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Abstract

Most current dependency parsers presuppose
that input words have been morphologically
disambiguated using a part-of-speech tagger
before parsing begins. We present a transition-
based system for joint part-of-speech tagging
and labeled dependency parsing with non-
projective trees. Experimental evaluation on
Chinese, Czech, English and German shows
consistent improvements in both tagging and
parsing accuracy when compared to a pipeline
system, which lead to improved state-of-the-
art results for all languages.

1 Introduction

Dependency-based syntactic parsing has been the
focus of intense research efforts during the last
decade, and the state of the art today is represent-
ed by globally normalized discriminative models
that are induced using structured learning. Graph-
based models parameterize the parsing problem by
the structure of the dependency graph and normally
use dynamic programming for inference (McDonald
et al., 2005; McDonald and Pereira, 2006; Carreras,
2007; Koo and Collins, 2010; Bohnet, 2010), but
other inference methods have been explored espe-
cially for non-projective parsing (Riedel and Clarke,
2006; Smith and Eisner, 2008; Martins et al., 2009;
Martins et al., 2010; Koo et al., 2010). Transition-
based models parameterize the problem by elemen-
tary parsing actions and typically use incremental
beam search (Titov and Henderson, 2007; Zhang
and Clark, 2008; Zhang and Clark, 2011). Despite
notable differences in model structure, graph-based

and transition-based parsers both give state-of-the-
art accuracy with proper feature selection and opti-
mization (Koo and Collins, 2010; Zhang and Nivre,
2011; Bohnet, 2011).

It is noteworthy, however, that almost all depen-
dency parsers presuppose that the words of an input
sentence have been morphologically disambiguated
using (at least) a part-of-speech tagger. This is in s-
tark contrast to the best parsers based on PCFG mod-
els, such as the Brown parser (Charniak and John-
son, 2005) and the Berkeley parser (Petrov et al.,
2006; Petrov and Klein, 2007), which not only can
perform their own part-of-speech tagging but nor-
mally give better parsing accuracy when they are al-
lowed to do so. This suggests that joint models for
tagging and parsing might improve accuracy also in
the case of dependency parsing.

It has been argued that joint morphological and
syntactic disambiguation is especially important for
richly inflected languages, where there is consid-
erable interaction between morphology and syntax
such that neither can be fully disambiguated with-
out considering the other. Thus, Lee et al. (2011)
show that a discriminative model for joint morpho-
logical disambiguation and dependency parsing out-
performs a pipeline model in experiments on Latin,
Ancient Greek, Czech and Hungarian. However, Li
et al. (2011) and Hatori et al. (2011) report improve-
ments with a joint model also for Chinese, which
is not a richly inflected language but is nevertheless
rich in part-of-speech ambiguities.

In this paper, we present a transition-based mod-
el for joint part-of-speech tagging and labeled de-
pendency parsing with non-projective trees. Exper-
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iments show that joint modeling improves both tag-
ging and parsing accuracy, leading to state-of-the-art
accuracy for richly inflected languages like Czech
and German as well as more configurational lan-
guages like Chinese and English. To our knowledge,
this is the first joint system that performs labeled de-
pendency parsing. It is also the first joint system that
achieves state-of-the-art accuracy for non-projective
dependency parsing.

2 Transition-Based Tagging and Parsing

Transition-based dependency parsing was pioneered
by Yamada and Matsumoto (2003) and Nivre et al.
(2004), who used classifiers trained to predict indi-
vidual actions of a deterministic shift-reduce parser.
Recent research has shown that better accuracy can
be achieved by using beam search and optimizing
models on the entire sequence of decisions needed
to parse a sentence instead of single actions (Zhang
and Clark, 2008; Huang and Sagae, 2010; Zhang
and Clark, 2011; Zhang and Nivre, 2011; Bohnet,
2011). In addition, a number of different transition
systems have been proposed, in particular for deal-
ing with non-projective dependencies, which were
beyond the scope of early systems (Attardi, 2006;
Nivre, 2007; Nivre, 2009; Titov et al., 2009).

In this section, we start by defining a transition
system for joint tagging and parsing based on the
non-projective transition system proposed in Nivre
(2009). We then show how to perform beam search
and structured online learning with this model, and
conclude by discussing feature representations.

2.1 Transition System
Given a set P of part-of-speech tags and a set D
of dependency labels, a tagged dependency tree for
a sentence x = w1, . . . , wn is a directed tree T =
(Vx, A) with labeling functions π and δ such that:

1. Vx = {0, 1, . . . , n} is a set of nodes,

2. A ⊆ Vx × Vx is a set of arcs,

3. π : Vx → P is a labeling function for nodes,

4. δ : A→ D is a labeling function for arcs,

5. 0 is the root of the tree.

