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Abstract

In situated dialogue, humans and agents have
mismatched capabilities of perceiving the
shared environment. Their representations
of the shared world are misaligned. Thus
referring expression generation (REG) will
need to take this discrepancy into consider-
ation. To address this issue, we developed
a hypergraph-based approach to account for
group-based spatial relations and uncertain-
ties in perceiving the environment. Our em-
pirical results have shown that this approach
outperforms a previous graph-based approach
with an absolute gain of 9%. However, while
these graph-based approaches perform effec-
tively when the agent has perfect knowledge
or perception of the environment (e.g., 84%),
they perform rather poorly when the agent has
imperfect perception of the environment (e.g.,
45%). This big performance gap calls for new
solutions to REG that can mediate a shared
perceptual basis in situated dialogue.

1 Introduction

Situated human robot dialogue has received increas-
ing attention in recent years. In situated dialogue,
robots/artificial agents and their human partners are
co-present in a shared physical world. Robots need
to automatically perceive and make inference of the
shared environment. Due to its limited perceptual
and reasoning capabilities, the robot’s representation
of the shared world is often incomplete, error-prone,
and significantly mismatched from that of its human
partner’s. Although physically co-present, a joint
perceptual basis between the human and the robot
cannot be established (Clark and Brennan, 1991).
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Thus, referential communication between the hu-
man and the robot becomes difficult.

How this mismatched perceptual basis affects ref-
erential communication in situated dialogue was in-
vestigated in our previous work (Liu et al., 2012).
In that work, the main focus is on reference resolu-
tion: given referential descriptions from human part-
ners, how to identify referents in the environment
even though the robot only has imperfect percep-
tion of the environment. Since robots need to col-
laborate with human partners to establish a joint per-
ceptual basis, referring expression generation (REG)
becomes an equally important problem in situated
dialogue. Robots have much lower perceptual capa-
bilities of the environment than humans. How can
a robot effectively generate referential descriptions
about the environment so that its human partner can
understand which objects are being referred to?

There has been a tremendous amount of work
on referring expression generation in the last two
decades (Dale, 1995; Krahmer and Deemter, 2012).
However, most existing REG algorithms were devel-
oped and evaluated under the assumption that agents
and humans have access to the same kind of domain
information. For example, many experimental se-
tups (Gatt et al., 2007; Viethen and Dale, 2008;
Golland et al., 2010; Striegnitz et al., 2012) were
developed based on a visual world for which the in-
ternal representation is assumed to be known and
can be represented symbolically. However, this as-
sumption no longer holds in situated dialogue with
robots. There are two important distinctions in situ-
ated dialogue. First, the perfect knowledge of the en-
vironment is not available to the agent ahead of time.
The agent needs to automatically make inferences to
connect recognized lower-level visual features with
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symbolic labels or descriptors. Both recognition and
inference are error-prone and full of uncertainties.
Second, in situated dialogue the agent and the hu-
man have mismatched representations of the envi-
ronment. The agent needs to take this difference into
consideration to identify the most reliable features
for REG. Given these two distinctions, it is not clear
whether state-of-the-art REG approaches are appli-
cable under mismatched perceptual basis in situated
dialogue.

To address this issue, this paper revisits the prob-
lem of REG in the context of mismatched percep-
tual basis. We extended a well known graph-based
approach (Krahmer et al., 2003) that has shown
to be effective in previous work (Gatt and Belz,
2008; Gatt et al., 2009). We incorporated uncer-
tainties in perception into cost functions. We fur-
ther extended regular graph representation into hy-
pergraph representation to account for group-based
spatial relations that are important for visual descrip-
tions (Dhande, 2003; Tenbrink and Moratz, 2003;
Funakoshi et al., 2006; Liu et al., 2012). Our em-
pirical results demonstrate that both enhancements
lead to about a 9% absolute performance gain com-
pared to the original approach. However, while
our approache performs effectively when the agent
has perfect knowledge or perception of the environ-
ment (e.g., 84%), it performs poorly under the mis-
matched perceptual basis (e.g., 45%). This perfor-
mance gap calls for new solutions for REG that are
capable of mediating mismatched perceptual basis.

In the following sections, we first describe our
hypergraph-based representations and illustrate how
uncertainties from automated perception can be in-
corporated. We then describe an empirical study us-
ing Amazon Mechanical Turks for evaluating gener-
ated referring expressions. Finally we present evalu-
ation results and discuss potential future directions.

