
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 322–332,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Efficient Higher-Order CRFs for Morphological Tagging

Thomas Müller†‡, Helmut Schmid†‡, and Hinrich Schütze†

†Center for Information and Language Processing, University of Munich, Germany
‡Institute for Natural Language Processing , University of Stuttgart, Germany

muellets@cis.lmu.de

Abstract

Training higher-order conditional random
fields is prohibitive for huge tag sets. We
present an approximated conditional random
field using coarse-to-fine decoding and early
updating. We show that our implementation
yields fast and accurate morphological taggers
across six languages with different morpho-
logical properties and that across languages
higher-order models give significant improve-
ments over 1st-order models.

1 Introduction

Conditional Random Fields (CRFs) (Lafferty et al.,
2001) are arguably one of the best performing se-
quence prediction models for many Natural Lan-
guage Processing (NLP) tasks. During CRF train-
ing forward-backward computations, a form of dy-
namic programming, dominate the asymptotic run-
time. The training and also decoding times thus
depend polynomially on the size of the tagset and
exponentially on the order of the CRF. This prob-
ably explains why CRFs, despite their outstanding
accuracy, normally only are applied to tasks with
small tagsets such as Named Entity Recognition and
Chunking; if they are applied to tasks with bigger
tagsets – e.g., to part-of-speech (POS) tagging for
English – then they generally are used as 1st-order
models.

In this paper, we demonstrate that fast and accu-
rate CRF training and tagging is possible for large
tagsets of even thousands of tags by approximat-
ing the CRF objective function using coarse-to-fine
decoding (Charniak and Johnson, 2005; Rush and

Petrov, 2012). Our pruned CRF (PCRF) model has
much smaller runtime than higher-order CRF mod-
els and may thus lead to an even broader application
of CRFs across NLP tagging tasks.

We use POS tagging and combined POS and
morphological (POS+MORPH) tagging to demon-
strate the properties and benefits of our approach.
POS+MORPH disambiguation is an important pre-
processing step for syntactic parsing. It is
usually tackled by applying sequence prediction.
POS+MORPH tagging is also a good example of a
task where CRFs are rarely applied as the tagsets are
often so big that even 1st-order dynamic program-
ming is too expensive. A workaround is to restrict
the possible tag candidates per position by using ei-
ther morphological analyzers (MAs), dictionaries or
heuristics (Hajič, 2000). In this paper, however we
show that when using pruning (i.e., PCRFs), CRFs
can be trained in reasonable time, which makes hard
constraints unnecessary.

In this paper, we run successful experiments on
six languages with different morphological prop-
erties; we interpret this as evidence that our ap-
proach is a general solution to the problem of
POS+MORPH tagging. The tagsets in our experi-
ments range from small sizes of 12 to large sizes of
up to 1811. We will see that even for the smallest
tagset, PCRFs need only 40% of the training time of
standard CRFs. For the bigger tagset sizes we can
reduce training times from several days to several
hours. We will also show that training higher-order
PCRF models takes only several minutes longer than
training 1st-order models and – depending on the
language – may lead to substantial accuracy im-

322

Language Sentences Tokens POS MORPH POS+MORPH OOV
Tags Tags Tags Rate

ar (Arabic) 15,760 614,050 38 516 516 4.58%
cs (Czech) 38,727 652,544 12 1,811 1,811 8.58%
en (English) 38,219 912,344 45 45 3.34%
es (Spanish) 14,329 427,442 12 264 303 6.47%
de (German) 40,472 719,530 54 255 681 7.64%
hu (Hungarian) 61,034 1,116,722 57 1,028 1,071 10.71%

Table 1: Training set statistics. Out-Of-Vocabulary (OOV) rate is regarding the development sets.

provements. For example in German POS+MORPH
tagging, a 1st-order model (trained in 32 minutes)
achieves an accuracy of 88.96 while a 3rd-order
model (trained in 35 minutes) achieves an accuracy
of 90.60.

The remainder of the paper is structured as fol-
lows: Section 2 describes our CRF implementa-
tion1 and the feature set used. Section 3 sum-
marizes related work on tagging with CRFs, effi-
cient CRF tagging and coarse-to-fine decoding. Sec-
tion 4 describes experiments on POS tagging and
POS+MORPH tagging and Section 5 summarizes
the main contributions of the paper.