The set Vx of nodes is the set of positive integers up
to and including n, each corresponding to the lin-
ear position of a word in the sentence, plus an extra

artificial root node 0. The set A of arcs is a set of
pairs (i, j), where i is the head node and j is the
dependent node. The functions π and δ assign a u-
nique part-of-speech label to each node/word and a
unique dependency label to each arc, respectively.
This notion of dependency tree differs from the s-
tandard definition only by including part-of-speech
labels as well as dependency labels (Kübler et al.,
2009).

Following Nivre (2008), we define a transition
system for dependency parsing as a quadruple S =
(C, T, cs, Ct), where

1. C is a set of configurations,

2. T is a set of transitions, each of which is a (par-
tial) function t : C → C,

3. cs is an initialization function, mapping a sen-
tence x to a configuration c ∈ C,

4. Ct ⊆ C is a set of terminal configurations.

A transition sequence for a sentence x in S is a
sequence of configuration-transition pairs C0,m =
[(c0, t0), (c1, t1), . . . , (cm, tm)] where c0 = cs(x),
tm(cm) ∈ Ct and ti(ci) = ci+1 (0 ≤ i < m).1

In this paper, we take the set C of configurations
to be the set of all 5-tuples c = (Σ, B,A, π, δ) such
that Σ (the stack) and B (the buffer) are disjoin-
t sublists of the nodes Vx of some sentence x, A
is a set of dependency arcs over Vx, and π and δ
are labeling functions as defined above. We take the
initial configuration for a sentence x = w1, . . . , wn

to be cs(x) = ([0], [1, . . . , n], { },⊥,⊥), where ⊥
is the function that is undefined for all arguments,
and we take the set Ct of terminal configurations
to be the set of all configurations of the form c =
([0], [ ], A, π, δ) (for anyA, π and δ). The tagged de-
pendency tree defined for x by c = (Σ, B,A, π, δ)
is the tree (Vx, A) with labeling functions π and δ,
which we write TREE(x, c).

The set T of transitions is shown in Figure 1. The
LEFT-ARCd and RIGHT-ARCd transitions both add
an arc (with dependency label d) between the two
nodes on top of the stack and replaces these nodes
by the head node of the new arc (which is the right-
most node for LEFT-ARCd and the leftmost node for
RIGHT-ARCd). The SHIFTp transition extracts the

1This definition of transition sequence differs from that of
Nivre (2008) but is equivalent and suits our presentation better.
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Transition Condition
LEFT-ARCd ([σ|i, j], B,A, π, δ)⇒ ([σ|j], B,A∪{(j, i)}, π, δ[(j, i)→ d]) i 6= 0

RIGHT-ARCd ([σ|i, j], B,A, π, δ)⇒ ([σ|i], B,A∪{(i, j)}, π, δ[(i, j)→ d])

SHIFTp (σ, [i|β], A, π, δ)⇒ ([σ|i], β, A, π[i→ p], δ)

SWAP ([σ|i, j], β, A, π, δ)⇒ ([σ|j], [i|β], A, π, δ) 0 < i < j

Figure 1: Transitions for joint tagging and dependency parsing extending the system of Nivre (2009). The stack Σ is
represented as a list with its head to the right (and tail σ) and the buffer B as a list with its head to the left (and tail β).
The notation f [a→ b] is used to denote the function that is exactly like f except that it maps a to b.

first node in the buffer, pushes it onto the stack and
labels it with the part-of-speech tag p. The SWAP

transition extracts the second topmost node from the
stack and moves it back to the buffer, subject to the
condition that the two top nodes on the stack are still
in the order given by the sentence.

Except for the addition of a tag parameter p to
the SHIFT transition, this is equivalent to the sys-
tem described in Nivre (2009), which thanks to the
SWAP transition can handle arbitrary non-projective
trees. The soundness and completeness results giv-
en in that paper trivially carry over to the new sys-
tem. The only thing to note is that, before a terminal
configuration can be reached, every word has to be
pushed onto the stack in a SHIFTp transition, which
ensures that every node/word in the output tree will
be tagged.

2.2 Inference and Learning

While early transition-based parsers generally used
greedy best-first inference and locally trained clas-
sifiers, recent work has shown that higher accura-
cy can be obtained using beam search and global
structure learning to mitigate error propagation. In
particular, it seems that the globally learned models
can exploit a much richer feature space than local-
ly trained classifiers, as shown by Zhang and Nivre
(2011). Since joint tagging and parsing increases the
size of the search space and is likely to require nov-
el features, we use beam search in combination with
structured perceptron learning.

