
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 73–84,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Paraphrasing 4 Microblog Normalization

Wang Ling Chris Dyer Alan W Black Isabel Trancoso
L2F Spoken Systems Lab, INESC-ID, Lisbon, Portugal

Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, USA
Instituto Superior Técnico, Lisbon, Portugal
{lingwang,cdyer,awb}@cs.cmu.edu
isabel.trancoso@inesc-id.pt

Abstract

Compared to the edited genres that have
played a central role in NLP research, mi-
croblog texts use a more informal register with
nonstandard lexical items, abbreviations, and
free orthographic variation. When confronted
with such input, conventional text analysis
tools often perform poorly. Normalization
— replacing orthographically or lexically id-
iosyncratic forms with more standard variants
— can improve performance. We propose a
method for learning normalization rules from
machine translations of a parallel corpus of
microblog messages. To validate the utility of
our approach, we evaluate extrinsically, show-
ing that normalizing English tweets and then
translating improves translation quality (com-
pared to translating unnormalized text) using
three standard web translation services as well
as a phrase-based translation system trained
on parallel microblog data.

1 Introduction

Microblogs such as Twitter, Sina Weibo (a popular
Chinese microblog service) and Facebook have re-
ceived increasing attention in diverse research com-
munities (Han and Baldwin, 2011; Hawn, 2009, in-
ter alia). In contrast to traditional text domains that
use carefully controlled, standardized language, mi-
croblog content is often informal, with less adher-
ence to conventions regarding punctuation, spelling,
and style, and with a higher proportion of dialect
or pronouciation-derived orthography. While this
diversity itself is an important resource for study-
ing, e.g., sociolinguistic variation (Eisenstein et al.,

2011; Eisenstein, 2013), it poses challenges to NLP
applications developed for more formal domains. If
retaining variation due to sociolinguistic or phono-
logical factors is not crucial, text normalization can
improve performance on downstream tasks (§2).

This paper introduces a data-driven approach to
learning normalization rules by conceiving of nor-
malization as a kind of paraphrasing and taking
inspiration from the bilingual pivot approach to
paraphrase detection (Bannard and Callison-Burch,
2005) and the observation that translation is an
inherently “simplifying” process (Laviosa, 1998;
Volansky et al., 2013). Starting from a parallel cor-
pus of microblog messages consisting of English
paired with several other languages (Ling et al.,
2013), we use standard web machine translation sys-
tems to re-translate the non-English segment, pro-
ducing 〈English original,English MT〉 pairs (§3).
These are our normalization examples, with MT out-
put playing the role of normalized English. Sev-
eral techniques for identifying high-precision nor-
malization rules are proposed, and we introduce a
character-based normalization model to account for
predictable character-level processes, like repetition
and substitution (§4). We then describe our decod-
ing procedure (§5) and show that our normaliza-
tion model improve translation quality for English–
Chinese microblog translation (§6).1

2 Why Normalize?

Consider the English tweet shown in the first row of
Table 1 which contains several elements that NLP

1The datasets used in this paper are available from http:
//www.cs.cmu.edu/˜lingwang/microtopia.

73

Table 1: Translations of an English microblog message
into Mandarin, using three web translation services.

orig. To DanielVeuleman yea iknw imma work on that
MT1 啊iknw DanielVeuleman伊马工作，
MT2 DanielVeuleman是iknw凋谢关于工作，
MT3 到DanielVeuleman是的iknw imma这方面的工作

systems trained on edited domains may not handle
well. First, it contains several nonstandard abbre-
viations, such as, yea, iknw and imma (abbrevia-
tions of yes, I know and I am going to). Second,
there is no punctuation in the text although stan-
dard convention would dictate that it should be used.
To illustrate the effect this can have, consider now
the translations produced by Google Translate,2 Mi-
crosoft Bing,3 and Youdao,4 shown in rows 2–4.
Even with no knowledge of Chinese, it is not hard
to see that all engines have produced poor transla-
tions: the abbreviation iknw is left translated by all
engines, and imma is variously deleted, left untrans-
lated, or transliterated into the meaningless sequence
伊马 (pronounced yı̄ mǎ).

While normalization to a form like To Daniel
Veuleman: Yes, I know. I am going to work on that.
does indeed lose some information (information im-
portant for an analysis of sociolinguistic or phono-
logical variation clearly goes missing), it expresses
the propositional content of the original in a form
that is more amenable to processing by traditional
tools. Translating the normalized form with Google
Translate produces要丹尼尔Veuleman：是的，我
知道。我打算在那工作。, which is a substantial
improvement over all translations in Table 1.

3 Obtaining Normalization Examples

We want to treat normalization as a supervised learn-
ing problem akin to machine translation, and to do
so, we need to obtain pairs of microblog posts and
their normalized forms. While it would be possible
to ask annotators to create such a corpus, it would
be quite expensive to obtain large numbers of ex-
amples. In this section, we propose a method for
creating normalization examples without any human

2http://translate.google.com/
3http://www.bing.com/translator
4http://fanyi.youdao.com/

Table 2: Translations of Chinese original post to English
using web-based service.

orig. To DanielVeuleman yea iknw imma work on that
orig. 对DanielVeuleman说，是的，我知道，

我正在向那方面努力

MT1 Right DanielVeuleman say, yes, I know, I’m
Xiangna efforts

MT2 DanielVeuleman said, Yes, I know, I’m that hard
MT3 Said to DanielVeuleman, yes, I know, I’m to

that effort

annotation, by leveraging existing tools and data re-
sources.