2 Related Work

Since the Full Brevity algorithm (Dale, 1989), many
approaches have been developed and evaluated for
REG (Dale, 1995; Krahmer and Deemter, 2012),
such as the incremental algorithm (Dale, 1995),
the locative algorithm (Kelleher and Kruijff, 2006),
and graph-based approaches (Krahmer et al., 2003;
Croitoru and Van Deemter, 2007). Most of these ap-
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proaches assume the agent has access to a complete
symbolic representation of the domain. While these
approaches work well for many applications involv-
ing user interfaces, the question is whether they can
be extended to the situation where the agent has in-
complete or incorrect knowledge and needs to make
inference about the domain or the world.

Recently, there has been increasing interest in
REG for visual objects (Roy, 2002; Golland et al.,
2010; Mitchell et al., 2013). Some work (Golland
et al., 2010) uses visual scenes that are generated by
computer graphics and thus the internal representa-
tion of the scene is known. Some other work focuses
on the connection between lower-level visual fea-
tures and symbolic descriptors for REG (Roy, 2002;
Mitchell et al., 2013). However, most work assumes
no vision recognition errors. It is well established
that automated recognition of visual scenes is ex-
tremely challenging. This process is error-prone
and full of uncertainties. It is not clear whether
the existing approaches can be extended to the sit-
uation where the agent has imperfect perception of
the shared environment.

An earlier work by Horacek (Horacek, 2005)
has looked into the problem of mismatched knowl-
edge between conversation partners for REG. The
approach is a direct extension of the incremental al-
gorithm (Dale, 1995). However, this work only pro-
vides a proof of concept example to illustrate the
idea. No empirical evaluation was given.

All these previous works have motivated our
present investigation. We are interested in REG un-
der mismatched perceptual basis between conversa-
tion partners, where the agent has imperfect percep-
tion and knowledge of the shared environment. In
particular, we took a well-studied graph-based ap-
proach (Krahmer et al., 2003) and extended it to in-
corporate group spatial relations and uncertainties
associated with automated perception of the envi-
ronment. The reason we chose a graph-based ap-
proach is that graph representations are widely used
in the fields of computer vision (CV) and pattern
recognition to represent spatially rich scenes. Never-
theless, the findings from this investigation provide
insight to other approaches.
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Figure 1: An original scene and its impoverished scene processed by CV algorithm

3 Hypergraph-based REG

Towards mediating a shared perceptual basis in sit-
uated dialogue, our previous work (Liu et al., 2012)
has conducted experiments to study referential com-
munication between partners with mismatched per-
ceptual capabilities. We simulated mismatched ca-
pabilities by making an original scene (Figure 1(a))
available to a director (simulating higher perceptual
calibre) and a corresponding impoverished scene
(Figure 1(b)) available to a matcher (simulating low-
ered perceptual calibre). The impoverished scene
is created by re-rendering automated recognition re-
sults of the original scene by a CV algorithm. An
example of the original scene and an impoverished
scene is shown in Figure 1. Using this setup, the di-
rector and the matcher were instructed to collaborate
with each other on some naming games. Through
these games, they collected data on how partners
with mismatched perceptual capabilities collaborate
to ground their referential communication.

The setup in (Liu et al., 2012) is intended to sim-
ulate situated dialogue between a human (like the
director) and a robot (like the matcher). The robot
has a significantly lowered ability in perception and
reasoning. The robot’s internal representation of the
shared world will be much like the impoverished
scene which contains many recognition errors. The
data from (Liu et al., 2012; Liu et al., 2013) shows
that different strategies were used by conversation
partners to produce referential descriptions. Besides
directly describing attributes or binary relations with
a relatum, they often use group-based descriptions
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(e.g., a cluster of four objects on the right). This is
mainly due to the fact that some objects are simply
not recognizable to the matcher. Binary spatial rela-
tionships sometimes are difficult to describe the tar-
get object, so the matcher must resort to group infor-
mation to distinguish the target object from the rest
of the objects. For example, suppose the matcher
needs to describe the target object 5 in Figure 1(b),
he/she may have to start by indicating the group of
three objects at the bottom and then specify the re-
lationship (i.e., top) of the target object within this

group.