The beam search algorithm used to derive the best
parse y for a sentence x is outlined in Figure 2. In
addition to the sentence x, it takes as input a weight
vector w corresponding to a linear model for scor-
ing transitions out of configurations and two prun-

PARSE(x,w, b1, b2)
1 h0.c← cs(x)
2 h0.s← 0.0

3 h0.f← {0.0}dim(w)

4 BEAM ← [h0]
5 while ∃h ∈ BEAM : h.c 6∈ Ct

6 TMP ← [ ]
7 foreach h ∈ BEAM

8 foreach t ∈ T : PERMISSIBLE(h.c, t)
9 h.f← h.f + f(h.c, t)

10 h.s← h.s+ f(h.c, t) · w
11 h.c← t(h.c)
12 TMP ← INSERT(h, TMP)
13 BEAM← PRUNE(TMP, b1, b2)
14 h← TOP(BEAM)
15 y ← TREE(x, h.c)
16 return y

Figure 2: Beam search algorithm for joint tagging and de-
pendency parsing of input sentence x with weight vector
w and beam parameters b1 and b2. The symbols h.c, h.s
and h.f denote, respectively, the configuration, score and
feature representation of a hypothesis h; h.c.A denotes
the arc set of h.c.

ing parameters b1 and b2. A parse hypothesis h is
represented by a configuration h.c, a score h.s and
a feature vector h.f for the transition sequence up to
h.c. Hypotheses are stored in the list BEAM, which
is sorted by descending scores and initialized to hold
the hypothesis h0 corresponding to the initial con-
figuration cs(x) with score 0.0 and all features set
to 0.0 (lines 1–4). In the main loop (lines 5–13), a
set of new hypotheses is derived and stored in the
list TMP, which is finally pruned and assigned as
the new value of BEAM. The main loop terminates
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when all hypotheses in BEAM contain terminal con-
figurations, and the dependency tree extracted from
the top scoring hypothesis is returned (lines 14–16).

The set of new hypotheses is created in two nest-
ed loops (lines 7–12), where every hypothesis h in
BEAM is updated using every permissible transition
t for the configuration h.c. The feature representa-
tion of the new hypothesis is obtained by adding the
feature vector f(t, h.c) for the current configuration-
transition pair to the feature vector of the old hy-
pothesis (line 9). Similarly, the score of the new
hypothesis is the sum of the score f(t, h.c) · w of
the current configuration-transition pair and the s-
core of the old hypothesis (line 10). The feature
representation/score of a complete parse y for x
with transition sequence C0,m is thus the sum of the
feature representations/scores of the configuration-
transition pairs in C0,m:

f(x, y) =
∑

(c,t)∈C0,m

f(c, t)

s(x, y) =
∑

(c,t)∈C0,m

f(c, t) · w

Finally, the configuration of the new hypothesis is
obtained by evaluating t(h.c) (line 11). The new hy-
pothesis is then inserted into TMP in score-sorted or-
der (line 12).

The pruning parameters b1 and b2 determine the
number of hypotheses allowed in the beam and at
the same time control the tradeoff between syntactic
and morphological ambiguity. First, we extract the
b1 highest scoring hypotheses with distinct depen-
dency trees. Then we extract the b2 highest scoring
remaining hypotheses, which will typically be tag-
ging variants of dependency trees that are already in
the beam. In this way, we prevent the beam from
getting filled up with too many tagging variants of
the same dependency tree, which was found to be
harmful in preliminary experiments.

One final thing to note about the inference algo-
rithm is that the notion of permissibility for a transi-
tion t out of a configuration c can be used to capture
not only formal constraints on transitions – such as
the fact that it is impossible to perform a SHIFTp

transition with an empty buffer or illegal to perform
a LEFT-ARCd transition with the special root node
on top of the stack – but also to filter out unlike-

ly dependency labels or tags. Thus, in the experi-
ments later on, we will typically constrain the parser
so that SHIFTp is permissible only if p is one of the
k best part-of-speech tags with a score no more than
α below the score of the 1-best tag, as determined by
a preprocessing tagger. We also filter out instances
of LEFT-ARCd and RIGHT-ARCd, where d does not
occur in the training data for the predicted part-of-
speech tag combination of the head and dependent.
This procedure leads to a significant speed up.

In order to learn a weight vector w from a training
set {(xj , yj)}Tj=1 of sentences with their tagged de-
pendency trees, we use a variant of the structured
perceptron, introduced by Collins (2002), which
makes N iterations over the training data and up-
dates the weight vector for every sentence xj where
the highest scoring parse y∗ is different from yj .
More precisely, we use the passive-aggressive up-
date of Crammer et al. (2006):

wi+1 = wi + τ(f(xj , yj)− f(xj , y
∗))

where

τ =
f(xj , yj)− f(xj , y

∗)

||f(xj , yj)− f(xj , y∗)||2

We also use the early update strategy found benefi-
cial for parsing in several previous studies (Collins
and Roark, 2004; Zhang and Clark, 2008; Huang
and Sagae, 2010), which means that, during learn-
ing, we terminate the beam search as soon as the
hypothesis corresponding to the gold parse yj falls
out of the beam and update with respect to the par-
tial transition sequence constructed up to that point.
Finally, we use the standard technique of averaging
over all weight vectors, as originally proposed by
Collins (2002).