2 Methodology

2.1 Standard CRF Training

In a standard CRF we model our sentences using a
globally normalized log-linear model. The proba-
bility of a tag sequence ~y given a sentence ~x is then
given as:

p(~y|~x) =
exp

∑
t,i λi · φi(~y, ~x, t)

Z(~λ, ~x)

Z(~λ, ~x) =
∑

~y

exp
∑
t,i

λi · φi(~y, ~x, t)

Where t and i are token and feature indexes, φi is
a feature function, λi is a feature weight and Z is a
normalization constant. During training the feature
weights λ are set to maximize the conditional log-
likelihood of the training data D:

1Our java implementation MarMoT is available at
https://code.google.com/p/cistern/

llD(~λ) =
∑

(~x,~y)∈D

log p(~y|~x,~λ)

In order to use numerical optimization we have to
calculate the gradient of the log-likelihood, which is
a vector of partial derivatives ∂llD(~λ)/∂λi. For a
training sentence ~x, ~y and a token index t the deriva-
tive wrt feature i is given by:

φi(~y, ~x, t)−
∑
~y′

φi(~y
′, ~x, t) p(~y′|~x,~λ)

This is the difference between the empirical fea-
ture count in the training data and the estimated
count in the current model ~λ. For a 1st-order model,
we can replace the expensive sum over all possible
tag sequences ~y′ by a sum over all pairs of tags:

φi(yt, yt+1, ~x, t)−
∑
y,y′

φi(y, y
′, ~x, t) p(y, y′|~x,~λ)

The probability of a tag pair p(y, y′|~x,~λ) can then
be calculated efficiently using the forward-backward
algorithm. If we further reduce the complexity of the
model to a 0-order model, we obtain simple maxi-
mum entropy model updates:

φi(yt, ~x, t)−
∑

y

φi(y, ~x, t) p(y|~x,~λ)

2.2 Pruned CRF Training
As we discussed in the introduction, we want to de-
code sentences by applying a variant of coarse-to-
fine tagging. Naively, to later tag with nth-order

323

accuracy we would train a series of n CRFs of in-
creasing order. We would then use the CRF of order
n − 1 to restrict the input of the CRF of order n.
In this paper we approximate this approach, but do
so while training only one integrated model. This
way we can save both memory (by sharing feature
weights between different models) and training time
(by saving lower-order updates).

The main idea of our approach is to create increas-
ingly complex lattices and to filter candidate states
at every step to prevent a polynomial increase in lat-
tice size. The first step is to create a 0-order lat-
tice, which as discussed above, is identical to a se-
ries of independent local maximum entropy models
p(y|~x, t). The models base their prediction on the
current word xt and the immediate lexical context.
We then calculate the posterior probabilities and re-
move states y with p(y|~x, t) < τ0 from the lattice,
where τ0 is a parameter. The resulting reduced lat-
tice is similar to what we would obtain using candi-
date selection based on an MA.

We can now create a first order lattice by adding
transitions to the pruned lattice and pruning with
threshold τ1. The only difference to 0-order prun-
ing is that we now have to run forward-backward
to calculate the probabilities p(y|~x, t). Note that in
theory we could also apply the pruning to transition
probabilities of the form p(y, y′|~x, t); however, this
does not seem to yield more accurate models and is
less efficient than state pruning.

For higher-order lattices we merge pairs of states
into new states, add transitions and prune with
threshold τi.

We train the model using l1-regularized Stochas-
tic Gradient Descent (SGD) (Tsuruoka et al., 2009).
We would like to create a cascade of increasingly
complex lattices and update the weight vector with
the gradient of the last lattice. The updates, how-
ever, are undefined if the gold sequence is pruned
from the lattice. A solution would be to simply rein-
sert the gold sequence, but this yields poor results
as the model never learns to keep the gold sequence
in the lower-order lattices. As an alternative we per-
form the gradient update with the highest lattice still
containing the gold sequence. This approach is sim-
ilar to “early updating” (Collins and Roark, 2004)
in perceptron learning, where during beam search
an update with the highest scoring partial hypothe-

1: function GETSUMLATTICE(sentence, ~τ)
2: gold-tags← getTags(sentence)
3: candidates← getAllCandidates(sentence)
4: lattice← ZeroOrderLattice(candidates)
5: for i = 1→ n do
6: candidates← lattice. prune(τi−1)
7: if gold-tags 6∈ candidates then
8: return lattice
9: end if

10: if i > 1 then
11: candidates← mergeStates(candidates)
12: end if
13: candidates← addTransitions(candidates)
14: lattice← SequenceLattice(candidates, i)
15: end for
16: return lattice
17: end function

Figure 1: Lattice generation during training

sis is performed whenever the gold candidate falls
out of the beam. Intuitively, we are trying to opti-
mize an nth-order CRF objective function, but ap-
ply small lower-order corrections to the weight vec-
tor when necessary to keep the gold candidate in the
lattice. Figure 1 illustrates the lattice generation pro-
cess. The lattice generation during decoding is iden-
tical, except that we always return a lattice of the
highest order n.

The savings in training time of this integrated ap-
proach are large; e.g., training a maximum entropy
model over a tagset of roughly 1800 tags and more
than half a million instances is slow as we have to
apply 1800 weight vector updates for every token
in the training set and every SGD iteration. In the
integrated model we only have to apply 1800 up-
dates when we lose the gold sequence during fil-
tering. Thus, in our implementation training a 0-
order model for Czech takes roughly twice as long
as training a 1st-order model.