The importance of group descriptions has been
shown not only here, but also in previous works
on REG (Funakoshi et al., 2004; Funakoshi et al.,
2006; Weijers, 2011). While the original graph-
based approach can effectively represent attributes
and binary relations between objects (Krahmer et al.,
2003), it is insufficient to capture within-group or
between-group relations. Therefore, to address the
low perceptual capabilities of artificial agents, we in-
troduce hypergraphs to represent the shared environ-
ment. Our approach has two unique characteristics
compared to previous graph-based approaches: (1)
A hypergraph representation is more general than
a regular graph. Besides attributes and binary re-
lations, it can also represent group-based relations.
(2) Unlike previous work, here the generation of hy-
pergraphs are completely driven by automated per-
ception of the environment. This is done by incor-
porating uncertainties in perception and reasoning
into cost functions associated with graphs. Next we



give a detailed account on hypergraph representa-
tion, cost functions incorporating uncertainties, and
the search algorithm for REG.

3.1 Hypergraph Representation

A directed hypergraph G (Gallo et al., 1993) is a
tuple of the form: G = (X, A), in which

X ={zn}

A={a;=(t;, hy) | t; € X, hy C X}

Similar to regular graphs, a hypergraph consists
of a set of nodes X and a set of arcs A. However,
different from regular graphs, each arc in A is con-
sidered as a hyperarc in the sense that it can capture
relations between any two subsets of nodes: a tail
(t;) and a head (h;). Therefore, a hypergraph is a
generalization of a regular graph. It becomes a reg-
ular graph if the cardinalities of both the tail and the
head are restricted to one for all hyperarcs. While
regular graphs are commonly used to represent bi-
nary relations between two nodes, hypergraphs pro-
vide a more general representation for n-ary rela-
tions among multiple nodes.

We use hypergraphs to represent the agent’s per-
ceived physical environment (also called scene hy-
pergraphs). More specifically, each perceived ob-
ject is represented by a node in the graph. Each per-
ceived visual attribute of an object (e.g., color, size,
type information) or a group of objects (e.g., num-
ber of objects in the group, location) is captured by
a self-looping hyperarc. Hyperarcs are also used to
capture the spatial relations between any two subsets
of nodes, whether it is a relation between two ob-
jects, or between two groups of objects, or between
one or more objects within a group of objects.

For example, Figure 2 shows a hypergraph cre-
ated for part of the impoverished scene shown in
Figure 1(b) (i.e., the upper right corner including
objects 7, 8, 9, 11, and 13). One important char-
acteristic is that, because the graph is created based
on an automated vision recognition system, the val-
ues of an attribute or a relation in the hypergraph
are numeric (except for the type attribute). For ex-
ample, the value of the color attribute is the RGB
distribution extracted from the corresponding visual
object, the value of the size attribute is the width and
height of the bounding box and the value of the lo-
cation attribute is a function of spatial coordinates.

395

These numerical features will be further converted to
symbolic labels with certain confidence scores (de-
scribed later in Section 3.3.2).

3.2 Hypergraph Pruning

The perceived visual scene can be represented as a
complete hypergraph, in which any pair of two sub-
sets of nodes are connected by a hyperarc. However,
such a complete hypergraph is not only inefficient
but also unnecessary. Instead of keeping all possible
n-ary relations (i.e., hyperarcs), we only retain those
relations that are likely used by humans to produce
referring expressions, based on two heuristics.

The first heuristic is based on perceptual prin-
ciples, also called the Gestalt Laws of perception
(Sternberg, 2003), which describe how people group
visually similar objects into entities or groups. Two
well known principles of perceptual grouping are
proximity and similarity (Wertheimer, 1938): ob-
jects that lie close together are often perceived as
groups; objects of similar shape, size or color are
more likely to form groups than objects differing
along these dimensions. Based on these two prin-
ciples, previous works have developed different al-
gorithms for perceptual grouping (Thrisson, 1994;
Gatt, 2006). In our investigation, we adopted Gatt’s
algorithm (Gatt, 2006), which has shown to be more
accurate for spatial grouping. Given the results
from spatial grouping, we only retain hyperarcs that
represent spatial relations between two objects, be-
tween two perceived groups, between one object and
a perceived group, or between one object and the
group it belongs to.

The second heuristic is based on the observation
that, given a certain orientation, people tend to use a
relatum that is closer to the referent than more dis-
tant relata. In other words, it is less likely to refer to
an object relative to a distant relatum when there is
a closer relatum. For example, when referring to the
stapler (object 9 in Figure 1(a) ), it is more likely to
use “the stapler above the battery” than “the stapler
above the cellphone”. Based on this observation, we
prune the hypergraphs by only retaining hyperarcs
between an object and their closest relata for each
possible orientation.