2.3 Feature Representations

As already noted, the feature representation f(x, y)
of an input sentence x with parse y decomposes into
feature representations f(c, t) for the transitions t(c)
needed to derive y from cs(x). Features may refer to
any aspect of a configuration, as encoded in the stack
Σ, the bufferB, the arc setA and the labelings π and
δ. In addition, we assume that each word w in the
input is assigned up to k candidate part-of-speech
tags πi(w) with corresponding scores s(πi(w)).
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Features involving word prefixes and suffixes
πi(B0)p2(B0), πi(B0)s2(B0), πi(B0)p1(B0)p1(Σ0)
πi(Σ0)p1(Σ0)p1(Σ1), πi(Σ0)s1(Σ0)s1(Σ0)
πi(Σ0)p2(Σ0)s3(Σ1),πi(Σ0)s3(Σ0)p2(Σ1)
πi(Σ0)w(B0)s1(Σ0), πi(Σ0)w(B0)s2(Σ0)
Features involving tag score differences and ranks
πi(B0)[s(π1(B0))− s(πi(B0))]
πi(B0)πi(Σ0)[s(π1(B0))− s(πi(B0))] i
πi(B0)[s(π1(B0))− s(πi(B0))]π(Σ0)
w(B0)[s(π1(B0))− s(πi(B0))]π(Σ0)

Figure 3: Specialized feature templates for tagging. We
use Σi and Bi to denote the ith token in the stack Σ and
bufferB, respectively, with indexing starting at 0, and we
use the following functors to extract properties of a token:
πi() = ith best tag; s(πi()) = score of ith best tag; π() =
finally predicted tag; w() = word form; pi() = word prefix
of i characters; si() = word suffix of i characters. Score
differences are binned in discrete steps of 0.05.

The bulk of features used in our system are tak-
en from Zhang and Nivre (2011), although with t-
wo important differences. First of all, like Hatori et
al. (2011), we have omitted all features that presup-
pose an arc-eager parsing order, since our transition
system defines an arc-standard order. Secondly, any
feature that refers to the part-of-speech tag of a word
w in the buffer B will in our system refer to the top-
scoring tag π1(w), rather than the finally predicted
tag. By contrast, for a word in the stack Σ, part-of-
speech features refer to the tag π(w) chosen when
shifting w onto the stack (which may or may not be
the same as π1(w)).

In addition to the standard features for transition-
based dependency parsing, we have added features
specifically to improve the tagging step in the joint
model. The templates for these features, which are
specified in Figure 3, all involve the ith best tag as-
signed to the first word of the buffer B (the next
word to be shifted in a SHIFTp transition) in combi-
nation with neighboring words, word prefixes, word
suffixes, score differences and tag rank.

Finally, in some experiments, we make use of two
additional feature sets, which we call graph features
(G) and cluster features (C), respectively. Graph fea-
tures are defined over the factors of a graph-based
dependency parser, which was shown to improve the
accuracy of a transition-based parser by Zhang and
Clark (2008). However, while their features were

limited to certain first- and second-order factors, we
use features over second- and third-order factors as
found in the parsers of Bohnet and Kuhn (2012).
These features are scored as soon as the factors are
completed, using a technique that is similar to what
Hatori et al. (2011) call delayed features, although
they use it for part-of-speech tags in the lookahead
while we use it for subgraphs of the dependency tree.
Cluster features, finally, are features over word clus-
ters, as first used by Koo et al. (2008), which replace
part-of-speech tag features.2

We use a hash kernel to map features to weights.
It has been observed that most of the computing time
in feature-rich parsers is spent retrieving the index
of each feature in the weight vector (Bohnet, 2010).
This is usually done via a hash table, but significan-
t speedups can be achieved by using a hash kernel,
which simply replaces table lookup by a hash func-
tion (Bloom, 1970; Shi et al., 2009; Bohnet, 2010).
The price to pay for these speedups is that there may
be collisions, so that different features are mapped to
the same index, but this is often compensated by the
fact that the lower time and memory requirements of
the hash kernel enables the use of negative features,
that is, features that are never seen in the training set
but occur in erroneous hypotheses at training time
and can therefore be helpful also at inference time.
As a result, the hash kernel often improves accuracy
as well as efficiency compared to traditional tech-
niques that only make use of features that occur in
gold standard parses (Bohnet, 2010).

3 Experiments

We have evaluated the model for joint tagging and
dependency parsing on four typologically diverse
languages: Chinese, Czech, English, and German.