The English example sentence in Table 1 was se-
lected from the µtopia parallel corpus (Ling et
al., 2013), which consists of self-translated mes-
sages from Twitter and Sina Weibo (i.e., each mes-
sage contains a translation of itself). Row 2 of
Table 2 shows the Mandarin self-translation from
the corpus. The key observation is what happens
when we automatically translate the Mandarin ver-
sion back into English. Rows 3–5 shows automatic
translations from three standard web MT engines.
While not perfect, the translations contain several
correctly normalized subphrases. We will use such
re-translations as a source of (noisy) normalization
examples. Since such self-translations are relatively
numerous on microblogs, this technique can provide
a large amount of data.

Of course, to motivate this paper, we argued that
NLP tools — like the very translation systems we
propose to use — often fail on unnormalized input.
Is this a problem? We argue that it is not for the
following two reasons.

Normalization in translation. Work in transla-
tion studies has observed that translation tends to
be a generalizing process that “smooths out” author-
and work-specific idiosyncrasies (Laviosa, 1998;
Volansky et al., 2013). Assuming this observa-
tion is robust, we expect that dialectal variant forms
found in microblogs to be normalized in translation.
Therefore, if the parallel segments in our microblog
parallel corpus did indeed originate through a trans-
lation process (rather than, e.g., being generated as
two independent utterances from a bilingual), we
may then state the following assumption about the
distribution of variant forms in a parallel segment

74

〈e, f〉: if e contains nonstandard lexical variants,
then f is likely to be a normalized translation using
with fewer nonstandard lexical variants (and vice-
versa).

Uncorrelated orthographic variants. Any writ-
ten language has the potential to make creative use
of orthography: alphabetic scripts can render ap-
proximations of pronunciation variants; logographic
scripts can use homophonic substitutions. However,
the kinds of innovations used in particular languages
will be language specific (depending on details of
the phonology, lexicon, and orthography of the lan-
guage). However, for language pairs that differ sub-
stantially in these dimensions, it may not always
be possible (or at least easy) to preserve particular
kinds of nonstandard orthographic forms in trans-
lation. Consider the (relatively common) pronoun-
verb compounds like iknw and imma from our mo-
tivating example: since Chinese uses a logographic
script without spaces, there is no obvious equivalent.

3.1 Variant–Normalized Parallel Corpus

For the two reasons outlined above, we argue that
we will be able to translate back into English us-
ing MT, even when the underlying English part of
the parallel corpus has a great deal of nonstandard
content. We leverage this fact to build the normal-
ization corpus, where the original English tweet is
treated as the variant form, and the automatic trans-
lation obtained from another language is considered
a potential normalization.5

Our process is as follows. The microblog cor-
pus of Ling et al. (2013) contains sentence pairs ex-
tracted from Twitter and Sina Weibo, for multiple
language pairs. We use all corpora that include En-
glish as one of the languages in the pair. The respec-
tive non-English side is translated into English using
different translation engines. The different sets we
used and the engines we used to translate are shown
in Table 3. Thus, for each original English post o,
we obtain n paraphrases {pi}ni=1, from n different
translation engines.

5We additionally assume that the translation engines are
trained to output more standardized data, so there will be addi-
tional normalizing effect from the machine translation system.

Table 3: Corpora Used for Paraphrasing.

Lang. Pair Source Segs. MT Engines
ZH-EN Weibo 800K Google, Bing, Youdao
ZH-EN Twitter 113K Google, Bing, Youdao
AR-EN Twitter 114K Google, Bing
RU-EN Twitter 119K Google, Bing
KO-EN Twitter 78K Google, Bing
JA-EN Twitter 75K Google, Bing

3.2 Alignment and Filtering
Our parallel microblog corpus was crawled automat-
ically and contains many misaligned sentences. To
improve precision, we attempt to find the similar-
ity between the (unnormalized) original and each
of the normalizations using an alignment based on
the one used in METEOR (Denkowski and Lavie,
2011), which computes the best alignment between
the original tweet and each of the normalizations
but modified to permit domain-specific approximate
matches. To address lexical variants, we allow fuzzy
word matching, that is, we allow lexically similar,
such as yea and yes to be aligned (similarity is de-
termined by the Levenshtein distance). We also per-
form phrasal matchings, such as ikwn to i know. To
do so, we extend the alignment algorithm from word
to phrasal alignments. More precisely, given the
original post o and a candidate normalization n, we
wish to find the optimal segmentation producing a
good alignment. A segmentation s = 〈s1, . . . , s|s|〉
is a sequence of segments that aligns as a block to a
source word. For instance, for the sentence yea iknw
imma work on that, one possible segmentation could
be s1 =yea ikwn, s2 =imma and s3 =work on that.

Model. We define the score of an alignment a and
segmentation s in using a model that makes semi-
Markov independence assumptions, similar to the
work in (Bansal et al., 2011), u(a, s | o,n) =

|s|∏
i=1

[
ue(si, ai | n)× ut(ai | ai−1)× u`(|si|)

]
In this model, the maximal scoring segmentation
and alignment can be found using a polynomial time
dynamic programming algorithm. Each segment
can be aligned to any word or segment in o. The
aligned segment for sk is defined as ak. For the

75

score of a segment correspondence ue(s, a | n), we
assume that this can be estimated using the lexical
similarity between segments, which we define to be
1− L(sk,ak)

max{|sk|,|ak|} , where L(x, y) denotes the Leven-
shtein distance between strings x and y, normalized
by the highest possible distance between those seg-
ments.

For the alignment score ut, we assume that the
relative order of the two sequences will be mostly
monotonous. Thus, we approximate ut with the fol-
lowing density poss(ak) − pose(ak−1) ∼ N (1, 1),
where the poss is the index of the first word in the
segment and pose the one of the last word.

After finding the Viterbi alignments, we compute
the similarity measure τ = |A|

|A|+|U | , used in (Resnik
and Smith, 2003), where |A| and |U | are the number
of words that were aligned and unaligned, respec-
tively. In this work, we extract the pair if τ > 0.2.

