
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 210–221,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Optimal Beam Search for Machine Translation

Alexander M. Rush Yin-Wen Chang
MIT CSAIL,

Cambridge, MA 02139, USA
{srush, yinwen}@csail.mit.edu

Michael Collins
Department of Computer Science,

Columbia University,
New York, NY 10027, USA

mcollins@cs.columbia.edu

Abstract

Beam search is a fast and empirically effective
method for translation decoding, but it lacks
formal guarantees about search error. We de-
velop a new decoding algorithm that combines
the speed of beam search with the optimal cer-
tificate property of Lagrangian relaxation, and
apply it to phrase- and syntax-based transla-
tion decoding. The new method is efficient,
utilizes standard MT algorithms, and returns
an exact solution on the majority of transla-
tion examples in our test data. The algorithm
is 3.5 times faster than an optimized incremen-
tal constraint-based decoder for phrase-based
translation and 4 times faster for syntax-based
translation.

1 Introduction

Beam search (Koehn et al., 2003) and cube prun-
ing (Chiang, 2007) have become the de facto decod-
ing algorithms for phrase- and syntax-based trans-
lation. The algorithms are central to large-scale
machine translation systems due to their efficiency
and tendency to produce high-quality translations
(Koehn, 2004; Koehn et al., 2007; Dyer et al., 2010).
However despite practical effectiveness, neither al-
gorithm provides any bound on possible decoding
error.

In this work we present a variant of beam search
decoding for phrase- and syntax-based translation.
The motivation is to exploit the effectiveness and ef-
ficiency of beam search, but still maintain formal
guarantees. The algorithm has the following bene-
fits:

• In theory, it can provide a certificate of optimal-
ity; in practice, we show that it produces opti-
mal hypotheses, with certificates of optimality,
on the vast majority of examples.

• It utilizes well-studied algorithms and extends
off-the-shelf beam search decoders.

• Empirically it is very fast, results show that it is
3.5 times faster than an optimized incremental
constraint-based solver.

While our focus is on fast decoding for machine
translation, the algorithm we present can be applied
to a variety of dynamic programming-based decod-
ing problems. The method only relies on having a
constrained beam search algorithm and a fast uncon-
strained search algorithm. Similar algorithms exist
for many NLP tasks.

We begin in Section 2 by describing constrained
hypergraph search and showing how it generalizes
translation decoding. Section 3 introduces a variant
of beam search that is, in theory, able to produce
a certificate of optimality. Section 4 shows how to
improve the effectiveness of beam search by using
weights derived from Lagrangian relaxation. Sec-
tion 5 puts everything together to derive a fast beam
search algorithm that is often optimal in practice.

Experiments compare the new algorithm with
several variants of beam search, cube pruning, A∗

search, and relaxation-based decoders on two trans-
lation tasks. The optimal beam search algorithm is
able to find exact solutions with certificates of opti-
mality on 99% of translation examples, significantly
more than other baselines. Additionally the optimal

210

beam search algorithm is much faster than other ex-
act methods.

2 Background

The focus of this work is decoding for statistical ma-
chine translation. Given a source sentence, the goal
is to find the target sentence that maximizes a com-
bination of translation model and language model
scores. In order to analyze this decoding problem,
we first abstract away from the specifics of transla-
tion into a general form, known as a hypergraph. In
this section, we describe the hypergraph formalism
and its relation to machine translation.

2.1 Notation

Throughout the paper, scalars and vectors are writ-
ten in lowercase, matrices are written in uppercase,
and sets are written in script-case, e.g. X . All vec-
tors are assumed to be column vectors. The function
δ(j) yields an indicator vector with δ(j)j = 1 and
δ(j)i = 0 for all i 6= j.

2.2 Hypergraphs and Search

A directed hypergraph is a pair (V, E) where V =
{1 . . . |V|} is a set of vertices, and E is a set of di-
rected hyperedges. Each hyperedge e ∈ E is a tuple〈
〈v2, . . . , v|v|〉, v1

〉
where vi ∈ V for i ∈ {1 . . . |v|}.

The head of the hyperedge is h(e) = v1. The tail
of the hyperedge is the ordered sequence t(e) =
〈v2, . . . , v|v|〉. The size of the tail |t(e)| may vary
across different hyperedges, but |t(e)| ≥ 1 for all
edges and is bounded by a constant. A directed
graph is a directed hypergraph with |t(e)| = 1 for
all edges e ∈ E .

Each vertex v ∈ V is either a non-terminal or a
terminal in the hypergraph. The set of non-terminals
is N = {v ∈ V : h(e) = v for some e ∈ E}. Con-
versely, the set of terminals is defined as T = V\N .

All directed hypergraphs used in this work are
acyclic: informally this implies that no hyperpath (as
defined below) contains the same vertex more than
once (see Martin et al. (1990) for a full definition).
Acyclicity implies a partial topological ordering of
the vertices. We also assume there is a distinguished
root vertex 1 where for all e ∈ E , 1 6∈ t(e).

Next we define a hyperpath as x ∈ {0, 1}|E| where
x(e) = 1 if hyperedge e is used in the hyperpath,

procedure BESTPATHSCORE(θ, τ)
π[v]← 0 for all v ∈ T
for e ∈ E in topological order do
〈〈v2, . . . , v|v|〉, v1〉 ← e

s← θ(e) +

|v|∑
i=2

π[vi]

if s > π[v1] then π[v1]← s

return π[1] + τ

Figure 1: Dynamic programming algorithm for uncon-
strained hypergraph search. Note that this version only
returns the highest score: maxx∈X θ

>x+ τ . The optimal
hyperpath can be found by including back-pointers.

x(e) = 0 otherwise. The set of valid hyperpaths is
defined as

X =


x :

∑
e∈E:h(e)=1

x(e) = 1,

∑
e:h(e)=v

x(e) =
∑

e:v∈t(e)

x(e) ∀ v ∈ N \ {1}


The first problem we consider is unconstrained hy-

pergraph search. Let θ ∈ R|E| be the weight vector
for the hypergraph and let τ ∈ R be a weight offset.1

The unconstrained search problem is to find

max
x∈X

∑
e∈E

θ(e)x(e) + τ = max
x∈X

θ>x+ τ

This maximization can be computed for any
weights and directed acyclic hypergraph in time
O(|E|) using dynamic programming. Figure 1
shows this algorithm which is simply a version of
the CKY algorithm.