3.1 Setup

Most of the experiments use the CoNLL 2009 da-
ta sets with the training, development and test s-
plit used in the Shared Task (Hajič et al., 2009),
but for better comparison with previous work we
also report results for the standard benchmark data
sets for Chinese and English. For Chinese, this is
the Penn Chinese Treebank 5.1 (CTB5), converted

2For replicability, a complete description of all features can
be found at http://stp.lingfil.uu.se/∼nivre/exp/emnlp12.html.
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Parser Chinese Czech English German
k α TLAS LAS UAS POS TLAS LAS UAS POS TLAS LAS UAS POS TLAS LAS UAS POS
1 0.0 73.85 76.12 80.01 92.78 82.36 82.65 88.03 93.26 85.82 87.17 90.41 97.32 85.08 86.60 89.17 97.24
2 0.1 74.39 76.52 80.41 93.37 82.74 83.01 88.34 99.39 86.43 87.79 91.02 97.49 86.12 87.22 89.69 97.85
3 0.1 74.47 76.63 80.50 93.38 82.76 82.97 88.33 99.40 86.40 87.78 90.99 97.43 86.03 87.27 89.60 97.74
3 0.2 74.35 76.48 80.38 93.43 82.85 83.11 88.44 99.32 86.35 87.79 91.01 97.52 86.24 87.37 89.72 97.90
3 0.3 74.18 76.33 80.28 93.48 82.78 83.05 88.38 99.33 85.94 87.57 90.87 96.97 86.35 87.46 89.86 97.90
3 0.4 86.14 87.23 89.66 97.79

Table 1: Accuracy scores for the CoNLL 2009 shared task development sets as a function of the number of tags k and
the score threshold α. Beam parameters fixed at b1 = 40, b2 = 4.

with the head-finding rules and conversion tools of
Zhang and Clark (2008), and with the same split as
in Zhang and Clark (2008) and Li et al. (2011).3 For
English, this is the WSJ section of the Penn Tree-
bank, converted with the head-finding rules of Ya-
mada and Matsumoto (2003) and the labeling rules
of Nivre (2006).4

In order to assign k-best part-of-speech tags and
scores to words in the training set, we used a per-
ceptron tagger with 10-fold jack-knifing. The same
type of tagger was trained on the entire training set
in order to supply tags for the development and test
sets. The feature set of the tagger was optimized
for English and German and provides state-of-the-
art accuracy for these two languages. The 1-best
tagging accuracy for section 23 of the Penn Tree-
bank is 97.28, which is on a par with Toutanova et
al. (2003). For German, we obtain a tagging accura-
cy of 97.24, which is close to the 97.39 achieved by
the RF-Tagger (Schmid and Laws, 2008), which to
our knowledge is the best tagger for German.5 The
results are not directly comparable to the RF-Tagger
as it was evaluated on a different part of the Tiger
Treebank and trained on a larger part of the Tree-
bank. We could not use the larger training set as
it contains the test set of the CoNLL 2009 data that
we use to evaluate the joint model. For Czech, the 1-
best tagging accuracy is 99.11 and for Chinese 92.65
on the CoNLL 2009 test set.

We trained parsers with 25 iterations and report

3Training: 001–815, 1001–1136. Development: 886–931,
1148–1151. Test: 816–885, 1137–1147.

4Training: 02-21. Development: 24. Test: 23.
5The RF-Tagger can take advantage of an additional lexicon

and then reaches 97.97. The lexicon supplies entries for addi-
tional words that are not found in the training corpus and addi-
tional tags for words that do occur in the training data (Schmid
and Laws, 2008).

results for the model obtained after the last iteration.
For cluster features, available only for English and
German, we used standard Brown clusters based on
the English and German Gigaword Corpus. We re-
stricted the vocabulary to words that occur at least
10 times, used 800 clusters, and took cluster prefix-
es of length 6 to define features.

We report the following evaluation metrics: part-
of-speech accuracy (POS), unlabeled attachment s-
core (UAS), labeled attachment score (LAS), and
tagged labeled attachment score (TLAS). TLAS is
a new metric defined as the percentage of words that
are assigned the correct part-of-speech tag, the cor-
rect head and the correct dependency label. In line
with previous work, punctuation is included in the
evaluation for the CoNLL data sets but excluded for
the two benchmark data sets.

3.2 Results
Table 1 presents results on the development sets of
the CoNLL 2009 shared task with varying values
of the two tag parameters k (number of candidates)
and α (maximum score difference to 1-best tag) and
beam parameters fixed at b1 = 40 and b2 = 4. We
use the combined TLAS score on the development
set to select the optimal settings for each language.
For Chinese, we obtain the best result with 3 tags
and a threshold of 0.1.6 Compared to the baseline,
we observe a POS improvement of 0.60 and a LAS
improvement of 0.51. For Czech, we get the best T-
LAS with k = 3 and α = 0.2, where POS improves
by 0.06 and LAS by 0.46. For English, the best set-
ting is k = 2 and α = 0.1 with a POS improvement of
0.17 and a LAS improvement of 0.62. For German,
finally, we see the greatest improvement with k = 3