2.3 Threshold Estimation

Our approach would not work if we were to set the
parameters τi to fixed predetermined values; e.g.,
the τi depend on the size of the tagset and should
be adapted during training as we start the training
with a uniform model that becomes more specific.
We therefore set the τi by specifying µi, the average
number of tags per position that should remain in
the lattice after pruning. This also guarantees sta-
ble lattice sizes and thus stable training times. We

324

achieve stable average number of tags per position
by setting the τi dynamically during training: we
measure the real average number of candidates per
position µ̂i and apply corrections after processing a
certain fraction of the sentences of the training set.
The updates are of the form:

τi =

{
+0.1 · τi if µ̂i < µi

−0.1 · τi if µ̂i > µi

Figure 2 shows an example training run for Ger-
man with µ0 = 4. Here the 0-order lattice reduces
the number of tags per position from 681 to 4 losing
roughly 15% of the gold sequences of the develop-
ment set, which means that for 85% of the sentences
the correct candidate is still in the lattice. This cor-
responds to more than 99% of the tokens. We can
also see that after two iterations only a very small
number of 0-order updates have to be performed.

2.4 Tag Decomposition

As we discussed before for the very large
POS+MORPH tagsets, most of the decoding time is
spent on the 0-order level. To decrease the number
of tag candidates in the 0-order model, we decode in
two steps by separating the fully specified tag into a
coarse-grained part-of-speech (POS) tag and a fine-
grained MORPH tag containing the morphological
features. We then first build a lattice over POS can-
didates and apply our pruning strategy. In a second
step we expand the remaining POS tags into all the
combinations with MORPH tags that were seen in
the training set. We thus build a sequence of lattices
of both increasing order and increasing tag complex-
ity.

2.5 Feature Set

We use the features of Ratnaparkhi (1996) and Man-
ning (2011): the current, preceding and succeed-
ing words as unigrams and bigrams and for rare
words prefixes and suffixes up to length 10, and
the occurrence of capital characters, digits and spe-
cial characters. We define a rare word as a word
with training set frequency ≤ 10. We concate-
nate every feature with the POS and MORPH tag
and every morphological feature. E.g., for the word
“der”, the POS tag art (article) and the MORPH
tag gen|sg|fem (genitive, singular, feminine) we

 0

 0.05

 0.1

 0.15

 0.2

 0 1 2 3 4 5 6 7 8 9 10

U
n
re

a
ch

a
b
le

 g
o
ld

 c
a
n
d
id

a
te

s

Epochs

train
dev

Figure 2: Example training run of a pruned 1st-order
model on German showing the fraction of pruned gold se-
quences (= sentences) during training for training (train)
and development sets (dev).

get the following features for the current word tem-
plate: der+art, der+gen|sg|fem, der+gen,
der+sg and der+fem.

We also use an additional binary feature, which
indicates whether the current word has been seen
with the current tag or – if the word is rare – whether
the tag is in a set of open tag classes. The open tag
classes are estimated by 10-fold cross validation on
the training set: We first use the folds to estimate
how often a tag is seen with an unknown word. We
then consider tags with a relative frequency ≥ 10−4

as open tag classes. While this is a heuristic, it is
safer to use a “soft” heuristic as a feature in the lat-
tice than a hard constraint.

For some experiments we also use the output of a
morphological analyzer (MA). In that case we sim-
ply use every analysis of the MA as a simple nom-
inal feature. This approach is attractive because it
does not require the output of the MA and the an-
notation of the treebank to be identical; in fact, it
can even be used if treebank annotation and MA use
completely different features.

Because the weight vector dimensionality is high
for large tagsets and productive languages, we use a
hash kernel (Shi et al., 2009) to keep the dimension-
ality constant.

3 Related Work

Smith et al. (2005) use CRFs for POS+MORPH tag-
ging, but use a morphological analyzer for candidate
selection. They report training times of several days

325

and that they had to use simplified models for Czech.
Several methods have been proposed to reduce

CRF training times. Stochastic gradient descent can
be applied to reduce the training time by a factor of 5
(Tsuruoka et al., 2009) and without drastic losses in
accuracy. Lavergne et al. (2010) make use of feature
sparsity to significantly speed up training for mod-
erate tagset sizes (< 100) and huge feature spaces.
It is unclear if their approach would also work for
huge tag sets (> 1000).

Coarse-to-fine decoding has been successfully ap-
plied to CYK parsing where full dynamic program-
ming is often intractable when big grammars are
used (Charniak and Johnson, 2005). Weiss and
Taskar (2010) develop cascades of models of in-
creasing complexity in a framework based on per-
ceptron learning and an explicit trade-off between
accuracy and efficiency.

Kaji et al. (2010) propose a modified Viterbi algo-
rithm that is still optimal but depending on task and
especially for big tag sets might be several orders of
magnitude faster. While their algorithm can be used
to produce fast decoders, there is no such modifica-
tion for the forward-backward algorithm used during
CRF training.