Next consider a variant of this problem: con-
strained hypergraph search. Constraints will be nec-
essary for both phrase- and syntax-based decoding.
In phrase-based models, the constraints will ensure
that each source word is translated exactly once. In
syntax-based models, the constraints will be used to
intersect a translation forest with a language model.

In the constrained hypergraph problem, hyper-
paths must fulfill additional linear hyperedge con-
straints. Define the set of constrained hyperpaths as

X ′ = {x ∈ X : Ax = b}
1The purpose of the offset will be clear in later sections. For

this section, the value of τ can be taken as 0.

211

where we have a constraint matrix A ∈ R|b|×|E|
and vector b ∈ R|b| encoding |b| constraints.
The optimal constrained hyperpath is x∗ =
arg maxx∈X ′ θ>x+ τ .

Note that the constrained hypergraph search prob-
lem may be NP-Hard. Crucially this is true even
when the corresponding unconstrained search prob-
lem is solvable in polynomial time. For instance,
phrase-based decoding is known to be NP-Hard
(Knight, 1999), but we will see that it can be ex-
pressed as a polynomial-sized hypergraph with con-
straints.

Example: Phrase-Based Machine Translation
Consider translating a source sentencew1 . . . w|w| to
a target sentence in a language with vocabulary Σ. A
simple phrase-based translation model consists of a
tuple (P, ω, σ) with

• P; a set of pairs (q, r) where q1 . . . q|q| is a se-
quence of source-language words and r1 . . . r|r|
is a sequence of target-language words drawn
from the target vocabulary Σ.

• ω : R|P|; parameters for the translation model
mapping each pair in P to a real-valued score.

• σ : R|Σ×Σ|; parameters of the language model
mapping a bigram of target-language words to
a real-valued score.

The translation decoding problem is to find the
best derivation for a given source sentence. A
derivation consists of a sequence of phrases p =
p1 . . . pn. Define a phrase as a tuple (q, r, j, k)
consisting of a span in the source sentence q =
wj . . . wk and a sequence of target words r1 . . . r|r|,
with (q, r) ∈ P . We say the source words wj . . . wk
are translated to r.

The score of a derivation, f(p), is the sum of the
translation score of each phrase plus the language
model score of the target sentence

f(p) =
n∑
i=1

ω(q(pi), r(pi)) +

|u|+1∑
i=0

σ(ui−1, ui)

where u is the sequence of words in Σ formed
by concatenating the phrases r(p1) . . . r(pn), with
boundary cases u0 = <s> and u|u|+1 = </s>.

Crucially for a derivation to be valid it must sat-
isfy an additional condition: it must translate every
source word exactly once. The decoding problem
for phrase-based translation is to find the highest-
scoring derivation satisfying this property.

We can represent this decoding problem as a con-
strained hypergraph using the construction of Chang
and Collins (2011). The hypergraph weights en-
code the translation and language model scores, and
its structure ensures that the count of source words
translated is |w|, i.e. the length of the source sen-
tence. Each vertex will remember the preceding
target-language word and the count of source words
translated so far.

The hypergraph, which for this problem is also a
directed graph, takes the following form.

• Vertices v ∈ V are labeled (c, u) where c ∈
{1 . . . |w|} is the count of source words trans-
lated and u ∈ Σ is the last target-language word
produced by a partial hypothesis at this vertex.
Additionally there is an initial terminal vertex
labeled (0,<s>).

• There is a hyperedge e ∈ E with head (c′, u′)
and tail 〈(c, u)〉 if there is a valid corresponding
phrase (q, r, j, k) such that c′ = c + |q| and
u′ = r|r|, i.e. c′ is the count of words translated
and u′ is the last word of target phrase r. We
call this phrase p(e).

The weight of this hyperedge, θ(e), is the trans-
lation model score of the pair plus its language
model score

θ(e) = ω(q, r)+

 |r|∑
i=2

σ(ri−1, ri)

+σ(u, r1)

• To handle the end boundary, there are hyper-
edges with head 1 and tail 〈(|w|, u)〉 for all
u ∈ Σ. The weight of these edges is the cost of
the stop bigram following u, i.e. σ(u,</s>).

While any valid derivation corresponds to a hy-
perpath in this graph, a hyperpath may not corre-
spond to a valid derivation. For instance, a hyper-
path may translate some source words more than
once or not at all.

212

Figure 2: Hypergraph for translating the sentence w = les1 pauvres2 sont3 demunis4 with set of pairs P =
{(les, the), (pauvres, poor), (sont demunis, don’t have any money)}. Hyperedges are color-coded
by source words translated: orange for les1, green for pauvres2, and red for sont3 demunis4. The dotted lines
show an invalid hyperpath x that has signature Ax = 〈0, 0, 2, 2〉 6= 〈1, 1, 1, 1〉 .