6While tagging accuracy (POS) increases with larger values
of α, TLAS decreases because of a drop in LAS.
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Parser Chinese Czech English German
TLAS LAS UAS POS TLAS LAS UAS POS TLAS LAS UAS POS TLAS LAS UAS POS

Gesmundo et al. (2009) 76.11 92.37 80.38 99.33 88.79 97.48 87.28 95.46
Bohnet (2010) 76.99 92.37 80.96 99.33 90.33 97.48 88.06 95.46
Baseline (k = 1), b1 = 40 73.66 76.55 80.77 92.65 82.07 82.44 87.83 99.11 87.89 89.19 91.74 97.57 86.11 87.78 90.13 97.24
Best dev setting, b1 = 40 74.72 77.00 81.18 93.06 82.56 82.70 88.07 99.32 88.26 89.54 92.06 97.77 86.91 88.23 90.43 97.63
Adding G, b1 = 80 75.84 78.51 82.52 93.19 83.38 83.73 88.82 99.33 88.92 90.20 92.60 97.77 87.86 89.05 91.16 97.78
Adding G+C, b1 = 80 89.22 90.60 92.87 97.84 88.31 89.38 91.37 98.05

Table 2: Accuracy scores for the CoNLL 2009 shared task test sets. Rows 1–2: Top performing systems in the shared
CoNLL Shared Task 2009; Gesmundo et al. (2009) was placed first in the shared task; for Bohnet (2010), we include
the updated scores later reported due to some improvements of the parser. Rows 3–4: Baseline (k = 1) and best settings
for k and α on development set. Rows 5–6: Wider beam (b1 = 80) and added graph features (G) and cluster features
(C). Second beam parameter b2 fixed at 4 in all cases.

and α = 0.3, where POS improves by 0.66 and LAS
by 0.86.

Table 2 shows the results on the CoNLL 2009 test
sets. For all languages except English, we obtain
state-of-the-art results already with b1 = 40 (row 4),
and for all languages both tagging and parsing ac-
curacy improve compared to the baseline (row 3).
The improvement in TLAS is statistically significant
with p < 0.01 for all languages (paired t-test). Row
5 shows the scores with a beam of 80 and the addi-
tional graph features. Here the LAS scores for Chi-
nese, Czech and German are higher than the best re-
sults on the CoNLL 2009 data sets, and the score
for English is highly competitive. For Chinese, we
achieve 78.51 LAS, which is 1.5 percentage points
higher than the reference score, while the POS s-
core is 0.54 higher than our baseline. For Czech, we
get 83.73 LAS, which is by far the highest score re-
ported for this data set, together with state-of-the-art
POS accuracy. For German, we obtain 89.05 LAS
and 97.78 POS, which in both cases is substantially
better than in the CoNLL shared task. We believe
it is also the highest POS accuracy ever reported for
a tagger/parser trained only on the Tiger Treebank.
Row 6, finally, presents results with added cluster
features for English and German, which results in
additional improvements in all metrics.

Table 3 gives the results for the Penn Treebank
converted with the head-finding rules of Yamada and
Matsumoto (2003) and the labeling rules of Nivre
(2006). We use k = 3 and α = 0.4, which gave the
best results on the development set. The UAS im-
proves by 0.24 when we do joint tagging and pars-
ing. The POS accuracy improves slightly by 0.12

Parser TLAS UAS LAS POS
McDonald et al. (2005) 90.9
McDonald and Pereira (2006) 91.5
Zhang and Clark (2008) 92.1
Huang and Sagae (2010) 92.1
Koo and Collins (2010) 93.04
Zhang and Nivre (2011) 92.9
Martins et al. (2010) 93.26
Koo et al. (2008) † 93.16
Carreras et al. (2008) † 93.5
Suzuki et al. (2009) † 93.79
Baseline (k = 1), b1 = 40 89.42 92.79 91.71 97.28
Best dev setting, b1 = 40 89.75 93.03 91.92 97.40
Adding G, b1 = 40 90.12 93.38 92.44 97.33
Adding G+C, b1 = 80 † 90.41 93.67 92.68 97.42

Table 3: Accuracy scores for WSJ-PTB converted with
head rules of Yamada and Matsumoto (2003) and labeling
rules of Nivre (2006). Best dev setting: k = 3, α = 0.4.
Results marked with † use additional information sources
and are not directly comparable to the others.