4 Experiments

We run POS+MORPH tagging experiments on Ara-
bic (ar), Czech (cs), Spanish (es), German (de) and
Hungarian (hu). The following table shows the type-
token (T/T) ratio, the average number of tags of ev-
ery word form that occurs more than once in the
training set (A) and the number of tags of the most
ambiguous word form (Â):

T/T A Â

ar 0.06 2.06 17
cs 0.13 1.64 23
es 0.09 1.14 9
de 0.11 2.15 44
hu 0.11 1.11 10

Arabic is a Semitic language with nonconcate-
native morphology. An additional difficulty is that
vowels are often not written in Arabic script. This
introduces a high number of ambiguities; on the
other hand it reduces the type-token ratio, which
generally makes learning easier. In this paper, we
work with the transliteration of Arabic provided in

the Penn Arabic Treebank. Czech is a highly inflect-
ing Slavic language with a large number of morpho-
logical features. Spanish is a Romance language.
Based on the statistics above we can see that it has
few POS+MORPH ambiguities. It is also the lan-
guage with the smallest tagset and the only language
in our setup that – with a few exceptions – does not
mark case. German is a Germanic language and –
based on the statistics above – the language with
the most ambiguous morphology. The reason is that
it only has a small number of inflectional suffixes.
The total number of nominal inflectional suffixes for
example is five. A good example for a highly am-
biguous suffix is “en”, which is a marker for infini-
tive verb forms, for the 1st and 3rd person plural and
for the polite 2nd person singular. Additionally, it
marks plural nouns of all cases and singular nouns
in genitive, dative and accusative case.

Hungarian is a Finno-Ugric language with an ag-
glutinative morphology; this results in a high type-
token ratio, but also the lowest level of word form
ambiguity among the selected languages.

POS tagging experiments are run on all the lan-
guages above and also on English.

4.1 Resources
For Arabic we use the Penn Arabic Tree-
bank (Maamouri et al., 2004), parts 1–3 in
their latest versions (LDC2010T08, LDC2010T13,
LDC2011T09). As training set we use parts 1 and 2
and part 3 up to section ANN20020815.0083. All
consecutive sections up to ANN20021015.0096
are used as development set and the remainder as
test set. We use the unvocalized and pretokenized
transliterations as input. For Czech and Spanish,
we use the CoNLL 2009 data sets (Hajič et al.,
2009); for German, the TIGER treebank (Brants et
al., 2002) with the split from Fraser et al. (2013);
for Hungarian, the Szeged treebank (Csendes et al.,
2005) with the split from Farkas et al. (2012). For
English we use the Penn Treebank (Marcus et al.,
1993) with the split from Toutanova et al. (2003).

We also compute the possible POS+MORPH tags
for every word using MAs. For Arabic we use the
AraMorph reimplementation of Buckwalter (2002),
for Czech the “free” morphology (Hajič, 2001), for
Spanish Freeling (Padró and Stanilovsky, 2012), for
German DMOR (Schiller, 1995) and for Hungarian

326

Magyarlanc 2.0 (Zsibrita et al., 2013).

4.2 Setup

To compare the training and decoding times we run
all experiments on the same test machine, which fea-
tures two Hexa-Core Intel Xeon X5680 CPUs with
3,33 GHz and 6 cores each and 144 GB of mem-
ory. The baseline tagger and our PCRF implemen-
tation are run single threaded.2 The taggers are im-
plemented in different programming languages and
with different degrees of optimization; still, the run
times are indicative of comparative performance to
be expected in practice.

Our Java implementation is always run with 10
SGD iterations and a regularization parameter of
0.1, which for German was the optimal value out of
{0, 0.01, 0.1, 1.0}. We follow Tsuruoka et al. (2009)
in our implementation of SGD and shuffle the train-
ing set between epochs. All numbers shown are av-
erages over 5 independent runs. Where not noted
otherwise, we use µ0 = 4, µ1 = 2 and µ2 = 1.5.
We found that higher values do not consistently in-
crease performance on the development set, but re-
sult in much higher training times.

4.3 POS Experiments

In a first experiment we evaluate the speed and ac-
curacy of CRFs and PCRFs on the POS tagsets.
As shown in Table 1 the tagset sizes range from
12 for Czech and Spanish to 54 and 57 for Ger-
man and Hungarian, with Arabic (38) and English
(45) in between. The results of our experiments are
given in Table 2. For the 1st-order models, we ob-
serve speed-ups in training time from 2.3 to 31 at no
loss in accuracy. For all languages, training pruned
higher-order models is faster than training unpruned
1st-order models and yields more accurate models.
Accuracy improvements range from 0.08 for Hun-
garian to 0.25 for German. We can conclude that
for small and medium tagset sizes PCRFs give sub-
stantial improvements in both training and decod-
ing speed3 and thus allow for higher-order tagging,

2Our tagger might actually use more than one core because
the Java garbage collection is run in parallel.