We handle this problem by adding additional con-
straints. For all source words i ∈ {1 . . . |w|}, define
ρ as the set of hyperedges that translate wi

ρ(i) = {e ∈ E : j(p(e)) ≤ i ≤ k(p(e))}

Next define |w| constraints enforcing that each word
in the source sentence is translated exactly once∑

e∈ρ(i)

x(e) = 1 ∀ i ∈ {1 . . . |w|}

These linear constraints can be represented with
a matrix A ∈ {0, 1}|w|×|E| where the rows corre-
spond to source indices and the columns correspond
to edges. We call the product Ax the signature,
where in this case (Ax)i is the number of times word
i has been translated. The full set of constrained hy-
perpaths is X ′ = {x ∈ X : Ax = 1 }, and the best
derivation under this phrase-based translation model
has score maxx∈X ′ θ>x+ τ .

Figure 2.2 shows an example hypergraph
with constraints for translating the sentence les
pauvres sont demunis into English using
a simple set of phrases. Even in this small exam-
ple, many of the possible hyperpaths violate the
constraints and correspond to invalid derivations.

Example: Syntax-Based Machine Translation
Syntax-based machine translation with a language
model can also be expressed as a constrained hyper-
graph problem. For the sake of space, we omit the
definition. See Rush and Collins (2011) for an in-
depth description of the constraint matrix used for
syntax-based translation.

3 A Variant of Beam Search

This section describes a variant of the beam
search algorithm for finding the highest-scoring con-
strained hyperpath. The algorithm uses three main
techniques: (1) dynamic programming with ad-
ditional signature information to satisfy the con-
straints, (2) beam pruning where some, possibly op-
timal, hypotheses are discarded, and (3) branch-and-
bound-style application of upper and lower bounds
to discard provably non-optimal hypotheses.

Any solution returned by the algorithm will be a
valid constrained hyperpath and a member of X ′.
Additionally the algorithm returns a certificate flag
opt that, if true, indicates that no beam pruning
was used, implying the solution returned is opti-
mal. Generally it will be hard to produce a certificate
even by reducing the amount of beam pruning; how-
ever in the next section we will introduce a method
based on Lagrangian relaxation to tighten the upper
bounds. These bounds will help eliminate most so-
lutions before they trigger pruning.

3.1 Algorithm

Figure 3 shows the complete beam search algorithm.
At its core it is a dynamic programming algorithm
filling in the chart π. The beam search chart indexes
hypotheses by vertex v ∈ V as well as a signature
sig ∈ R|b| where |b| is the number of constraints. A
new hypothesis is constructed from each hyperedge
and all possible signatures of tail nodes. We define
the function SIGS to take the tail of an edge and re-

213

turn the set of possible signature combinations

SIGS(v2, . . . v|v|) =

|v|∏
i=2

{sig : π[vi, sig] 6= −∞}

where the product is the Cartesian product over sets.
Line 8 loops over this entire set.2 For hypothesis x,
the algorithm ensures that its signature sig is equal
to Ax. This property is updated on line 9.

The signature provides proof that a hypothesis is
still valid. Let the function CHECK(sig) return true
if the hypothesis can still fulfill the constraints. For
example, in phrase-based decoding, we will define
CHECK(sig) = (sig ≤ 1); this ensures that each
word has been translated 0 or 1 times. This check is
applied on line 11.

Unfortunately maintaining all signatures is inef-
ficient. For example we will see that in phrase-
based decoding the signature is a bit-string recording
which source words have been translated; the num-
ber of possible bit-strings is exponential in the length
of the sentence. The algorithm includes two meth-
ods for removing hypotheses, bounding and prun-
ing.

Bounding allows us to discard provably non-
optimal solutions. The algorithm takes as arguments
a lower bound on the optimal score lb ≤ θ>x∗ + τ ,
and computes upper bounds on the outside score
for all vertices v: ubs[v], i.e. an overestimate of
the score for completing the hyperpath from v. If
a hypothesis has score s, it can only be optimal if
s+ ubs[v] ≥ lb. This bound check is performed on
line 11.

Pruning removes weak partial solutions based on
problem-specific checks. The algorithm invokes the
black-box function, PRUNE, on line 13, passing it
a pruning parameter β and a vertex-signature pair.
The parameter β controls a threshold for pruning.
For instance for phrase-based translation, it specifies
a hard-limit on the number of hypotheses to retain.
The function returns true if it prunes from the chart.
Note that pruning may remove optimal hypotheses,
so we set the certificate flag opt to false if the chart
is modified.

2For simplicity we write this loop over the entire set. In
practice it is important to use data structures to optimize look-
up. See Tillmann (2006) and Huang and Chiang (2005).

1: procedure BEAMSEARCH(θ, τ, lb, β)
2: ubs← OUTSIDE(θ, τ)
3: opt← true
4: π[v, sig]← −∞ for all v ∈ V, sig ∈ R|b|
5: π[v, 0]← 0 for all v ∈ T
6: for e ∈ E in topological order do
7: 〈〈v2, . . . , v|v|〉, v1〉 ← e

8: for sig(2) . . . sig(|v|) ∈ SIGS(v2, . . . , v|v|) do

9: sig ← Aδ(e) +

|v|∑
i=2

sig(i)

10: s← θ(e) +

|v|∑
i=2

π[vi, sig
(i)]

11: if

 s > π[v1, sig] ∧
CHECK(sig) ∧
s+ ubs[v1] ≥ lb

 then

12: π[v1, sig]← s
13: if PRUNE(π, v1, sig, β) then opt← false
14: lb′ ← π[1, c] + τ
15: return lb′, opt

Input:


(V, E , θ, τ) hypergraph with weights
(A, b) matrix and vector for constraints
lb ∈ R lower bound
β a pruning parameter

Output:
[

lb′ resulting lower bound score
opt certificate of optimality

Figure 3: A variant of the beam search algorithm. Uses
dynamic programming to produce a lower bound on the
optimal constrained solution and, possibly, a certificate of
optimality. Function OUTSIDE computes upper bounds
on outside scores. Function SIGS enumerates all possi-
ble tail signatures. Function CHECK identifies signatures
that do not violate constraints. Bounds lb and ubs are
used to remove provably non-optimal solutions. Func-
tion PRUNE, taking parameter β, returns true if it prunes
hypotheses from π that could be optimal.