but to a lower degree than for the English CoNL-
L data where we observed an improvement of 0.20.
Nonetheless, the improvement in the joint TLAS s-
core is statistically significant at p < 0.01 (paired
t-test). Our joint tagger and dependency parser with
graph features gives very competitive unlabeled de-
pendency scores for English with 93.38 UAS. To
the best of our knowledge, this is the highest score
reported for a (transition-based) dependency parser
that does not use additional information sources. By
adding cluster features and widening the beam to
b1 = 80, we achieve 93.67 UAS. We also obtain
a POS accuracy of 97.42, which is on a par with the
best results obtained using semi-supervised taggers
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Parser TLAS UAS LAS POS
MSTParser1 75.56 93.51
MSTParser2 77.73 93.51
Li et al. (2011) 3rd-order 80.60 92.80
Li et al. (2011) 2nd-order 80.55 93.08
Hatori et al. (2011) HS 79.60 94.01
Hatori et al. (2011) ZN 81.20 93.94
Baseline (k = 1), b1 = 40 61.95 80.33 76.79 92.81
Best dev setting, b1 = 40 62.54 80.59 77.06 93.11
Adding G, b1 = 80 63.20 81.42 77.91 93.24

Table 4: Accuracy scores for Penn Chinese Treebank
converted with the head rules of Zhang and Clark (2008).
Best dev setting: k = 3, α = 0.1. MSTParser results from
Li et al. (2011). UAS scores from Li et al. (2011) and Ha-
tori et al. (2011) recalculated from the separate accuracy
scores for root words and non-root words reported in the
original papers.

(Søgaard, 2011).
Table 4 shows the results for the Chinese Penn

Treebank CTB 5.1 together with related work. In ex-
periments with the development set, we could con-
firm the results from the Chinese CoNLL data set
and obtained the best results with the same settings
(k = 3, α = 0.1). With b1 = 40, UAS improves by
0.25 and POS by 0.30, and the TLAS improvement
is again highly significant (p < 0.01, paired t-test).
We get the highest UAS, 81.42, with a beam of 80
and added graph features, in which case POS accu-
racy increases from 92.81 to 93.24. Since our tagger
was not optimized for Chinese, we have lower base-
line results for the tagger than both Li et al. (2011)
and Hatori et al. (2011) but still manage to achieve
the highest reported UAS.

The speed of the joint tagger and dependency
parser is quite reasonable with about 0.4 seconds
per sentence on the WSJ-PTB test set, given that we
perform tagging and labeled parsing with a beam of
80 while incorporating the features of a third-order
graph-based model. Experiments were performed
on a computer with an Intel i7-3960X CPU (3.3 GHz
and 6 cores). These performance values are prelim-
inary since we are still working on the speed-up of
the parser.

3.3 Analysis

In order to better understand the benefits of the joint
model, we performed an error analysis for German

Confusion Baseline Joint
Freq F-score Freq F-score

VVINF→ VVFIN 28 91.1 2 97.7
VVINF→ VVPP|ADJ*|NN 5 9
VVFIN→ VVINF 43 94.2 5 98.5
VVFIN→ VVPP 20 2
VAINF→ VAFIN 10 99.1 1 99.9
NE→ NN 184

90.7
128

92.4NE→ ADJ*|ADV|FM 24 18
NE→ XY 12 21
NN→ NE 85 97.5 67 98.1
NN→ ADJ*|XY|ADV|VV* 39 29
PRELS→ ART 13 92.9 5 95.4
PRELS→ PWS 0 2

Table 5: Selected entries from the confusion matrix for
parts of speech in German with F-scores for the left-hand-
side category. ADJ* (ADJD or ADJA) = adjective; ADV
= adverb; ART = determiner; APPR = preposition; NE
= proper noun; NN = common noun; PRELS = relative
pronoun; VVFIN = finite verb; VVINF = non-finite verb;
VAFIN = finite auxiliary verb; VAINF = non-finite auxil-
iary verb; VVPP = participle; XY = not a word. We use
α* to denote the set of categories with α as a prefix.

and English, where we compared the baseline and
the joint model with respect to F-scores for individu-
al part-of-speech categories and dependency labels.
For the part-of-speech categories, we found an im-
provement across the board for both languages, with
no category having a significant decrease in F-score,
but we also found some interesting patterns for cat-
egories that improved more than the average.

Table 5 shows selected entries from the confu-
sion matrix for German, where we see substantial
improvements for finite and non-finite verbs, which
are often morphologically ambiguous but which can
be disambiguated using syntactic context. We al-
so see improved accuracies for common and proper
nouns, which are both capitalized in standard Ger-
man orthography and therefore often mistagged, and
for relative pronouns, which are less often confused
for determiners in the joint model.