4 Normalization Model

From the normalization corpus, we learn a nor-
malization model that generalizes the normalization
process. That is, from the data we observe that To
DanielVeuleman yea iknw imma work on that is nor-
malized to To Daniel Veuleman: yes, I know. I
am going to work on that. However, this is not
useful, since the chances of the exact sentence To
DanielVeuleman yea iknw imma work on that occur-
ring in the data is low. We wish to learn a process to
convert the original tweet into the normalized form.

There are two mechanisms that we use in our
model. The first (§4.1) learns word–word and
phrase–phrase mappings. That is, we wish to find
that DanielVeuleman is normalized to Daniel Veule-
man, that iknw is normalized to I know and that
imma is normalized to I am going. These mappings
are more useful, since whenever iknw occurs in the
data, we have the option to normalize it to I know.
The second (§4.2) learns character sequence map-
pings. If we look at the normalization DanielVeule-
man to Daniel Veuleman, we can see that it is only
applicable when the exact word DanielVeuleman oc-
curs. However, we wish to learn that it is uncom-
mon for the letters l and v to occur in the same word
sequentially, so that be can add missing spaces in
words that contain the lv character sequence, such as
normalizing phenomenalvoter to phenomenal voter.

I wanna go 4 pizza 2day

I want go for pizza todayto

Figure 1: Variant–normalized alignment with the variant
form above and the normalized form below; solid lines
show potential normalizations, while dashed lines repre-
sent identical translations.

However, there are also cases where this is not true,
for instance, in the word velvet, we do not wish to
separate the letters l and v. Thus, we shall describe
the process we use to decide when to apply these
transformations.

4.1 From Sentences To Phrases

The process to find phrases from sentences has been
throughly studied in Machine Translation. This is
generally done in two steps, Word Alignments and
Phrase Extraction.

Alignment. The first step is to find the word-level
alignments between the original post and its nor-
malization. This is a well studied problem in MT,
referred as Word Alignment (Brown et al., 1993).
Many alignment models have been proposed, such
as, the HMM-based word alignment models (Vo-
gel et al., 1996) and the IBM models (Och and
Ney, 2003). Generally, a symmetrization step is per-
formed, where the bidirectional alignments are com-
bined heuristically. In our work, we use the fast
aligner proposed in (Dyer et al., 2013) to obtain the
word alignments. Figure 1 shows an example of an
word aligned pair of a tweet and its normalization.

Phrase Extraction. The phrasal extraction
step (Ling et al., 2010), uses the word aligned
sentences and extracts phrasal mappings between
the original tweet and its normalization, named
phrase pairs. For instance, in Figure 1, we would
like to extract the phrasal mapping from go 4 to go
for, so that we learn that the word 4 in the context of
go is normalized to the proposition for. To do this,
the most common approach is to use the template
proposed in (Och and Ney, 2004), which allows
phrase pairs to be extracted, if there is at least one
word alignment within the pair, and there are no

76

Table 4: Fragment of the phrase normalization model
built, for each original phrase o, we present the top-3 nor-
malized forms ranked by f(n | o).

Original (o) Normalization (n) f(n | o)
wanna want to 0.4679
wanna will 0.0274
wanna going to 0.0114
4 4 0.5641
4 for 0.01795
go 4 go for 1.0000

words inside the pair that are aligned to words not
in the pair. For instance, in the example above, the
phrase pair that normalizes wanna to want to would
be extracted, but the phrase pair normalizing wanna
to want to go would not, because the word go in the
normalization is aligned to a word not in the pair.

Phrasal Features. After extracting the phrase
pairs, a model is produced with features derived
from phrase pair occurrences during extraction. This
model is equivalent to phrasal translation model in
MT, but we shall refer to it as the normalization
model. For a phrase pair 〈o,n〉, where o is the origi-
nal phrase, and n is the normalized phrase, we com-
pute the normalization relative frequency f(n | o) =
C(n,o)
C(o) , where C(n, o) denotes the number of times

o was normalized to n and C(o) denotes the number
of times o was seen in the extracted phrase pairs. Ta-
ble 4 gives a fragment of the normalization model.
The columns represent the original phrase, its nor-
malization and the probability, respectively.

In Table 4, we observe that the abbreviation
wanna is normalized to want to with a relatively
high probability, but it can also be normalized to
other equivalent expressions, such as will and go-
ing to. The word 4 by itself has a low probability
to be normalized to the preposition for. This is ex-
pected, since this decision cannot be made without
context. However, we see that the phrase go 4 is
normalized to go for with a high probability, which
specifies that within the context of go, 4 is generally
used as a preposition.

4.2 From Phrases to Characters

While we can learn lexical variants that are in the
corpora using the phrase model, we can only address
word forms that have been observed in the corpora.

Table 5: Fragment of the character normalization model
where examples representative of the lexical variant gen-
eration process are encoded in the model.

Original (o) Normalization (n) f(n | o)
o o o o o 0.0223
o o o o 0.0439
s c 0.0331
z s 0.0741
s h c h 0.019
2 t o 0.014
4 f o r 0.0013
0 o 0.0657
i n g f o r i n g <space> f o r 0.4545
g f g <space> f 0.01028

This is quite limited, since we cannot expect all the
word forms to be present, such as all the possible
orthographic errors for the word cat, such as catt,
kat and caaaat. Thus, we will build a character-
based model that learns the process lexical variants
are generated at the subword level.