Figure 2 shows the resulting hypergraph for rep-
resenting a subset of objects (7, 8, 9, 11, and 13) in
Figure 1(a).
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Figure 2: An example of hypergraph representing the per-
ceived scene (a partial scene only including object 7, 8,
9, 11, 13 for Figure 1(a)).

3.3 Symbolic Descriptors for Attributes

As mentioned earlier, the values of attributes of ob-
jects and their relations are numerical in nature. In
order for the agent to generate natural language de-
scriptions, the first step is to assign symbolic labels
or descriptors to those attributes and relations. Next
we describe how we use a lexicon with grounded se-
mantics in this process.

3.3.1 Lexicon with Grounded Semantics

Grounded semantics provides a bridge to connect
symbolic labels or words with lower level visual fea-
tures (Harnad, 1990). Previous work has developed
various approaches for grounded semantics mainly
for the reference resolution task, i.e., identifying vi-
sual objects in the environment given language de-
scriptions (Dhande, 2003; Gorniak and Roy, 2004;
Tenbrink and Moratz, 2003; Siebert and Schlangen,
2008; Liu et al., 2012). For the referring expression
generation task here, we also need a lexicon with
grounded semantics.

In our lexicon, the semantics of each category
of words is defined by a set of semantic grounding
functions that are parameterized on visual features.
For example, for the color category it is defined as a
multivariate Gaussian distribution based on the RGB
distribution. Specific words such as green, red, or
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blue have different means and co-variances as the
following:

color : red = fT(UCOlOT) = N(gcolor | M1, Zl)
color : green = fg(ﬁcolor> = N('D’color ’ H2, 22)
color : blue = fb(gcolor) = N(ﬁcolor ‘ M3, 23)

The above functions define how likely a set of rec-
ognized visual features (i.e., ¥q00) describing the
color dimensions (i.e., RGB distribution) is to match
the color terms red, green, and blue.

For the spatial relation terms such as above, be-
low, left, right, the semantic grounding functions
take both vertical and horizontal coordinates of two
objects, as follows !:

spatial Rel : above(a,b) = fabove (Vatoes Vbloc)
_ { 1— Lol it y, < gy
0

otherwise.

Using the above convention, we have defined se-
mantic grounding functions for size category words
(e.g., small and big) and absolute position words
(e.g., top, below, left, and right). In addition, we use
object recognition models (Zhang and Lu, 2002) to
define class type category words such as apple and
orange used in our domain.

3.3.2 Attribute Descriptors and Cost Functions

Given the lexicon with grounded semantics as de-
scribed above, the numerical attributes captured in
the scene hypergraph can be converted to symbolic
descriptors. For each attribute (e.g., color) or re-
lation, the corresponding visual feature vector (i.e.,
Ueolor) 18 plugged into the semantic grounding func-
tions for the corresponding category of words. The
word that best describes the attribute is chosen as the
descriptor for that attribute. For example, given an
RGB color distribution v, we can find the color
descriptor as follows:

color : w* = argmax  fu,(Veotor),

red,green,blue

For each attribute or relation, we can find a best
descriptor in this manner. In addition, we also ob-
tain a numerical value (returned from the semantic

IThe size of the overall scene is 800x800.



grounding functions) that measures how well this
descriptor describes the corresponding visual fea-
tures. Intuitively, one would choose a descriptor that
closely matches the visual features. Based on this
intuition, we define the cost for each attribute A as
the following:

cost(A) =1 — fu+ (V)

where w* is the best descriptor for the attribute.

Given an attribute, the better the descriptor
matches the extracted visual features, the lower the
cost of the corresponding hyperarc.

3.4 Graph Matching for REG

Now the hypergraph representing the perceived en-
vironment has symbolic descriptors for its attributes
and relations together with corresponding costs.
Given this representation, REG can be formulated as
a graph matching algorithm similar to that described
in (Krahmer et al., 2003). We use the same Branch
and Bound algorithm described in (Krahmer et al.,
2003). In this approach, a hypothesis hypergraph
(starting with one node representing the target ob-
ject) is gradually expanded by adding in a least cost
hyperarc from the scene hypergraph. At each ex-
pansion, the hypothesis graph is matched against the
scene hypergraph to decide whether it matches any
nodes other than the target node in the scene hyper-
graph. The expansion stops if the hypothesis graph
does not cover any other nodes except for the target
node. At this point, the hypothesis graph captures all
the content (e.g., attributes and relations) required to
uniquely describe the target object. We then apply
a set of simple generation templates to generate the
surface form of referring expressions based on the
hypothesis graph.