3Decoding speeds are provided in an appendix submitted
separately.

which for all languages leads to significant4 accu-
racy improvements.

4.4 POS+MORPH Oracle Experiments

Ideally, for the full POS+MORPH tagset we would
also compare our results to an unpruned CRF, but
our implementation turned out to be too slow to do
the required number of experiments. For German,
the model processed ≈ 0.1 sentences per second
during training; so running 10 SGD iterations on
the 40,472 sentences would take more than a month.
We therefore compare our model against models that
perform oracle pruning, which means we perform
standard pruning, but always keep the gold candi-
date in the lattice. The oracle pruning is applied dur-
ing training and testing on the development set. The
oracle model performance is thus an upper bound for
the performance of an unpruned CRF.

The most interesting pruning step happens at the
0-order level when we reduce from hundreds of can-
didates to just a couple. Table 3 shows the results for
1st-order CRFs.

We can roughly group the five languages into
three groups: for Spanish and Hungarian the dam-
age is negligible, for Arabic we see a small decrease
of 0.07 and only for Czech and German we observe
considerable differences of 0.14 and 0.37. Surpris-
ingly, doubling the number of candidates per posi-
tion does not lead to significant improvements.

We can conclude that except for Czech and Ger-
man losses due to pruning are insignificant.

4.5 POS+MORPH Higher-Order Experiments

One argument for PCRFs is that while they might
be less accurate than standard CRFs they allow to
train higher-order models, which in turn might be
more accurate than their standard lower-order coun-
terparts. In this section, we investigate how big the
improvements of higher-order models are. The re-
sults are given in the following table:

n ar cs es de hu
1 90.90 92.45 97.95 88.96 96.47
2 91.86* 93.06* 98.01 90.27* 96.57*
3 91.88* 92.97* 97.87 90.60* 96.50

4Throughout the paper we establish significance by running
approximate randomization tests on sentences (Yeh, 2000).

327

ar cs es de hu en
n TT ACC TT ACC TT ACC TT ACC TT ACC TT ACC

CRF 1 106 96.21 10 98.95 7 98.51 234 97.69 374 97.63 154 97.05
PCRF 1 5 96.21 4 98.96 3 98.52 7 97.70 12 97.64 5 97.07
PCRF 2 6 96.43* 5 99.01* 3 98.65* 9 97.91* 13 97.71* 6 97.21*
PCRF 3 6 96.43* 6 99.03* 4 98.66* 9 97.94* 14 97.69 6 97.19*

Table 2: POS tagging experiments with pruned and unpruned CRFs with different orders n. For every language the
training time in minutes (TT) and the POS accuracy (ACC) are given. * indicates models significantly better than CRF
(first line).

ar cs es de hu
1 Oracle µ0 = 4 90.97 92.59 97.91 89.33 96.48
2 Model µ0 = 4 90.90 92.45* 97.95 88.96* 96.47
3 Model µ0 = 8 90.89 92.48* 97.94 88.94* 96.47

Table 3: Accuracies for models with and without oracle pruning. * indicates models significantly worse than the oracle
model.

We see that 2nd-order models give improvements for
all languages. For Spanish and Hungarian we see
minor improvements ≤ 0.1.

For Czech we see a moderate improvement of
0.61 and for Arabic and German we observe sub-
stantial improvements of 0.96 and 1.31. An analysis
on the development set revealed that for all three lan-
guages, case is the morphological feature that bene-
fits most from higher-order models. A possible ex-
planation is that case has a high correlation with syn-
tactic relations and is thus affected by long-distance
dependencies.

German is the only language where fourgram
models give an additional improvement over trigram
models. The reason seem to be sentences with long-
range dependencies, e.g., “Die Rebellen haben kein
Lösegeld verlangt” (The rebels have not demanded
any ransom); “verlangt” (demanded) is a past partic-
ple that is separated from the auxilary verb “haben”
(have). The 2nd-order model does not consider
enough context and misclassifies “verlangt” as a fi-
nite verb form, while the 3rd-order model tags it cor-
rectly.

We can also conclude that the improvements for
higher-order models are always higher than the loss
we estimated in the oracle experiments. More pre-
cisely we see that if a language has a low number of
word form ambiguities (e.g., Hungarian) we observe
a small loss during 0-order pruning but we also have
to expect less of an improvement when increasing

the order of the model. For languages with a high
number of word form ambiguities (e.g., German) we
must anticipate some loss during 0-order pruning,
but we also see substantial benefits for higher-order
models.