Our character-based model is similar to the
phrase-based model, except that, rather than learn-
ing word-based mappings from the original tweet
and the normalization sentences, we learn character-
based mappings from the original phrases to the nor-
malizations of those phrases. Thus, we extract the
phrase pairs in the phrasal normalization model, and
use them as a training corpora. To do this, for each
phrase pair, we add a start token, <start>, and a
end token, <end>, at the beginning and ending of
the phrase pair. Afterwards, we separate all charac-
ters by space and add a space token <space> where
spaces were originally. For instance, the phrase
pair normalizing DanielVeuleman to Daniel Veule-
man would be converted to <start> d a n i e l v e u
l e m a n <end> and <start> d a n i e l <space> v
e u l e m a n <end>.

Character-based Normalization Model - To
build the character-based model, we proceed using
the same approach as in the phrasal normalization
model. We first align characters using Word Align-
ment Models, and then we perform phrase extrac-
tion to retrieve the phrasal character segments, and
build the character-based model by collecting statis-
tics. Once again, we provide examples of entries in
the model in Table 5.

77

We observe that many of the normalizations dealt
with in the previous model by memorizing phrases
are captured with string transformations. For in-
stance, from phrase pairs such as tooo to too and
sooo to so, we learn that sequences of o’s can be
reduced to 2 or 1 o. Other examples include or-
thographic substitutions, such as 2 for to and 4
for for (as found in 2gether, 2morrow, 4ever and
4get). Moreover, orthographic errors can be gener-
ated from mistaking characters with similar phonetic
properties, such as, s to c, z to s and sh to ch, gener-
ating lexical variants such as reprecenting. Finally,
we learn that the number 0 that resembles the letter
o, can be used as a replacement, as in g00d. Finally,
we can see that the rule ingfor to ing for attempts to
find segmentation errors, such as goingfor, where a
space between going and for was omitted.6

5 Normalization Decoder

In section 4, we built two models to learn the process
of normalization, the phrase-based model and the
character-based model. In this section, we describe
the decoder we used to normalize the sentences.

The advantage of the phrase-based model is that it
can make decisions for normalization based on con-
text. That is, it contains phrasal units, such as, go
4, that determine, when the word 4 should be nor-
malized to the preposition for and when to leave it
as a number. However, it cannot address words that
are unseen in the corpora. For instance, if the word
form 4ever is not seen in the training corpora, it is
not be able to normalize it, even if it has seen the
word 4get normalized to forget. On the other hand,
the character-based model learns subword normal-
izations, for instance, if we see the word nnnnno
normalized to no, we can learn that repetitions of
the letter n are generally shorted to n, which al-
lows it to generate new word forms. This model
has strong generalization potential, but the weak-
ness of the character-based model is that it fails to

6Note that this captures the context in which such transfor-
mations are likely to occur: there are not many words that con-
tain the sequence ingfor, so the probability that these should be
normalized by inserting a space is high. On the other hand, we
cannot assume that if we observe the sequence gf, we can safely
separate these with a space. This is because, there are many
words that contain this sequence, such as the abbreviation of
gf (girlfriend), dogfight, and bigfoot.

consider the context of the normalization that the
phrase-based model uses to make normalization de-
cisions. Thus, our goal in this section is describe a
decoder that uses both models to improve the quality
of the normalizations.

5.1 Phrasal Decoder
We use Moses, an off-the-shelf phrase-based MT
system (Koehn et al., 2007), to “translate” the orig-
inal tweet its normalized form using the phrasal
model (§4.1). Aside form the normalization prob-
ability, we also use the common features used in
MT. These are the reverse normalization probabil-
ity, the lexical and reverse lexical probabilities and
the phrase penalty. We also use the MSD reorder-
ing model proposed in (Koehn et al., 2005), which
adds reordering features.7 The final score of each
phrase pair is given as a sum of weighted log fea-
tures. The weights for these features are optimized
using MERT (Och, 2003). In our work, we sampled
150 tweets randomly from Twitter and normalized
them manually, and used these samples as devel-
opment data for MERT. As for the character-based
model features, we simply rank the training phrase
pairs by their relative frequency the f(n | o), and use
the top-1000 phrase pairs as development set. Fi-
nally, a language model is required during decoding
as a prior, since it defines the type of language that
is produced by the output. We wish to normalized
to formal language, which is generally better pro-
cessed by NLP tools. Thus, for the phrase model,
we use the English NIST dataset composed of 8M
sentences in English from the news domain to build
a 5-gram Kneser-Ney smoothed language model.

5.2 Character and Phrasal Decoder
We now turn to how to apply the character-based
(§4.2), together with the phrasal model. For this
model, we again use Moses, treating each charac-
ter as a “word”. The simplest way to combine both
methods is first to decode the input o sentence with
the character-based decoder, normalizing each word
independently and then normalizing the resulting
output using the phrase-based decoder, which en-
ables the phrase model to score the outputs of the
character model in context.

7Reordering helps find lexical variants that are generated by
transposing characters, such as, mabye to maybe.

78

0 1 2 3 4 5 6
I

wanna

want to meeeeet
meet

met

DanielVeuleman

Daniel Veuleman

Figure 2: Example output lattice of the character-based decoder, for the sentence I wanna meeeeet DanielVeuleman.