Table 6 gives a similar snapshot for English, and
we again see improvements for verb categories that
are often morphologically ambiguous, such as past
participles, which can be confused for past tense
verbs, and present tense verbs in third person sin-
gular, which can be confused for nouns. We also
see some improvement for the singular noun catego-
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Confusion Baseline Joint
Freq F-score Freq F-score

VBN→ VBD 40 90.5 19 91.5
VBN→ JJ|VB|VBP|NN 13 18
VBZ→ NN|NNS 19 97.8 13 98.3
VBZ→ POS|JJ|RB 6 6
NN→ VBG|VB|VBN|VBD 72

96.8
58

97.2NN→ JJ|JJR 79 69
NN→ NN*|RB|IN|DT 58 57
RB→ IN 126 92.4 93 92.9
RB→ JJ*|RP|NN*|RBR|UH 86 89

Table 6: Selected entries from the confusion matrix for
parts of speech in English with F-scores for the left-hand-
side category. DT = determiner; IN = preposition or sub-
ordinating conjunction; JJ = adjective; JJR = compara-
tive adjective; NN = singular or mass noun; NNS = plural
noun; POS = possessive clitic; RB = adverb; RBR = com-
parative adverb; RP = particle; UH = interjection; VB =
base form verb; VBD = past tense verb; VBG = gerund or
present participle; VBN = past participle; VBP = present
tense verb, not 3rd person singular; VBZ = present tense
verb, 3rd person singular. We use α* to denote the set of
categories with α as a prefix.

ry and for adverbs, which are less often confused for
prepositions or subordinating conjunctions thanks to
the syntactic information in the joint model.

For dependency labels, it is hard to extract any
striking patterns and it seems that we mainly see an
improvement in overall parsing accuracy thanks to
less severe tagging errors. However, it is worth ob-
serving that, for both English and German, we see
significant F-score improvements for the core gram-
matical functions subject (91.3→ 92.1 for German,
95.6 → 96.1 for English) and object (86.9 → 87.9
for German, 90.2→ 91.9 for English).

4 Related Work

Our work is most closely related to Lee et al. (2011),
Li et al. (2011) and Hatori et al. (2011), who al-
l present discriminative models for joint tagging and
dependency parsing. However, all three models only
perform unlabeled parsing, while our model incor-
porates dependency labels into the parsing process.
Whereas Lee et al. (2011) and Li et al. (2011) take
a graph-based approach to dependency parsing, Ha-
tori et al. (2011) use a transition-based model similar
to ours but limited to projective dependency trees.
Both Li et al. (2011) and Hatori et al. (2011) only

evaluate their model on Chinese, and of these only
Hatori et al. (2011) report consistent improvements
in both tagging and parsing accuracy. Like our sys-
tem, the parser of Lee et al. (2011) can handle non-
projective trees and experimental results are present-
ed for four languages, but their graph-based model
is relatively simple and the baselines therefore well
below the state of the art. We are thus the first to
show consistent improvements in both tagging and
(labeled) parsing accuracy across typologically di-
verse languages at the state-of-the-art level. More-
over, the capacity to handle non-projective depen-
dencies, which is crucial to attain good performance
on Czech and German, does not seem to hurt per-
formance on English and Chinese, where the bench-
mark sets contain only projective trees.

The use of beam search in transition-based depen-
dency parsing in order to mitigate the problem of
error propagation was first proposed by Johansson
and Nugues (2006), although they still used a local-
ly trained model. Globally normalized models were
first explored by Titov and Henderson (2007), who
were also the first to use a parameterized SHIFT tran-
sition like the one found in both Hatori et al. (2011)
and our own work, although Titov and Henderson
(2007) used it to define a generative model by pa-
rameterizing the SHIFT transition by an input word.
Zhang and Clark (2008) was the first to combine
beam search with a globally normalized discrimi-
native model, using structured perceptron learning
and the early update strategy of Collins and Roark
(2004), and also explored the addition of graph-
based features to a transition-based parser. This
approach was further pursued in Zhang and Clark
(2011) and was used by Zhang and Nivre (2011) to
achieve state-of-the-art results in dependency pars-
ing for both Chinese and English through the ad-
dition of rich non-local features. Huang and Sagae
(2010) combined structured perceptron learning and
beam search with the use of a graph-structured stack
to allow ambiguity packing in the beam, a technique
that was reused by Hatori et al. (2011).

Finally, as noted in the introduction, although
joint tagging and parsing is rare in dependency pars-
ing, most state-of-the-art parsers based on PCFG
models naturally incorporate part-of-speech tagging
and usually achieve better parsing accuracy (albeit
not always tagging accuracy) with a joint model than
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with a pipeline approach (Collins, 1997; Charniak,
2000; Charniak and Johnson, 2005; Petrov et al.,
2006). Models that in addition incorporate mor-
phological analysis and segmentation have been ex-
plored by Tsarfaty (2006), Cohen and Smith (2007),
and Goldberg and Tsarfaty (2008) with special ref-
erence to Hebrew parsing.

5 Conclusion

We have presented the first system for joint part-
of-speech tagging and labeled dependency parsing
with non-projective dependency trees. Evaluation
on four languages shows consistent improvements
in both tagging and parsing accuracy over a pipeline
system with state-of-the-art results across the board.
The error analysis reveals improvements in tagging
accuracy for syntactically central categories, mainly
verbs, with improvement in syntactic accuracy for
core grammatical functions as a result. In future
work we intend to explore joint models that incorpo-
rate not only basic part-of-speech tags but also more
fine-grained morphological features.
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