Surprisingly, we found that higher-order PCRF
models can also avoid the pruning errors of lower-
order models. Here is an example from the German
data. The word “Januar” (January) is ambiguous: in
the training set, it occurs 108 times as dative, 9 times
as accusative and only 5 times as nominative. The
development set contains 48 nominative instances of
“Januar” in datelines at the end of news articles, e.g.,
“TEL AVIV, 3. Januar”. For these 48 occurrences,
(i) the oracle model in Table 3 selects the correct
case nominative, (ii) the 1st-order PCRF model se-
lects the incorrect case accusative, and (iii) the 2nd-
and 3rd-order models select – unlike the 1st-order
model – the correct case nominative. Our interpreta-
tion is that the correct nominative reading is pruned
from the 0-order lattice. However, the higher-order
models can put less weight on 0-order features as
they have access to more context to disambiguate the
sequence. The lower weights of order-0 result in a
more uniform posterior distribution and the nomina-
tive reading is not pruned from the lattice.

4.6 Experiments with Morph. Analyzers

In this section we compare the improvements of
higher-order models when used with MAs. The re-

328

ar cs es de hu en
TT ACC TT ACC TT ACC TT ACC TT ACC TT ACC

SVMTool 178 96.39 935 98.94 64 98.42 899 97.29 2653 97.42 253 97.09
Morfette 9 95.91 6 99.00 3 98.43 16 97.28 30 97.53 17 96.85
CRFSuite 4 96.20 2 99.02 2 98.40 8 97.57 15 97.48 8 96.80
Stanford 29 95.98 8 99.08 7 98.53 51 97.70 40 97.53 65 97.24
PCRF 1 5 96.21* 4 98.96* 3 98.52 7 97.70 12 97.64* 5 97.07*
PCRF 2 6 96.43 5 99.01* 3 98.65* 9 97.91* 13 97.71* 6 97.21
PCRF 3 6 96.43 6 99.03 4 98.66* 9 97.94* 14 97.69* 6 97.19

Table 4: Development results for POS tagging. Given are training times in minutes (TT) and accuracies (ACC).
Best baseline results are underlined and the overall best results bold. * indicates a significant difference (positive or
negative) between the best baseline and a PCRF model.

ar cs es de hu en
SVMTool 96.19 98.82 98.44 96.44 97.32 97.12
Morfette 95.55 98.91 98.41 96.68 97.28 96.89
CRFSuite 95.97 98.91 98.40 96.82 97.32 96.94
Stanford 95.75 98.99 98.50 97.09 97.32 97.28
PCRF 1 96.03* 98.83* 98.46 97.11 97.44* 97.09*
PCRF 2 96.11 98.88* 98.66* 97.36* 97.50* 97.23
PCRF 3 96.14 98.87* 98.66* 97.44* 97.49* 97.19*

Table 5: Test results for POS tagging. Best baseline results are underlined and the overall best results bold. * indicates
a significant difference between the best baseline and a PCRF model.

ar cs es de hu
TT ACC TT ACC TT ACC TT ACC TT ACC

SVMTool 454 89.91 2454 89.91 64 97.63 1649 85.98 3697 95.61
RFTagger 4 89.09 3 90.38 1 97.44 5 87.10 10 95.06
Morfette 132 89.97 539 90.37 63 97.71 286 85.90 540 95.99
CRFSuite 309 89.33 9274 91.10 69 97.53 1295 87.78 5467 95.95
PCRF 1 22 90.90* 301 92.45* 25 97.95* 32 88.96* 230 96.47*
PCRF 2 26 91.86* 318 93.06* 32 98.01* 37 90.27* 242 96.57*
PCRF 3 26 91.88* 318 92.97* 35 97.87* 37 90.60* 241 96.50*

Table 6: Development results for POS+MORPH tagging. Given are training times in minutes (TT) and accuracies
(ACC). Best baseline results are underlined and the overall best results bold. * indicates a significant difference
between the best baseline and a PCRF model.

ar cs es de hu
SVMTool 89.58 89.62 97.56 83.42 95.57
RFTagger 88.76 90.43 97.35 84.28 94.99
Morfette 89.62 90.01 97.58 83.48 95.79
CRFSuite 89.05 90.97 97.60 85.68 95.82
PCRF 1 90.32* 92.31* 97.82* 86.92* 96.22*
PCRF 2 91.29* 92.94* 97.93* 88.48* 96.34*
PCRF 3 91.22* 92.99* 97.82* 88.58* 96.29*

Table 7: Test results for POS+MORPH tagging. Best baseline results are underlined and the overall best results bold.
* indicates a significant difference between the best baseline and a PCRF model.

329

sults are given in the following table:
n ar cs es de hu
1 90.90− 92.45− 97.95− 88.96− 96.47−

2 91.86+ 93.06 98.01− 90.27+ 96.57−

3 91.88+ 92.97− 97.87− 90.60+ 96.50−

MA 1 91.22 93.21 98.27 89.82 97.28
MA 2 92.16+ 93.87+ 98.37+ 91.31+ 97.51+

MA 3 92.14+ 93.88+ 98.28 91.65+ 97.48+

Plus and minus indicate models that are signif-
icantly better or worse than MA1. We can see
that the improvements due to higher-order models
are orthogonal to the improvements due to MAs
for all languages. This was to be expected as
MAs provide additional lexical knowledge while
higher-order models provide additional information
about the context. For Arabic and German the
improvements of higher-order models are bigger
than the improvements due to MAs.