Our process is as follows. Given the input sen-
tence o, with the words o1, . . . , om, where m is
the number of words in the input, we generate for
each word oi a list of n-best normalization candi-
dates z1

oi
, . . . , zn

oi
. We further filter the candidates

using two criteria. We start by filtering each can-
didate zj

oi that occurs less frequently than the orig-
inal word oi. This is motivated by our observation
that lexical variants occur far less than the respec-
tive standard form. Second, we build a corpus of
English language Twitter consisting of 70M tweets,
extract the unigram counts, and perform Brown clus-
tering (Brown et al., 1992) with k = 3000 clusters.
Next, we calculate the cluster similarity between oi

and each surviving candidate, zj
oi . We filter the can-

didate if the similarity is less than 0.8. The similar-
ity between two clusters represented as bit strings,
S[c(oi), c(z

j
oi)], calculated as:

S(x, y) =
2 · |lpm{x, y)}|
|x|+ |y|

,

where lpm computes the longest common prefix of
the contexts and |x| is the length of the bit string.8

If a candidate contains more than one word (because
a space was inserted), we set its count as the mini-
mum count among its words. To find the cluster for
multiple word units, we concatenate the words to-
gether, and find the cluster with the resulting word if
it exists. This is motivated by the fact that it is com-
mon for missing spaces to exist in microblog cor-
pora, generating new word forms, such as wantto,
goingfor, and given a large enough corpora as the
one we used, these errors occur frequently enough to
be placed in the correct cluster. In fact, the variants
such as wanna and tmi, occur in the same clusters as
the words wantto and toomuchinformation.

Remaining candidates are combined into a word
lattice, enabling us to perform lattice-based decod-

8Brown clusters are organized such that more words with
more similar distributions share common prefixes.

ing with the phrasal model (Dyer et al., 2008). Fig-
ure 2, provides an example of such a lattice for the
variant sentence I wanna meeeet DanielVeuleman.

5.3 Learning Variants from Monolingual Data

Until now, we learned normalizations from pairs of
original tweets and their normalizations. We shall
now describe a process to leverage monolingual doc-
uments to learn new normalizations, since the mono-
lingual data is far easier to obtain than parallel data.
This process is similar to the work in (Han et al.,
2012), where confusion sets of contextually simi-
lar words are built initially as potential normaliza-
tion candidates. We again use the k = 3000 Brown
clusters,9 and this time consider the contents of each
cluster as a set of possible normalization variants.
For instance, we find that the cluster that includes the
word never, also includes the variant forms neverrrr,
neva and nevahhh. However, the cluster also con-
tains non-variant forms, such as gladly and glady.
Thus, we want to find that neverrrr maps to never,
while glady maps to gladly in the same cluster. Our
work differs from previous work in that, rather than
defining features manually, we use our character-
based decoder to find the mappings between lexical
variants and their normalizations.

For every word type wi in cluster c(wi) =
{w1, . . . , wn}, we generate a set of possible candi-
dates for each word w1

i , . . . , w
m
i . Then, we build

a directed acyclic graph (DAG), where every word.
We add an edge between wi and wj , if wi can be
decoded into wj using the character model from the
previous section, and also if wi occurs less than wj ;
the second condition guarantees that the graph will
be acyclic. Sample graphs are shown in Figure 3.

Afterwards, we find the number of paths between
all nodes in the graph (this can be computed effi-
ciently in O(|V | + |E|) time). Then, for each word

9The Brown clustering algorithm groups words together
based on contextual similarity.

79

neverr

neva neve

nevar

never

glady

gladly

cladly

Figure 3: Example DAGs, built from the cluster contain-
ing the words never and gladly.

wi, we find the wj to which it has the highest num-
ber of paths to and extract the normalization of wi

to wj . In case of a tie, we choose the word wj that
occurs more often in the monolingual corpora. This
is motivated by the fact that normalizations are tran-
sitive. Thus, even if neva cannot be decoded directly
to never, we can use nevar as an intermediate step to
find the correct normalization. This is performed for
all the clusters, and the resulting dictionary of lexi-
cal variants mapped to their standard forms is added
to the training data of the character-based model.

6 Experiments

We evaluate our normalization model intrinsically
by testing whether our normalizations more closely
resemble standardized data, and then extrinsically
by testing whether we can improve the translation
quality of in-house as well as online Machine Trans-
lation systems by normalizing the input.

6.1 Setup

We use the gold standard by Ling et al. (2013), com-
posed by 2581 English-Mandarin microblog sen-
tence pairs. From this set, we randomly select 1290
pairs for development and 1291 pairs for testing.

The normalizer model is trained on the corpora
extracted and filtered in section 3, in total, there
were 1.3M normalization pairs used during training.
The test sentences are normalized using four differ-
ent setups. The first setup leaves the input sentence
unchanged, which we call No Norm. The second
uses the phrase-based model to normalize the input
sentence, which we will denote Norm+phrase. The
third uses the character-based model to output lat-
tices, and then decodes with the phrase based model,

which we will denote Norm+phrase+char. Finally,
we test the same model after adding the training data
extracted using monolingual documents, which we
will refer as Norm+phrase+char+mono.

To test the normalizations themselves, we used
Google Translate to translate the Mandarin side of
the 1291 test sentence pairs back to English and use
the original English tweet. While, this is by itself
does not guarantee that the normalizations are cor-
rect, since the normalizations could be syntactically
and semantically incorrect, it will allow us to check
whether the normalizations are closer to those pro-
duced by systems trained on news data. This exper-
iment will be called Norm.

As an application and extrinsic evaluation for our
normalizer, we test if we can obtain gains on the
MT task on microblog data by using our normalizer
prior to translation. We build two MT systems us-
ing Moses. Firstly, we build a out-of-domain model
using the full 2012 NIST Chinese-English dataset
(approximately 8M sentence pairs), which is dataset
from the news domain, and we will denote this sys-
tem as Inhouse+News. Secondly, we build a in-
domain model using the 800K sentence pairs from
µtopia corpora (Ling et al., 2013). We also add
the NIST dataset to improve coverage. We call this
system Inhouse+News+Weibo. To train these sys-
tems, we use the Moses phrase-based MT system
with standard features (Koehn et al., 2003). For re-
ordering, we use the MSD reordering model (Axel-
rod et al., 2005). As the language model, we train
a 5-gram model with Kneser-ney smoothing using a
10M tweets from twitter. Finally, the weights were
tuned using MERT (Och, 2003). As for online sys-
tems, we consider the systems used to generate the
paraphrase corpora in section 3, which we will de-
note as Online A, Online B and Online C10

The normalization and MT results are evaluated
with BLEU-4 (Papineni et al., 2002) comparing the
produced translations or normalizations with the ap-
propriate reference.