4 Empirical Evaluations

4.1 Evaluation Setup

To evaluate the performance of this hypergraph-
based approach to REG, we conducted a compara-
tive study using crowd-sourcing. More specifically,
we created 48 different scenes similar to that in Fig-
ure 1(a). Each scene has 13 objects on average and
there are 621 objects in total. For each of these
scenes, we applied a CV algorithm (Zhang and Lu,
2002) and generated scene hypergraphs as described
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in Section 3.1. We then use different generation
strategies (varied in terms of graph representations
and cost functions, to be explained in Section 4.2) to
automatically generate referring expressions to refer
to each object.

To evaluate the quality of these generated refer-
ring expressions, we applied Amazon Mechanical
Turk to solicit feedback from the crowd 2. Through
an interface, we displayed an original scene and gen-
erated referring expressions (from different genera-
tion strategies) in a random order. We asked each
turk to select the object in the scene that he/she be-
lieved was the one referred to by the shown refer-
ring expression (i.e., reference identification task).
Each referring expression received three votes from
the crowd. In total, 217 turks participated in our ex-
periment.

4.2 Generation Strategies

We applied a set of different strategies to generate
referring expressions for each object. The variations
lie in two dimensions: (1) different graph repre-
sentations: using a hypergraph to represent the per-
ceived scene as described in Section 3.1 versus us-
ing a regular graph as introduced in (Krahmer et al.,
2003); and (2) different cost functions for attributes
and relations: cost functions that have been used in
previous works (Theune et al., 2007; Krahmer et al.,
2008) and cost functions that incorporate uncertain-
ties of perception as described in Section 3.3.2.
Cost functions play an important role in graph-
based approaches (Krahmer et al., 2003). Previous
works have examined different types of cost func-
tions (Theune et al., 2007; Krahmer et al., 2008;
Theune et al., 2011). We adopted some commonly
used cost functions from previous work together
with the cost functions defined here. In particular,
we experimented with the following different cost
functions:
Simple Cost: The costs for all hyperarcs are set to
1. With this cost function, the graph-based algorithm
resembles the Full Brevity algorithm of Dale (Dale,

2To control the quality of crowdsourcing, we recruited par-
ticipants based on the following criteria: Participants’ locations
are limited to the United States. Approval rate for each partic-
ipant’s previous work is greater than or equal to 95%, and the
number of each participant’s previous approved work is greater
than or equal to 1000.



1992) in that a shortest distinguishing description is
preferred.

Absolute Preferred: The costs for hyperarcs rep-
resenting absolute attributes (e.g., type, color, and
position) are set to 1. The costs for relative at-
tributes (e.g., size) and relations are set to 2. This
cost function mimics human’s preference for abso-
lute attributes over relative ones (Dale, 1995).
Relative Preferred: The costs for hyperarcs repre-
senting absolute attributes are set to 2 and for rela-
tive attributes and relations are set to 1. This cost
function has been applied previously to emphasize
the importance of spatial relations in REG (Viethen
and Dale, 2008).

Uncertainty Based: The costs for all hyperarcs are
defined by incorporating uncertainties from percep-
tion as described in Section 3.3.2.

Uncertainty Relative Preferred: To emphasize the
importance of spatial relations as demonstrated in
situated interaction (Tenbrink and Moratz, 2003;
Kelleher and Kruijff, 2006), the costs for hyperarcs
representing relative attributes and relations are di-
vided by 3. This cost function will allow the algo-
rithm to prefer spatial relations through the reduced
cost.

Note that we only tested a few (not all) com-
monly used cost functions proposed by previous
work (Krahmer et al., 2003; Theune et al., 2007,
Krahmer et al., 2008; Theune et al., 2011). For ex-
ample, we did not include the stochastic cost func-
tion which is defined based on the frequencies of at-
tribute selection from the training data (Krahmer et
al., 2003). On the one hand, we did not have a large
set of human descriptions of the impoverished scene
to learn the stochastic cost. On the other hand, it
is not clear whether human strategies of describing
the impoverished scene should be used to represent
optimal strategies for the robot. Nevertheless, the
above different cost functions will allow us to eval-
uate whether incorporating perceptual uncertainties
will make a difference in the REG performance.