4.7 Comparison with Baselines
We use the following baselines: SVMTool
(Giménez and Màrquez, 2004), an SVM-based dis-
criminative tagger; RFTagger (Schmid and Laws,
2008), an n-gram Hidden Markov Model (HMM)
tagger developed for POS+MORPH tagging; Mor-
fette (Chrupała et al., 2008), an averaged percep-
tron with beam search decoder; CRFSuite (Okazaki,
2007), a fast CRF implementation; and the Stanford
Tagger (Toutanova et al., 2003), a bidirectional Max-
imum Entropy Markov Model. For POS+MORPH
tagging, all baselines are trained on the concatena-
tion of POS tag and MORPH tag. We run SVM-
Tool with the standard feature set and the optimal
c-values ∈ {0.1, 1, 10}. Morfette is run with the de-
fault options. For CRFSuite we use l2-regularized
SGD training. We use the optimal regularization pa-
rameter ∈ {0.01, 0.1, 1.0} and stop after 30 itera-
tions where we reach a relative improvement in reg-
ularized likelihood of at most 0.01 for all languages.
The feature set is identical to our model except for
some restrictions: we only use concatenations with
the full tag and we do not use the binary feature that
indicates whether a word-tag combination has been
observed. We also had to restrict the combinations
of tag and features to those observed in the training
set5. Otherwise the memory requirements would ex-
ceed the memory of our test machine (144 GB) for
Czech and Hungarian. The Stanford Tagger is used

5We set the CRFSuite option possible states = 0

as a bidirectional 2nd-order model and trained us-
ing OWL-BFGS. For Arabic, German and English
we use the language specific feature sets and for the
other languages the English feature set.

Development set results for POS tagging are
shown in Table 4. We can observe that Morfette,
CRFSuite and the PCRF models for different orders
have training times in the same order of magnitude.
For Arabic, Czech and English, the PCRF accuracy
is comparable to the best baseline models. For the
other languages we see improvements of 0.13 for
Spanish, 0.18 for Hungarian and 0.24 for German.
Evaluation on the test set confirms these results, see
Table 5.6

The POS+MORPH tagging development set re-
sults are presented in Table 6. Morfette is the fastest
discriminative baseline tagger. In comparison with
Morfette the speed up for 3rd-order PCRFs lies be-
tween 1.7 for Czech and 5 for Arabic. Morfette
gives the best baseline results for Arabic, Spanish
and Hungarian and CRFSuite for Czech and Ger-
man. The accuracy improvements of the best PCRF
models over the best baseline models range from
0.27 for Spanish over 0.58 for Hungarian, 1.91 for
Arabic, 1.96 for Czech to 2.82 for German. The test
set experiments in Table 7 confirm these results.

5 Conclusion

We presented the pruned CRF (PCRF) model for
very large tagsets. The model is based on coarse-to-
fine decoding and stochastic gradient descent train-
ing with early updating. We showed that for mod-
erate tagset sizes of ≈ 50, the model gives signif-
icant speed-ups over a standard CRF with negligi-
ble losses in accuracy. Furthermore, we showed that
training and tagging for approximated trigram and
fourgram models is still faster than standard 1st-
order tagging, but yields significant improvements
in accuracy.

In oracle experiments with POS+MORPH tagsets
we demonstrated that the losses due to our approx-
imation depend on the word level ambiguity of the
respective language and are moderate (≤ 0.14) ex-
cept for German where we observed a loss of 0.37.

6Giménez and Màrquez (2004) report an accuracy of 97.16
instead of 97.12 for SVMTool for English and Manning (2011)
an accuracy of 97.29 instead of 97.28 for the Stanford tagger.

330

We also showed that higher order tagging – which
is prohibitive for standard CRF implementations –
yields significant improvements over unpruned 1st-
order models. Analogous to the oracle experiments
we observed big improvements for languages with a
high level of POS+MORPH ambiguity such as Ger-
man and smaller improvements for languages with
less ambiguity such as Hungarian and Spanish.

Acknowledgments

The first author is a recipient of the Google Europe
Fellowship in Natural Language Processing, and this
research is supported in part by this Google Fellow-
ship. This research was also funded by DFG (grant
SFB 732).

References

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang
Lezius, and George Smith. 2002. The TIGER tree-
bank. In Proceedings of the workshop on treebanks
and linguistic theories.

Tim Buckwalter. 2002. Buckwalter Arabic Morpholog-
ical Analyzer Version 1.0. Linguistic Data Consor-
tium, University of Pennsylvania, 2002. LDC Catalog
No.: LDC2002L49.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and MaxEnt discriminative rerank-
ing. In Proceedings of ACL.