6.2 Results

Results are shown in Table 6. In terms of the normal-
izations, we observe a much better match between

10The names of the systems are hidden to not violate the pri-
vacy issues in the terms and conditions of these online systems.

80

Table 6: Normalization and MT Results. Rows denote different normalizations, and columns different translation
systems, except the first column (Norm), which denotes the normalization experiment. Cells display the BLEU score
of that experiment.

Moses Moses
Condition Norm (News) (News+Weibo) Online A Online B Online C
baseline 19.90 15.10 24.37 20.09 17.89 18.79
norm+phrase 21.96 15.69 24.29 20.50 18.13 18.93
norm+phrase+char 22.39 15.87 24.40 20.61 18.22 19.08
norm+phrase+char+mono 22.91 15.94 24.46 20.78 18.37 19.21

the normalized text with the reference, than the orig-
inal tweets. In most cases, adding character-based
models improves the quality of the normalizations.

We observe that better normalizations tend to lead
to better translations. The relative improvements
are most significant, when moving from No Norm
to norm+phrase normalization. This is because,
we are normalizing words that are not seen in gen-
eral MT system’s training data, but occur frequently
in microblog data, such as wanna to want to, u to
you and im to i’m. The only exception is in the In-
house+News+Weibo system, where the normaliza-
tion deteriorates the results. This is to be expected,
since this system is trained on the same microblog
data used to learn the normalizations. However, we
can observe on norm+phrase+char that if we add
the character-based model, we can observe improve-
ments for this system as well as for all other ones.
This is because the model is actually learning nor-
malizations that are unseen in the data. Some ex-
amples of these normalization include, normalizing
lookin to looking, nutz to nuts and maimi to miami
but also separating peaceof to peace of. The fact
that these improvements are obtained for all sys-
tems is strong evidence that we are actually produc-
ing good normalizations, and not overfitting to one
of the systems that we used to generate our data.
The gains are much smaller from norm+phrase
to norm+phrase+char, since the improvements we
obtain come from normalizing less frequent words.
Finally, we can obtain another small improvement
by adding monolingual data to the character-based
model in norm+phrase+char+mono.

7 Related Work

Most of the work in microblog normalization is fo-
cused on finding the standard forms of lexical vari-

ants (Yang and Eisenstein, 2013; Han et al., 2013;
Han et al., 2012; Kaufmann, 2010; Han and Bald-
win, 2011; Gouws et al., 2011; Aw et al., 2006). A
lexical variant is a variation of a standard word in
a different lexical form. This ranges from minor or
major spelling errors, such as jst, juxt and jus that
are lexical variants of just, to abbreviations, such as
tmi and wanna, which stand for too much informa-
tion and want to, respectively. Jargon can also be
treated as variants, for instance cday is a slang word
for birthday, in some groups.

There are many rules that govern the process lex-
ical variants are generated. Some variants are gener-
ated from orthographic errors, caused by some mis-
take from the user when writing. For instance, the
variants representin, representting, or reprecenting
can be generated by a spurious letter swap, insertion
or substitution by the user. One way to normalize
these types of errors is to attempt to insert, remove
and swap words in a lexical variant until a word in
a dictionary of standard words is found (Kaufmann,
2010). Contextual features are another way to find
lexical variants, since variants generally occur in the
same context as their standard form. This includes
orthographic errors, abbreviations and slang. How-
ever, this is generally not enough to detect lexical
variants, as many words share similar contexts, such
as already, recently and normally. Consequently,
contextual features are generally used to generate a
confusion set of possible normalizations of a lexical
variant, and then more features are used to find the
correct normalization (Han et al., 2012). One simple
approach is to compute the Levenshtein distance to
find lexical similarities between words, which would
effectively capture the mappings between represent-
ting, reprecenting and representin to representing.
However, a pronunciation model (Tang et al., 2012)

81

would be needed to find the mapping between g8,
2day and 4ever to great, today and forever, respec-
tively. Moreover, visual character similarity features
would be required to find the mapping between g00d
andι to good and i.

Clearly, learning this process is a challenging
task, and addressing each different case individually
would require vast amounts of resources. Further-
more, once we change the language to normalize
to another language, the types of rules that generate
lexical variants would radically change and a new set
of features would have to be engineered. We believe
that to be successful in normalizing microblogs,
the process to learn new lexical variants should be
learned from data, making as few assumptions as
possible. We learn our models without using any
type of predefined features, such as phonetic fea-
tures or lexical features. In fact, we will not assume
that most words and characters map to themselves,
as it is assumed in methods using the Levenshtein
distance (Kaufmann, 2010; Han et al., 2012; Wang
and Ng, 2013). All these mappings are learned from
our data. Furthermore, in the work above, the dictio-
naries built using these methods assume that lexical
variants are mapped to standard forms in a word-to-
word mapping. Thus, variants such as wanna, gonna
and imma are not normalizable, since they are nor-
malized to multiple words want to, going to and I
am gonna. Moreover, there are segmentation errors
that occur from missing spaces, such as sortof and
goingfor, which also map to more than one word to
sort of and going for. These cases shall also be ad-
dressed in our work.