This variant on beam search satisfies the follow-
ing two properties (recall x∗ is the optimal con-
strained solution)

Property 3.1 (Primal Feasibility). The returned
score lb′ lower bounds the optimal constrained
score, that is lb′ ≤ θ>x∗ + τ .

Property 3.2 (Dual Certificate). If beam search re-
turns with opt = true, then the returned score is
optimal, i.e. lb′ = θ>x∗ + τ .

An immediate consequence of Property 3.1 is that
the output of beam search, lb′, can be used as the in-
put lb for future runs of the algorithm. Furthermore,

214

procedure PRUNE(π, v, sig, β)
C ← {(v′, sig′) : ||sig′||1 = ||sig||1,

π[v′, sig′] 6= −∞}
D ← C \mBEST(β, C, π)
π[v′, sig′]← −∞ for all v′, sig′ ∈ D
if D = ∅ then return true
else return false

Input:
[

(v, sig) the last hypothesis added to the chart
β ∈ Z # of hypotheses to retain

Output: true, if π is modified

Figure 4: Pruning function for phrase-based translation.
Set C contains all hypotheses with ||sig||1 source words
translated. The function prunes all but the top-β scoring
hypotheses in this set.

if we loosen the amount of beam pruning by adjust-
ing the pruning parameter β we can produce tighter
lower bounds and discard more hypotheses. We can
then iteratively apply this idea with a sequence of
parameters β1 . . . βK producing lower bounds lb(1)

through lb(K). We return to this idea in Section 5.

Example: Phrase-based Beam Search. Recall
that the constraints for phrase-based translation con-
sist of a binary matrix A ∈ {0, 1}|w|×|E| and vec-
tor b = 1. The value sigi is therefore the num-
ber of times source word i has been translated in
the hypothesis. We define the predicate CHECK as
CHECK(sig) = (sig ≤ 1) in order to remove hy-
potheses that already translate a source word more
than once, and are therefore invalid. For this reason,
phrase-based signatures are called bit-strings.

A common beam pruning strategy is to group
together items into a set C and retain a (possibly
complete) subset. An example phrase-based beam
pruner is given in Figure 4. It groups together
hypotheses based on ||sigi||1, i.e. the number of
source words translated, and applies a hard pruning
filter that retains only the β highest-scoring items
(v, sig) ∈ C based on π[v, sig].

3.2 Computing Upper Bounds
Define the setO(v, x) to contain all outside edges of
vertex v in hyperpath x (informally, hyperedges that
do not have v as an ancestor). For all v ∈ V , we set
the upper bounds, ubs, to be the best unconstrained
outside score

ubs[v] = max
x∈X :v∈x

∑
e∈O(v,x)

θ(e) + τ

This upper bound can be efficiently computed for
all vertices using the standard outside dynamic pro-
gramming algorithm. We will refer to this algorithm
as OUTSIDE(θ, τ).

Unfortunately, as we will see, these upper bounds
are often quite loose. The issue is that unconstrained
outside paths are able to violate the constraints with-
out being penalized, and therefore greatly overesti-
mate the score.

4 Finding Tighter Bounds with
Lagrangian Relaxation

Beam search produces a certificate only if beam
pruning is never used. In the case of phrase-based
translation, the certificate is dependent on all groups
C having β or less hypotheses. The only way to en-
sure this is to bound out enough hypotheses to avoid
pruning. The effectiveness of the bounding inequal-
ity, s + ubs[v] < lb, in removing hypotheses is di-
rectly dependent on the tightness of the bounds.

In this section we propose using Lagrangian re-
laxation to improve these bounds. We first give a
brief overview of the method and then apply it to
computing bounds. Our experiments show that this
approach is very effective at finding certificates.

4.1 Algorithm
In Lagrangian relaxation, instead of solving the con-
strained search problem, we relax the constraints
and solve an unconstrained hypergraph problem
with modified weights. Recall the constrained hy-
pergraph problem: max

x∈X :Ax=b
θ>x + τ . The La-

grangian dual of this optimization problem is

L(λ) = max
x∈X

θ>x+ τ − λ>(Ax− b)

=

(
max
x∈X

(θ −A>λ)>x

)
+ τ + λ>b

= max
x∈X

θ′>x+ τ ′

where λ ∈ R|b| is a vector of dual variables and
define θ′ = θ − A>λ and τ ′ = τ + λ>b. This
maximization is over X , so for any value of λ, L(λ)
can be calculated as BestPathScore(θ′, τ ′).

Note that for all valid constrained hyperpaths x ∈
X ′ the termAx−b equals 0, which implies that these
hyperpaths have the same score under the modified
weights as under the original weights, θ>x + τ =
θ′>x+τ ′. This leads to the following two properties,

215

procedure LRROUND(αk, λ)
x← arg max

x∈X
θ>x+ τ − λ>(Ax− b)

λ′ ← λ− αk(Ax− b)
opt← Ax = b
ub← θ>x+ τ
return λ′,ub, opt

procedure LAGRANGIANRELAXATION(α)
λ(0) ← 0
for k in 1 . . .K do
λ(k),ub, opt← LRROUND(αk, λ

(k−1))
if opt then return λ(k),ub, opt

return λ(K),ub, opt

Input: α1 . . . αK sequence of subgradient rates

Output:

 λ final dual vector
ub upper bound on optimal constrained solution
opt certificate of optimality

Figure 5: Lagrangian relaxation algorithm. The algo-
rithm repeatedly calls LRROUND to compute the subgra-
dient, update the dual vector, and check for a certificate.

where x ∈ X is the hyperpath computed within the
max,

Property 4.1 (Dual Feasibility). The valueL(λ) up-
per bounds the optimal solution, that is L(λ) ≥
θ>x∗ + τ

Property 4.2 (Primal Certificate). If the hyperpath
x is a member of X ′, i.e. Ax = b, then L(λ) =
θ>x∗ + τ .