Grzegorz Chrupała, Georgiana Dinu, and Josef van Gen-
abith. 2008. Learning morphology with Morfette. In
Proceedings of LREC.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In Proceedings
of ACL.

Michael Collins. 2002. Discriminative training meth-
ods for hidden Markov models: Theory and experi-
ments with perceptron algorithms. In Proceedings of
EMNLP.

Dóra Csendes, János Csirik, Tibor Gyimóthy, and András
Kocsor. 2005. The Szeged treebank. In Proceedings
of Text, Speech and Dialogue.

Richárd Farkas, Veronika Vincze, and Helmut Schmid.
2012. Dependency parsing of Hungarian: Baseline re-
sults and challenges. In Proceedings of EACL.

Alexander Fraser, Helmut Schmid, Richárd Farkas, Ren-
jing Wang, and Hinrich Schütze. 2013. Knowl-
edge Sources for Constituent Parsing of German, a
Morphologically Rich and Less-Configurational Lan-
guage. Computational Linguistics.

Jesús Giménez and Lluis Màrquez. 2004. Svmtool: A
general POS tagger generator based on Support Vector
Machines. In Proceedings of LREC.

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
Padó, Jan Štěpánek, et al. 2009. The CoNLL-2009
shared task: Syntactic and semantic dependencies in
multiple languages. In Proceedings of CoNLL.

Jan Hajič. 2000. Morphological tagging: Data vs. dictio-
naries. In Proceedings of NAACL.

Jan Hajič. 2001. Czech ”Free” Morphology. URL
http://ufal.mff.cuni.cz/pdt/Morphology and Tagging.

Nobuhiro Kaji, Yasuhiro Fujiwara, Naoki Yoshinaga, and
Masaru Kitsuregawa. 2010. Efficient staggered de-
coding for sequence labeling. In Proceedings of ACL.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. In Pro-
ceedings of ICML.

Thomas Lavergne, Olivier Cappé, and François Yvon.
2010. Practical very large scale CRFs. In Proceed-
ings of ACL.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and
Wigdan Mekki. 2004. The Penn Arabic treebank:
Building a large-scale annotated Arabic corpus. In
Proceedings of NEMLAR.

Christopher D Manning. 2011. Part-of-speech tagging
from 97% to 100%: Is it time for some linguistics?
In Computational Linguistics and Intelligent Text Pro-
cessing. Springer.

Mitchell P. Marcus, Mary A. Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
linguistics.

Naoaki Okazaki. 2007. Crfsuite: A fast implemen-
tation of conditional random fields (CRFs). URL
http://www.chokkan.org/software/crfsuite.

Lluı́s Padró and Evgeny Stanilovsky. 2012. Freeling
3.0: Towards Wider Multilinguality. In Proceedings
of LREC.

Adwait Ratnaparkhi. 1996. A maximum entropy model
for part-of-speech tagging. In EMNLP.

Alexander M. Rush and Slav Petrov. 2012. Vine pruning
for efficient multi-pass dependency parsing. In Pro-
ceedings of NAACL.

Anne Schiller. 1995. DMOR Benutzerhandbuch. Uni-
versität Stuttgart, Institut für maschinelle Sprachver-
arbeitung.

Helmut Schmid and Florian Laws. 2008. Estimation of
conditional probabilities with decision trees and an ap-
plication to fine-grained POS tagging. In Proceedings
of COLING.

331

Helmut Schmid. 1994. Probabilistic part-of-speech tag-
ging using decision trees. In Proceedings of NEMLP.

Libin Shen, Giorgio Satta, and Aravind Joshi. 2007.
Guided Learning for Bidirectional Sequence Classifi-
cation. In Proceedings of ACL.

Qinfeng Shi, James Petterson, Gideon Dror, John Lang-
ford, Alex Smola, and S.V.N. Vishwanathan. 2009.
Hash Kernels for Structured Data. J. Mach. Learn.
Res.

Noah A. Smith, David A. Smith, and Roy W. Tromble.
2005. Context-based morphological disambiguation
with random fields. In Proceedings of EMNLP.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Pro-
ceedings of NAACL.

Yoshimasa Tsuruoka, Jun’ichi Tsujii, and Sophia Ana-
niadou. 2009. Stochastic gradient descent training
for L1-regularized log-linear models with cumulative
penalty. In Proceedings of ACL.

David Weiss and Ben Taskar. 2010. Structured predic-
tion cascades. In In Proceedings of AISTATS.

Alexander Yeh. 2000. More accurate tests for the statis-
tical significance of result differences. In Proceedings
of COLING.

János Zsibrita, Veronika Vincze, and Richárd Farkas.
2013. Magyarlanc 2.0: Szintaktikai elemzés és fel-
gyorsı́tott szófaji egyértelműsı́tés. In IX. Magyar
Számı́tógépes Nyelvészeti Konferencia.

332