Wang and Ng (2013) argue that microblog nor-
malization is not simply to map lexical variants into
standard forms, but that other tasks, such as punctua-
tion correction and missing word recovery should be
performed. Consider the example tweet you free?,
while there are no lexical variants in this message,
the authors consider that it is the normalizer should
recover the missing article are and normalize this
tweet to are you free?. To do this, the authors train a
series of models to detect and correct specific errors.
While effective for narrow domains, training models
to address each specific type of normalization is not
scalable over all types of normalizations that need to
be performed within the language, and the fact that a
set of new models must be implemented for another

language limits the applicability of this work.
Another strong point of the work above is that

a decoder is presented, while the work on build-
ing dictionaries only normalize out of vocabu-
lary (OOV) words. The work on (Han et al., 2012)
trains a classifier to decide whether to normalize a
word or not, but is still preconditioned on the fact
that the word in question is OOV. Thus, lexical vari-
ants, such as, 4 and u, with the standard forms for
and you, are left untreated, since they occur in other
contexts, such as u in u s a. Inspired by the work
above, we also propose a decoder based on the exist-
ing off-the-self decoder Moses (Koehn et al., 2007).

Finally, the work in (Xu et al., 2013) obtains para-
phrases from Twitter, by finding tweets that contain
common entities, such as Obama, that occur during
the same period by matching temporal expressions.
The resulting paraphrase corpora can also be used to
train a normalizer.

8 Conclusion

We introduced a data-driven approach to microblog
normalization based on paraphrasing. We build a
corpora of tweets and their normalizations using par-
allel corpora from microblogs using MT techniques.
Then, we build two models that learn generalizations
of the normalization process, one the phrase level
and on the character level. Then, we build a de-
coder that combines both models during decoding.
Improvements on multiple MT systems support the
validity of our method.

In future work, we shall attempt to build normal-
izations for other languages. We shall also attempt
to learn an unsupervised normalization model with
only monolingual data, similar to the work for MT
in (Ravi and Knight, 2011).

Acknowledgements

The PhD thesis of Wang Ling is supported by FCT –
Fundação para a Ciência e a Tecnologia, under project
SFRH/BD/51157/2010. This work was supported by na-
tional funds through FCT – Fundação para a Ciência e a
Tecnologia, under project PEst-OE/EEI/LA0021/2013.

The authors also wish to express their gratitude to the
anonymous reviewers for their comments and insight.

82

References
[Aw et al.2006] AiTi Aw, Min Zhang, Juan Xiao, and

Jian Su. 2006. A phrase-based statistical model for
SMS text normalization. In Proceedings of the ACL,
COLING-ACL ’06, pages 33–40, Stroudsburg, PA,
USA. Association for Computational Linguistics.

[Axelrod et al.2005] Amittai Axelrod, Ra Birch Mayne,
Chris Callison-burch, Miles Osborne, and David Tal-
bot. 2005. Edinburgh system description for the 2005
iwslt speech translation evaluation. In In Proc. Inter-
national Workshop on Spoken Language Translation
(IWSLT.

[Bannard and Callison-Burch2005] Colin Bannard and
Chris Callison-Burch. 2005. Paraphrasing with bilin-
gual parallel corpora. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics (ACL’05), pages 597–604, Ann Arbor,
Michigan, June. Association for Computational Lin-
guistics.

[Bansal et al.2011] Mohit Bansal, Chris Quirk, and
Robert C. Moore. 2011. Gappy phrasal alignment by
agreement. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies - Volume 1, HLT ’11,
pages 1308–1317, Stroudsburg, PA, USA. Association
for Computational Linguistics.

[Brown et al.1992] Peter F Brown, Peter V Desouza,
Robert L Mercer, Vincent J Della Pietra, and Jenifer C
Lai. 1992. Class-based n-gram models of natural lan-
guage. Computational linguistics, 18(4):467–479.

[Brown et al.1993] Peter F. Brown, Vincent J. Della
Pietra, Stephen A. Della Pietra, and Robert L. Mer-
cer. 1993. The mathematics of statistical machine
translation: parameter estimation. Comput. Linguist.,
19:263–311, June.

[Denkowski and Lavie2011] Michael Denkowski and
Alon Lavie. 2011. Meteor 1.3: Automatic metric
for reliable optimization and evaluation of machine
translation systems. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
85–91, Edinburgh, Scotland, July. Association for
Computational Linguistics.

[Dyer et al.2008] Chris Dyer, Smaranda Muresan, and
Philip Resnik. 2008. Generalizing word lattice trans-
lation. In Proceedings of HLT-ACL.

[Dyer et al.2013] Chris Dyer, Victor Chahuneau, and
Noah A Smith. 2013. A simple, fast, and effective
reparameterization of ibm model 2. In Proceedings of
NAACL-HLT, pages 644–648.

[Eisenstein et al.2011] Jacob Eisenstein, Noah A. Smith,
and Eric P. Xing. 2011. Discovering sociolinguis-
tic associations with structured sparsity. In Proceed-
ings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Tech-
nologies - Volume 1, HLT ’11, pages 1365–1374,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

[Eisenstein2013] Jacob Eisenstein. 2013. What to do
about bad language on the internet. In Proceedings
of NAACL-HLT, pages 359–369.

[Gouws et al.2011] Stephan Gouws, Dirk Hovy, and Don-
ald Metzler. 2011. Unsupervised mining of lexical
variants from noisy text. In Proceedings of the First
Workshop on Unsupervised Learning in NLP, EMNLP
’11, pages 82–90, Stroudsburg, PA, USA. Association
for Computational Linguistics.

[Han and Baldwin2011] Bo Han and Timothy Baldwin.
2011. Lexical normalisation of short text messages:
makn sens a #twitter. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume
1, HLT ’11, pages 368–378, Stroudsburg, PA, USA.
Association for Computational Linguistics.