Property 4.1 states that L(λ) always produces
some upper bound; however, to help beam search,
we want as tight a bound as possible: minλ L(λ).

The Lagrangian relaxation algorithm, shown in
Figure 5, uses subgradient descent to find this min-
imum. The subgradient of L(λ) is Ax − b where
x is the argmax of the modified objective x =
arg maxx∈X θ

′>x + τ ′. Subgradient descent itera-
tively solves unconstrained hypergraph search prob-
lems to compute these subgradients and updates λ.
See Rush and Collins (2012) for an extensive discus-
sion of this style of optimization in natural language
processing.

Example: Phrase-based Relaxation. For phrase-
based translation, we expand out the Lagrangian to

L(λ) = max
x∈X

θ>x+ τ − λ>(Ax− b) =

max
x∈X

∑
e∈E

θ(e)− k(p(e))∑
i=j(p(e))

λi

x(e) + τ +

|s|∑
i=1

λi

The weight of each edge θ(e) is modified by the
dual variables λi for each source word translated by
the edge, i.e. if (q, r, j, k) = p(e), then the score
is modified by

∑k
i=j λi. A solution under these

weights may use source words multiple times or not
at all. However if the solution uses each source word
exactly once (Ax = 1), then we have a certificate
and the solution is optimal.

4.2 Utilizing Upper Bounds in Beam Search

For many problems, it may not be possible to satisfy
Property 4.2 by running the subgradient algorithm
alone. Yet even for these problems, applying sub-
gradient descent will produce an improved estimate
of the upper bound, minλ L(λ).

To utilize these improved bounds, we simply re-
place the weights in beam search and the outside al-
gorithm with the modified weights from Lagrangian
relaxation, θ′ and τ ′. Since the result of beam search
must be a valid constrained hyperpath x ∈ X ′, and
for all x ∈ X ′, θ>x + τ = θ′>x + τ ′, this sub-
stitution does not alter the necessary properties of
the algorithm; i.e. if the algorithm returns with opt
equal to true, then the solution is optimal.

Additionally the computation of upper bounds
now becomes

ubs[v] = max
x∈X :v∈x

∑
e∈O(v,x)

θ′(e) + τ ′

These outside paths may still violate constraints, but
the modified weights now include penalty terms to
discourage common violations.

5 Optimal Beam Search

The optimality of the beam search algorithm is de-
pendent on the tightness of the upper and lower
bounds. We can produce better lower bounds by
varying the pruning parameter β; we can produce
better upper bounds by running Lagrangian relax-
ation. In this section we combine these two ideas
and present a complete optimal beam search algo-
rithm.

Our general strategy will be to use Lagrangian
relaxation to compute modified weights and to use
beam search over these modified weights to attempt
to find an optimal solution. One simple method for
doing this, shown at the top of Figure 6, is to run

216

in stages. The algorithm first runs Lagrangian relax-
ation to compute the best λ vector. The algorithm
then iteratively runs beam search using the parame-
ter sequence βk. These parameters allow the algo-
rithm to loosen the amount of beam pruning. For
example in phrase based pruning, we would raise
the number of hypotheses stored per group until no
beam pruning occurs.

A clear disadvantage of the staged approach is
that it needs to wait until Lagrangian relaxation is
completed before even running beam search. Of-
ten beam search will be able to quickly find an opti-
mal solution even with good but non-optimal λ. In
other cases, beam search may still improve the lower
bound lb.

This motivates the alternating algorithm OPT-
BEAM shown Figure 6. In each round, the algo-
rithm alternates between computing subgradients to
tighten ubs and running beam search to maximize
lb. In early rounds we set β for aggressive beam
pruning, and as the upper bounds get tighter, we
loosen pruning to try to get a certificate. If at any
point either a primal or dual certificate is found, the
algorithm returns the optimal solution.

6 Related Work

Approximate methods based on beam search and
cube-pruning have been widely studied for phrase-
based (Koehn et al., 2003; Tillmann and Ney, 2003;
Tillmann, 2006) and syntax-based translation mod-
els (Chiang, 2007; Huang and Chiang, 2007; Watan-
abe et al., 2006; Huang and Mi, 2010).

There is a line of work proposing exact algorithms
for machine translation decoding. Exact decoders
are often slow in practice, but help quantify the er-
rors made by other methods. Exact algorithms pro-
posed for IBM model 4 include ILP (Germann et al.,
2001), cutting plane (Riedel and Clarke, 2009), and
multi-pass A* search (Och et al., 2001). Zaslavskiy
et al. (2009) formulate phrase-based decoding as a
traveling salesman problem (TSP) and use a TSP
decoder. Exact decoding algorithms based on finite
state transducers (FST) (Iglesias et al., 2009) have
been studied on phrase-based models with limited
reordering (Kumar and Byrne, 2005). Exact decod-
ing based on FST is also feasible for certain hier-
archical grammars (de Gispert et al., 2010). Chang

procedure OPTBEAMSTAGED(α, β)
λ,ub, opt←LAGRANGIANRELAXATION(α)
if opt then return ub

θ′ ← θ −A>λ
τ ′ ← τ + λ>b
lb(0) ← −∞
for k in 1 . . .K do
lb(k), opt← BEAMSEARCH(θ′, τ ′, lb(k−1), βk)

if opt then return lb(k)

return maxk∈{1...K} lb(k)

procedure OPTBEAM(α, β)
λ(0) ← 0
lb(0) ← −∞
for k in 1 . . .K do
λ(k),ub(k), opt← LRROUND(αk, λ