4.3 Evaluation Results

As mentioned earlier, each generated referring ex-
pression received three independent votes regarding
its referent from the crowd. The referent with the
most votes is taken as the predicted referent and is
used for evaluation. If all three votes are differ-
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] Cost Function Regular Graph | Hypergraph
Simple Costs 33.2% 33.3%
Absolute Preferred 30.1% 30.3%
Relative Preferred 31.1% 35.4%
Uncertainty Based 35.7% 37.5%
Uncertainty Rel. Prefer. 36.7% 45.2%

Table 1: Results with different cost functions

ent, then by default, it is deemed that the referent
is not correctly identified for that expression. We
use the accuracy of the referential identification task
(i.e., the percentage of generated referring expres-
sions where the referents are correctly identified) as
the metric to evaluate different generation strategies
illustrated in Section 4.2.

4.3.1 The Role of Cost Functions

Table 1 shows the results based on different cost
functions and different graph representations. There
are several observations.

First, when the agent does not have perfect knowl-
edge of the environment and has to automatically
infer the environment as in our setting here, cost
functions based on uncertainties of perception lead
to better results. This occurs for both regular graphs
and hypergraphs. This result is not surprising and
indicates that cost functions should be tied to the
agent’s ability to perceive and infer the environment.
The uncertainty based cost functions allow the agent
to prefer reliable attributes or relations.

Second, consistent with previous work (Viethen
and Dale, 2008), we observed the importance of spa-
tial relations. Especially when the perceived world
is full of uncertainties, spatial relations tend to be
more reliable. In particular, as shown in Table 1,
using hypergraphs enables generating group-based
relations and results in significantly better perfor-
mance (45.2%) compared to regular graphs (36.7%)
(p = 0.002).

Note that our current cost function only includes
uncertainties of the agent’s own perception in a sim-
plistic form. When humans and agents have mis-
matched perceptual basis, the human’s model of
comprehension and tolerance of inaccurate descrip-
tion could play a role in REG. Incorporating human
models in the cost function will require in-depth em-
pirical studies and we will leave that to our future



work.

4.3.2 The Role of Imperfect Perception

To further understand the role of hypergraphs in
mediating mismatched perceptions between humans
and agents, we created a perfect scene regular graph
and a perfect scene hypergraph (representing the
agent’s perfect knowledge of the environment) for
each of the 48 scenes used in the experiments. In
each of these scene graphs, the attribute and rela-
tion descriptors are manually provided. We fur-
ther applied the Absolute Preferred cost function
(which has shown competitive performance in previ-
ous work) to generate referring expressions for each
object. Again, each referring expression received
three votes from the crowd.

Table 2 shows the results comparing two con-
ditions: (1) REs generated (by the Absolute Pre-
ferred cost function) based on the perfect graphs
which represent the agent’s perfect knowledge and
perception of the environment; and (2) REs gener-
ated based on automatically created graphs (by the
Uncertainty Relative Preferred cost function) which
represent the agent’s imperfect knowledge of the
environment as a result of automated recognition
and inference. The result shows that given perfect
knowledge of the environment, hypergraphs only
perform marginally better than the regular graphs
(p = 0.07). Given imperfect knowledge of the envi-
ronment, hypergraphs significantly outperforms the
regular graphs by taking advantage of spatial group-
ing information (p = 0.002). It is worthwhile to
mention that currently we use spatial proximity to
identify groups. However, the hypergraph based ap-
proach is not restricted to spatial grouping. In the-
ory, it can represent any type of group based on dif-
ferent similarity criteria.

Furthermore, our result shows that the graph-
based approaches perform quite competitively under
the condition of perfect knowledge and perception.
Although evaluated on different data sets, this result
is consistent with results from previous work (Gatt
and Belz, 2008; Gatt et al., 2009). However, what is
more interesting here is that while graph-based ap-
proaches perform well when the agent has perfect
knowledge of the environment, as its human part-
ner, these approaches literally fall apart with close
to 40% performance degradation when applied to

399

] Environment Regular Graph | Hypergraph
Pefect Perception 80.4% 84.2%
Imperfect Perception 36.7% 45.2%

Table 2: Results of comparing perfect perception and im-
perfect perception of the shared world.

the situation where the agent’s representation of the
shared world is problematic and full of mistakes.

