismatch when ex-
tending feature space for g1. Despite the ranking of
true entity can be lower in testset than in training
set, the semantic coherence information can still be
captured with searching over top k candidates.

Effect of top k global features: Group 4 in Table
4 shows the effect of k on g1 performance. Clearly,
increasing k generally improves precision and one

possible reason is the improvement in recall when
searching for related instances. Table 3 shows the
top k recall of local predictor g0. Further increasing
k does not show any improvement.

Our method benefits from such a searching strat-
egy, and consistently outperforms the global fea-
tures of (Ratinov et al., 2011). While their method
is a trade-off between expensive exact search over
all mentions and greedy assigning all mentions
with local predictor, we show this idea can be fur-
ther extended, somewhat like increasing the beam
search size without additional computational over-
head. The only exception is the ACE dataset, since
this dataset is so small, the difference translates to
only one mention. One may notice the improvement
on ACE/AQUAINT datasets is a little inconsistent.
These datasets are much smaller and the results only
differ within 4 mentions. Because these models are
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Method micro
p@1

macro
p@1

MRR correct
/ solv-
able

ACE
g0 77.43 81.30 79.03 95.22
Ratinov 77.43 80.70 78.81 95.22
g1+5fold 77.04 79.85 78.96 94.74
g0+cat 77.82 81.48 79.31 95.69
g1+cat 77.43 80.16 79.25 95.22

AQUAINT
g0 84.46 84.69 87.49 91.92
Ratinov 85.14 85.29 87.90 92.66
g1+5fold 85.83 85.55 88.27 93.41
g0+cat 85.01 85.00 87.89 92.51
g1+cat 85.28 85.14 88.23 92.81

Wikipedia test
g0 83.19 84.30 86.63 90.40
Ratinov 84.48 85.96 87.62 91.80
g1+5fold 84.81 86.29 88.13 92.15
g0+cat 84.38 86.13 87.51 91.69
g1+cat 85.45 87.16 88.31 92.86

Table 5: Evaluation on ACE/AQUAINT/WIKI datasets.

trained on Wikipedia, the annotation style can be
quite different.

Finally, as we analyze the development set of
AIDA, we discover that some location entities rely
on more distant information across the context, as
we increase the context to the entire contextual doc-
ument, we can gain extra performance boost.

4.5 Error analysis

As we analyze the development set of AIDA, we find
some general problems with location names. Loca-
tion name generally is not part of the main topic
of one document. Thus, comparing context with
its definition is not realistic. Most of the time, we
can find some related location names in context; but
other times, it is not easily distinguished. For in-
stance, in “France beats Turkey in men’s football...”
France refers to “France national football team” but
our system links it to the country page “France” be-
cause it is more popular. This can be addressed by
modeling finer context (Sen, 2012) or local syntac-
tic pattern (Hoffart et al., 2011). In other cases,

our system misclassifies “New York City” for “New
York” and “Netherlands” for “Holland” and “Peo-
ple’s Republic of China” for “China”, because in
all these cases, the latter ones are the most popu-
lar in Wikipedia. It is even hard for us humans to
tell the difference based only on context or global
coherence.

5 Conclusions

We propose a stacking based collective entity link-
ing method, which stacks a global predictor on top
of a local predictor to collect coherence information
from neighboring decisions. It is fast and easy to im-
plement. Our method trades off between inefficient
exact search and greedily assigning mention with lo-
cal predictor. It can be seen as searching related
entities with relational template in stacked graphi-
cal learning, with beam size k. Furthermore, we
adopt recent progress in representation learning to
learn category-context coherence model. It scales
better than existing approaches on large knowledge
base and performs comparison in the latent semantic
space. Combining these two techniques, our model
consistently outperforms all existing more sophisti-
cated collective approaches in our experiments.
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