(k−1))

if opt then return ub(k)

θ′ ← θ −A>λ(k)

τ ′ ← τ + λ(k)>b
lb(k), opt← BEAMSEARCH(θ′, τ ′, lb(k−1), βk)

if opt then return lb(k)

return maxk∈{1...K} lb(k)

Input:
[
α1 . . . αK sequence of subgradient rates
β1 . . . βK sequence of pruning parameters

Output: optimal constrained score or lower bound

Figure 6: Two versions of optimal beam search: staged
and alternating. Staged runs Lagrangian relaxation to
find the optimal λ, uses λ to compute upper bounds, and
then repeatedly runs beam search with pruning sequence
β1 . . . βk. Alternating switches between running a round
of Lagrangian relaxation and a round of beam search with
the updated λ. If either produces a certificate it returns the
result.

and Collins (2011) and Rush and Collins (2011) de-
velop Lagrangian relaxation-based approaches for
exact machine translation.

Apart from translation decoding, this paper is
closely related to work on column generation for
NLP. Riedel et al. (2012) and Belanger et al. (2012)
relate column generation to beam search and pro-
duce exact solutions for parsing and tagging prob-
lems. The latter work also gives conditions for when
beam search-style decoding is optimal.

7 Results

To evaluate the effectiveness of optimal beam search
for translation decoding, we implemented decoders
for phrase- and syntax-based models. In this sec-
tion we compare the speed and optimality of these

217

decoders to several baseline methods.

7.1 Setup and Implementation

For phrase-based translation we used a German-to-
English data set taken from Europarl (Koehn, 2005).
We tested on 1,824 sentences of length at most 50
words. For experiments the phrase-based systems
uses a trigram language model and includes standard
distortion penalties. Additionally the unconstrained
hypergraph includes further derivation information
similar to the graph described in Chang and Collins
(2011).

For syntax-based translation we used a Chinese-
to-English data set. The model and hypergraphs
come from the work of Huang and Mi (2010). We
tested on 691 sentences from the newswire portion
of the 2008 NIST MT evaluation test set. For ex-
periments, the syntax-based model uses a trigram
language model. The translation model is tree-to-
string syntax-based model with a standard context-
free translation forest. The constraint matrix A
is based on the constraints described by Rush and
Collins (2011).

Our decoders use a two-pass architecture. The
first pass sets up the hypergraph in memory, and the
second pass runs search. When possible the base-
lines share optimized construction and search code.

The performance of optimal beam search is de-
pendent on the sequences α and β. For the step-
size α we used a variant of Polyak’s rule (Polyak,
1987; Boyd and Mutapcic, 2007), substituting the
unknown optimal score for the last computed lower
bound: αk ← ub(k)−lb(k)

||Ax(k)−b||22
. We adjust the order of

the pruning parameter β based on a function µ of
the current gap: βk ← 10µ(ub(k)−lb(k)).

Previous work on these data sets has shown that
exact algorithms do not result in a significant in-
crease in translation accuracy. We focus on the effi-
ciency and model score of the algorithms.

7.2 Baseline Methods

The experiments compare optimal beam search
(OPTBEAM) to several different decoding meth-
ods. For both systems we compare to: BEAM, the
beam search decoder from Figure 3 using the orig-
inal weights θ and τ , and β ∈ {100, 1000}; LR-
TIGHT, Lagrangian relaxation followed by incre-

Figure 7: Two graphs from phrase-based decoding.
Graph (a) shows the duality gap distribution for 1,824
sentences after 0, 5, and 10 rounds of LR. Graph (b)
shows the % of certificates found for sentences with dif-
fering gap sizes and beam search parameters β. Duality
gap is defined as, ub - (θ>x∗ + τ).

mental tightening constraints, which is a reimple-
mentation of Chang and Collins (2011) and Rush
and Collins (2011).

For phrase-based translation we compare with:
MOSES-GC, the standard Moses beam search de-
coder with β ∈ {100, 1000} (Koehn et al., 2007);
MOSES, a version of Moses without gap constraints
more similar to BEAM (see Chang and Collins
(2011)); ASTAR, an implementation of A∗ search
using original outside scores, i.e. OUTSIDE(θ, τ),
and capped at 20,000,000 queue pops.

For syntax-based translation we compare with:
ILP, a general-purpose integer linear program-
ming solver (Gurobi Optimization, 2013) and
CUBEPRUNING, an approximate decoding method
similar to beam search (Chiang, 2007), tested with
β ∈ {100, 1000}.

7.3 Experiments

Table 1 shows the main results. For phrase-based
translation, OPTBEAM decodes the optimal trans-
lation with certificate in 99% of sentences with an
average time of 17.27 seconds per sentence. This