[Han et al.2012] Bo Han, Paul Cook, and Timothy Bald-
win. 2012. Automatically constructing a normalisa-
tion dictionary for microblogs. In Proceedings of the
2012 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning, EMNLP-CoNLL ’12, pages 421–
432, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

[Han et al.2013] Bo Han, Paul Cook, and Timothy Bald-
win. 2013. Lexical normalization for social media
text. ACM Transactions on Intelligent Systems and
Technology (TIST), 4(1):5.

[Hawn2009] Carleen Hawn. 2009. Take two aspirin and
tweet me in the morning: how twitter, facebook, and
other social media are reshaping health care. Health
affairs, 28(2):361–368.

[Kaufmann2010] M. Kaufmann. 2010. Syntactic Nor-
malization of Twitter Messages. studies, 2.

[Koehn et al.2003] Philipp Koehn, Franz Josef Och, and
Daniel Marcu. 2003. Statistical phrase-based trans-
lation. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Com-
putational Linguistics on Human Language Technol-
ogy - Volume 1, NAACL ’03, pages 48–54, Morris-
town, NJ, USA. Association for Computational Lin-
guistics.

[Koehn et al.2005] Philipp Koehn, Amittai Axelrod,
Alexandra Birch Mayne, Chris Callison-Burch, Miles
Osborne, David Talbot, and Michael White. 2005.
Edinburgh system description for the 2005 nist mt
evaluation. In Proceedings of Machine Translation
Evaluation Workshop 2005.

[Koehn et al.2007] Philipp Koehn, Hieu Hoang, Alexan-
dra Birch, Chris Callison-burch, Richard Zens, Rwth

83

Aachen, Alexandra Constantin, Marcello Federico,
Nicola Bertoldi, Chris Dyer, Brooke Cowan, Wade
Shen, Christine Moran, and Ondrej Bojar. 2007.
Moses: Open source toolkit for statistical machine
translation. In Proceedings of the 45th Annual Meet-
ing of the Association for Computational Linguistics
Companion Volume Proceedings of the Demo and
Poster Sessions, pages 177–180, Prague, Czech Re-
public, June. Association for Computational Linguis-
tics.

[Laviosa1998] Sara Laviosa. 1998. Core patterns of
lexical use in a comparable corpus of English lexical
prose. Meta, 43(4):557–570.

[Ling et al.2010] Wang Ling, Tiago Luı́s, João Graça,
Luı́sa Coheur, and Isabel Trancoso. 2010. Towards a
general and extensible phrase-extraction algorithm. In
IWSLT ’10: International Workshop on Spoken Lan-
guage Translation, pages 313–320, Paris, France.

[Ling et al.2013] Wang Ling, Guang Xiang, Chris Dyer,
Alan Black, and Isabel Trancoso. 2013. Microblogs
as parallel corpora. In Proceedings of the 51st An-
nual Meeting on Association for Computational Lin-
guistics, ACL ’13. Association for Computational Lin-
guistics.

[Och and Ney2003] Franz Josef Och and Hermann Ney.
2003. A systematic comparison of various statis-
tical alignment models. Computational linguistics,
29(1):19–51.

[Och and Ney2004] Franz Josef Och and Hermann Ney.
2004. The alignment template approach to statistical
machine translation. Comput. Linguist., 30(4):417–
449, December.

[Och2003] Franz Josef Och. 2003. Minimum error rate
training in statistical machine translation. In Pro-
ceedings of the 41st Annual Meeting on Association
for Computational Linguistics - Volume 1, ACL ’03,
pages 160–167, Stroudsburg, PA, USA. Association
for Computational Linguistics.

[Papineni et al.2002] Kishore Papineni, Salim Roukos,
Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
method for automatic evaluation of machine transla-
tion. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, ACL ’02,
pages 311–318, Stroudsburg, PA, USA. Association
for Computational Linguistics.

[Ravi and Knight2011] Sujith Ravi and Kevin Knight.
2011. Deciphering foreign language. In ACL, pages
12–21.

[Resnik and Smith2003] Philip Resnik and Noah A
Smith. 2003. The web as a parallel corpus. Com-
putational Linguistics, 29(3):349–380.

[Tang et al.2012] Hao Tang, Joseph Keshet, and Karen
Livescu. 2012. Discriminative pronunciation mod-

eling: A large-margin, feature-rich approach. In Pro-
ceedings of the 50th Annual Meeting of the Association
for Computational Linguistics: Long Papers-Volume
1, pages 194–203. Association for Computational Lin-
guistics.

[Vogel et al.1996] S. Vogel, H. Ney, and C. Tillmann.
1996. Hmm-based word alignment in statistical trans-
lation. In Proceedings of the 16th conference on Com-
putational linguistics-Volume 2, pages 836–841. Asso-
ciation for Computational Linguistics.

[Volansky et al.2013] Vered Volansky, Noam Ordan, and
Shuly Wintner. 2013. On the features of transla-
tionese. Literary and Linguistic Computing.

[Wang and Ng2013] Pidong Wang and Hwee Ng. 2013.
A beam-search decoder for normalization of social
media text with application to machine translation. In
Proceedings of NAACL-HLT 2013, NAACL ’13. As-
sociation for Computational Linguistics.

[Xu et al.2013] Wei Xu, Alan Ritter, and Ralph Grish-
man. 2013. Gathering and generating paraphrases
from twitter with application to normalization. In Pro-
ceedings of the Sixth Workshop on Building and Us-
ing Comparable Corpora, pages 121–128, Sofia, Bul-
garia, August. Association for Computational Linguis-
tics.

[Yang and Eisenstein2013] Yi Yang and Jacob Eisenstein.
2013. A log-linear model for unsupervised text nor-
malization. In Proc. of EMNLP.

84