These results indicate that REG for automati-
cally perceived scenes can be extremely challeng-
ing. Many errors result from automated perception
and reasoning that will affect the internal representa-
tion of the world and thus the generated REs. In our
experiments here, we applied a very basic CV algo-
rithm which resulted in rather poor performance in
our data: overall, 60.3% of objects in the original
scene are mis-recognized, and 10.5% of objects are
mis-segmented. We think this poor CV performance
represents a more challenging problem.

Some errors such as recognition errors can be by-
passed using our current approach based on hyper-
graphs. For example, in Figure 1 target object 9 (a
stapler) and 13 (a key) are mis-recognized as a cup
and a pen. Using our hypergraph-based approach,
for the target object 9, instead of generating “a small
cup” (as in the case of using regular graphs), “a gray
object on the top within a cluster of four objects”
is generated. For the target object 13, instead of “a
pen” as generated by regular graphs, “a small object
on the right within a cluster of 4” is generated. Even
with recognition errors, these group-based descrip-
tions will allow the listener to identify target objects
in their representation correctly. Nevertheless, many
processing errors cannot be handled by our current
approach. For example, an object can be mistak-
enly segmented into multiple parts or several objects
can be mistakenly grouped into one object. In addi-
tion, our current semantic grounding functions are
simple. Sometimes they do not provide correct de-
scriptors for the extracted visual features. More so-
phisticated functions that better reflect human’s vi-
sual perception (Regier, 1996; Mojsilovic, 2005;
Mitchell et al., 2011) should be pursued in the fu-
ture.



Minimum Effort | Extra Effort |

84.2% 88.1%
45.2% 51.5%

Pefect Perception
Imperfect Perception

Table 3: Results of comparing minimum effort and extra
effort using hypergraphs

4.3.3 The Role of Extra Effort

While REG systems have a tendency to produce
minimal descriptions, recent psycholinguistic stud-
ies have shown that speakers do not necessarily fol-
low the Grice’s maxim of quantity, and they tend
to provide redundant properties in their descrip-
tions (Jordan and Walker, 2000; Belke and Meyer,
2002; Arts et al.,, 2011). With this in mind, we
conducted a very simple evaluation on the role of
extra effort. Once a set of descriptors are selected
based on the minimum cost, one additional descrip-
tor (with the least cost among the remaining at-
tributes or relations) is added to the referential de-
scription. We once again solicited the crowd feed-
back to this set of expressions generated by extra
effort. Each expression again received three votes
from the crowd.

Table 3 shows the results by comparing minimum
effort with extra effort when using hypergraphs to
generate REs. As indicated here, extra effort (by
adding one additional descriptor) leads to more com-
prehensible REs with 3.9% improvement under per-
fect perception and 6.3% improvement under imper-
fect perception (both are significant, p < 0.05). The
improvement is larger under imperfect perception.
This seems to indicate that exploring extra effort in
REG could help mediate mismatched perceptions in
situated dialogue. However, more understanding on
how to engage in such extra effort will be required
in the future.

5 Conclusion

In situated dialogue, humans and agents have mis-
matched perceptions of the shared environment. To
facilitate successful referential communication be-
tween a human and an agent, the agent needs to take
such discrepancies into consideration and generate
referential descriptions that can be understood by
its human partner. With this in mind, we re-visited
the problem of referring expression generation in the
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context of mismatched perceptions between humans
and agents. In particular, we applied and extended
the state of the art graph-based approach (Krahmer
et al., 2003) in this new setting. Our empirical re-
sults have shown that, to address the agent’s limited
perceptual capability, REG algorithms will need to
take into account the uncertainties in perception and
reasoning. Group-based information appears more
reliable and thus should be modeled by an approach
that deals with automated perception of spatially
rich scenes.

While graph-based approaches have shown effec-
tive for the situation where the agent has complete
knowledge of the environment, as its human part-
ner, these approaches are often inadequate when hu-
mans and agents have mismatched representations
of the shared world. Our empirical results here call
for new solutions to address the mismatched per-
ceptual basis. Previous work indicated that referen-
tial communication is a collaborative process (Clark
and Wilkes-Gibbs, 1986; Heeman and Hirst, 1995).
Conversation partners make extra effort to collab-
orate with each other. For the situation with mis-
matched perceptual basis, a potential solution thus
should go beyond the objective of generating a mini-
mum description, and towards a collaborative model
which incorporates immediate feedback from the
conversation partner (Edmonds, 1994).
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