218

11-20 (558) 21-30 (566) 31-40 (347) 41-50 (168) all (1824)
Phrase-Based time cert exact time cert exact time cert exact time cert exact time cert exact
BEAM (100) 2.33 19.5 38.0 8.37 1.6 7.2 24.12 0.3 1.4 71.35 0.0 0.0 14.50 15.3 23.2
BEAM (1000) 2.33 37.8 66.3 8.42 3.4 18.9 21.60 0.6 3.2 53.99 0.6 1.2 12.44 22.6 36.9
BEAM (100000) 3.34 83.9 96.2 18.53 22.4 60.4 46.65 2.0 18.1 83.53 1.2 6.5 23.39 43.2 62.4
MOSES (100) 0.18 0.0 81.0 0.36 0.0 45.6 0.53 0.0 14.1 0.74 0.0 6.0 0.34 0.0 52.3
MOSES (1000) 2.29 0.0 97.8 4.39 0.0 78.8 6.52 0.0 43.5 9.00 0.0 19.6 4.20 0.0 74.6
ASTAR (cap) 11.11 99.3 99.3 91.39 53.9 53.9 122.67 7.8 7.8 139.61 1.2 1.2 67.99 58.8 58.8
LR-TIGHT 4.20 100.0 100.0 23.25 100.0 100.0 88.16 99.7 99.7 377.9 97.0 97.0 60.11 99.7 99.7
OPTBEAM 2.85 100.0 100.0 10.33 100.0 100.0 28.29 100.0 100.0 84.34 97.0 97.0 17.27 99.7 99.7
ChangCollins 10.90 100.0 100.0 57.20 100.0 100.0 203.4 99.7 99.7 679.9 97.0 97.0 120.9 99.7 99.7
MOSES-GC (100) 0.14 0.0 89.4 0.27 0.0 84.1 0.41 0.0 75.8 0.58 0.0 78.6 0.26 0.0 84.9
MOSES-GC (1000) 1.33 0.0 89.4 2.62 0.0 84.3 4.15 0.0 75.8 6.19 0.0 79.2 2.61 0.0 85.0

11-20 (192) 21-30 (159) 31-40 (136) 41-100 (123) all (691)
Syntax-Based time cert exact time cert exact time cert exact time cert exact time cert exact
BEAM (100) 0.40 4.7 75.9 0.40 0.0 66.0 0.75 0.0 43.4 1.66 0.0 25.8 0.68 5.72 58.7
BEAM (1000) 0.78 16.9 79.4 2.65 0.6 67.1 6.20 0.0 47.5 15.5 0.0 36.4 4.16 12.5 65.5
CUBE (100) 0.08 0.0 77.6 0.16 0.0 66.7 0.23 0.0 43.9 0.41 0.0 26.3 0.19 0.0 59.0
CUBE (1000) 1.76 0.0 91.7 4.06 0.0 95.0 5.71 0.0 82.9 10.69 0.0 60.9 4.66 0.0 85.0
LR-TIGHT 0.37 100.0 100.0 1.76 100.0 100.0 4.79 100.0 100.0 30.85 94.5 94.5 7.25 99.0 99.0
OPTBEAM 0.23 100.0 100.0 0.50 100.0 100.0 1.42 100.0 100.0 7.14 93.6 93.6 1.75 98.8 98.8
ILP 9.15 100.0 100.0 32.35 100.0 100.0 49.6 100.0 100.0 108.6 100.0 100.0 40.1 100.0 100.0

Table 1: Experimental results for translation experiments. Column time is the mean time per sentence in seconds,
cert is the percentage of sentences solved with a certificate of optimality, exact is the percentage of sentences solved
exactly, i.e. θ>x+ τ = θ>x∗ + τ . Results are grouped by sentence length (group 1-10 is omitted for space).

is seven times faster than the decoder of Chang and
Collins (2011) and 3.5 times faster then our reim-
plementation, LR-TIGHT. ASTAR performs poorly,
taking lots of time on difficult sentences. BEAM runs
quickly, but rarely finds an exact solution. MOSES

without gap constraints is also fast, but less exact
than OPTBEAM and unable to produce certificates.

For syntax-based translation. OPTBEAM finds a
certificate on 98.8% of solutions with an average
time of 1.75 seconds per sentence, and is four times
faster than LR-TIGHT. CUBE (100) is an order
of magnitude faster, but is rarely exact on longer
sentences. CUBE (1000) finds more exact solu-
tions, but is comparable in speed to optimal beam
search. BEAM performs better than in the phrase-
based model, but is not much faster than OPTBEAM.

Figure 7.2 shows the relationship between beam
search optimality and duality gap. Graph (a) shows
how a handful of LR rounds can significantly tighten
the upper bound score of many sentences. Graph (b)
shows how beam search is more likely to find opti-
mal solutions with tighter bounds. BEAM effectively
uses 0 rounds of LR, which may explain why it finds
so few optimal solutions compared to OPTBEAM.

Table 2 breaks down the time spent in each part
of the algorithm. For both methods, beam search has
the most time variance and uses more time on longer
sentences. For phrase-based sentences, Lagrangian
relaxation is fast, and hypergraph construction dom-

≥ 30 all
mean median mean median

Hypergraph 56.6% 69.8% 59.6% 69.6%
PB Lag. Relaxation 10.0% 5.5% 9.4% 7.6%

Beam Search 33.4% 24.6% 30.9% 22.8%
Hypergraph 0.5% 1.6% 0.8% 2.4%

SB Lag. Relaxation 15.0% 35.2% 17.3% 41.4%
Beam Search 84.4% 63.1% 81.9 % 56.1%

Table 2: Distribution of time within optimal beam search,
including: hypergraph construction, Lagrangian relax-
ation, and beam search. Mean is the percentage of total
time. Median is the distribution over the median values
for each row.

inates. If not for this cost, OPTBEAM might be com-
parable in speed to MOSES (1000).

8 Conclusion

In this work we develop an optimal variant of beam
search and apply it to machine translation decod-
ing. The algorithm uses beam search to produce
constrained solutions and bounds from Lagrangian
relaxation to eliminate non-optimal solutions. Re-
sults show that this method can efficiently find exact
solutions for two important styles of machine trans-
lation.

Acknowledgments Alexander Rush, Yin-Wen
Chang and Michael Collins were all supported by
NSF grant IIS-1161814. Alexander Rush was partially
supported by an NSF Graduate Research Fellowship.

219

References
David Belanger, Alexandre Passos, Sebastian Riedel, and

Andrew McCallum. 2012. Map inference in chains
using column generation. In NIPS, pages 1853–1861.

Stephen Boyd and Almir Mutapcic. 2007. Subgradient
methods.

Yin-Wen Chang and Michael Collins. 2011. Exact de-
coding of phrase-based translation models through la-
grangian relaxation. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing, pages 26–37. Association for Computational Lin-
guistics.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. computational linguistics, 33(2):201–228.

Adria de Gispert, Gonzalo Iglesias, Graeme Blackwood,
Eduardo R. Banga, and William Byrne. 2010. Hierar-
chical Phrase-Based Translation with Weighted Finite-
State Transducers and Shallow-n Grammars. In Com-
putational linguistics, volume 36, pages 505–533.

Chris Dyer, Adam Lopez, Juri Ganitkevitch, Jonathen
Weese, Ferhan Ture, Phil Blunsom, Hendra Setiawan,
Vlad Eidelman, and Philip Resnik. 2010. cdec: A
decoder, alignment, and learning framework for finite-
state and context-free translation models.

Ulrich Germann, Michael Jahr, Kevin Knight, Daniel
Marcu, and Kenji Yamada. 2001. Fast decoding and
optimal decoding for machine translation. In Proceed-
ings of the 39th Annual Meeting on Association for
Computational Linguistics, ACL ’01, pages 228–235.

Inc. Gurobi Optimization. 2013. Gurobi optimizer refer-
ence manual.

Liang Huang and David Chiang. 2005. Better k-best
parsing. In Proceedings of the Ninth International
Workshop on Parsing Technology, pages 53–64. As-
sociation for Computational Linguistics.

Liang Huang and David Chiang. 2007. Forest rescoring:
Faster decoding with integrated language models. In
Proceedings of the 45th Annual Meeting of the Asso-
ciation of Computational Linguistics, pages 144–151,
Prague, Czech Republic, June. Association for Com-
putational Linguistics.

Liang Huang and Haitao Mi. 2010. Efficient incremental
decoding for tree-to-string translation. In Proceedings
of the 2010 Conference on Empirical Methods in Natu-
ral Language Processing, pages 273–283, Cambridge,
MA, October. Association for Computational Linguis-
tics.

Gonzalo Iglesias, Adrià de Gispert, Eduardo R. Banga,
and William Byrne. 2009. Rule filtering by pattern
for efficient hierarchical translation. In Proceedings of
the 12th Conference of the European Chapter of the
ACL (EACL 2009), pages 380–388, Athens, Greece,
March. Association for Computational Linguistics.

Kevin Knight. 1999. Decoding complexity in word-
replacement translation models. Computational Lin-
guistics, 25(4):607–615.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proceed-
ings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguis-
tics on Human Language Technology, NAACL ’03,
pages 48–54.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondřej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Proceed-
ings of the 45th Annual Meeting of the ACL on Inter-
active Poster and Demonstration Sessions, ACL ’07,
pages 177–180.

Philipp Koehn. 2004. Pharaoh: a beam search decoder
for phrase-based statistical machine translation mod-
els. Machine translation: From real users to research,
pages 115–124.

Shankar Kumar and William Byrne. 2005. Local phrase
reordering models for statistical machine translation.
In Proceedings of Human Language Technology Con-
ference and Conference on Empirical Methods in Nat-
ural Language Processing, pages 161–168, Vancou-
ver, British Columbia, Canada, October. Association
for Computational Linguistics.

R. Kipp Martin, Rardin L. Rardin, and Brian A. Camp-
bell. 1990. Polyhedral characterization of dis-
crete dynamic programming. Operations research,
38(1):127–138.

Franz Josef Och, Nicola Ueffing, and Hermann Ney.
2001. An efficient A* search algorithm for statisti-
cal machine translation. In Proceedings of the work-
shop on Data-driven methods in machine translation -
Volume 14, DMMT ’01, pages 1–8, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Boris Polyak. 1987. Introduction to Optimization. Opti-
mization Software, Inc.

Sebastian Riedel and James Clarke. 2009. Revisiting
optimal decoding for machine translation IBM model
4. In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American
Chapter of the Association for Computational Linguis-
tics, Companion Volume: Short Papers, pages 5–8. As-
sociation for Computational Linguistics.

Sebastian Riedel, David Smith, and Andrew McCallum.
2012. Parse, price and cut: delayed column and row
generation for graph based parsers. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational

220

Natural Language Learning, pages 732–743. Associa-
tion for Computational Linguistics.

Alexander M Rush and Michael Collins. 2011. Exact
decoding of syntactic translation models through la-
grangian relaxation. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, vol-
ume 1, pages 72–82.

Alexander M Rush and Michael Collins. 2012. A tutorial
on dual decomposition and lagrangian relaxation for
inference in natural language processing. Journal of
Artificial Intelligence Research, 45:305–362.

Christoph Tillmann and Hermann Ney. 2003. Word re-
ordering and a dynamic programming beam search al-
gorithm for statistical machine translation. Computa-
tional Linguistics, 29(1):97–133.

Christoph Tillmann. 2006. Efficient dynamic pro-
gramming search algorithms for phrase-based SMT.
In Proceedings of the Workshop on Computationally
Hard Problems and Joint Inference in Speech and Lan-
guage Processing, CHSLP ’06, pages 9–16.

Taro Watanabe, Hajime Tsukada, and Hideki Isozaki.
2006. Left-to-right target generation for hierarchical
phrase-based translation. In Proceedings of the 21st
International Conference on Computational Linguis-
tics and the 44th annual meeting of the Association for
Computational Linguistics, ACL-44, pages 777–784,
Morristown, NJ, USA. Association for Computational
Linguistics.

Mikhail Zaslavskiy, Marc Dymetman, and Nicola Can-
cedda. 2009. Phrase-based statistical machine transla-
tion as a traveling salesman problem. In Proceedings
of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume
1 - Volume 1, ACL ’09, pages 333–341, Stroudsburg,
PA, USA. Association for Computational Linguistics.

221

