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Abstract

We introduce a novel approach named unam-
biguity regularization for unsupervised learn-
ing of probabilistic natural language gram-
mars. The approach is based on the observa-
tion that natural language is remarkably unam-
biguous in the sense that only a tiny portion of
the large number of possible parses of a nat-
ural language sentence are syntactically valid.
We incorporate an inductive bias into gram-
mar learning in favor of grammars that lead
to unambiguous parses on natural language
sentences. The resulting family of algorithms
includes the expectation-maximization algo-
rithm (EM) and its variant, Viterbi EM, as well
as a so-called softmax-EM algorithm. The
softmax-EM algorithm can be implemented
with a simple and computationally efficient
extension to standard EM. In our experiments
of unsupervised dependency grammar learn-
ing, we show that unambiguity regularization
is beneficial to learning, and in combination
with annealing (of the regularization strength)
and sparsity priors it leads to improvement
over the current state of the art.

1 Introduction

Machine learning offers a potentially powerful ap-
proach to learning probabilistic grammars from data.
Because of the high cost of manual sentence anno-
tation, there is substantial interest in unsupervised
grammar learning, i.e., the induction of a grammar
from a corpus of unannotated sentences. The sim-
plest such approaches attempt to maximize the like-
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lihood of the grammar given the training data, typi-
cally using expectation-maximization (EM) (Baker,
1979; Lari and Young, 1990; Klein and Manning,
2004). More recent approaches incorporate addi-
tional prior information of the target grammar into
learning. For example, Kurihara and Sato (2004)
used Dirichlet priors over rule probabilities to obtain
smoothed estimates of the probabilities. Johnson et
al. (2007) used Dirichlet priors with hyperparame-
ters set to values less than 1 to encourage sparsity
of grammar rules. Finkel et al. (2007) and Liang et
al. (2007) proposed to use the hierarchical Dirichlet
process prior to bias learning towards concise gram-
mars without the need to pre-specify the number of
nonterminals. Cohen et al. (2008) and Cohen and
Smith (2009) employed the logistic normal prior to
model the correlations between grammar symbols.
Gillenwater et al. (2010) incorporated a sparsity bias
on grammar rules into learning by means of poste-
rior regularization.

More recently, Spitkovsky et al. (2010) and Poon
and Domingos (2011) observed that the use of
Viterbi EM (also called hard EM) in place of stan-
dard EM can lead to significantly improved results
in unsupervised learning of probabilistic grammars
from natural language and image data respectively,
even if no prior information is used. This finding is
surprising because Viterbi EM is a degenerate case
of standard EM and is therefore generally consid-
ered to be less effective in locating the optimum
of the objective function. Spitkovsky et al. (2010)
speculated that the observed advantage of Viterbi
EM over standard EM is due to standard EM reserv-
ing too much probability mass to spurious parses in
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the E-step. However, it is still unclear as to why
Viterbi EM can avoid this problem.

Against this background, we propose the use of
a novel type of prior information for unsupervised
learning of probabilistic natural language grammars,
namely the syntactic unambiguity of natural lan-
guage. Although it is often possible to correctly
parse a natural language sentence in more than one
way, natural language is remarkably unambiguous
in the sense that the number of plausible parses of a
natural language sentence is rather small in compar-
ison with the total number of possible parses. Thus,
we incorporate into learning an inductive bias in fa-
vor of grammars that lead to unambiguous parses on
natural language sentences, by using the posterior
regularization framework (Ganchev et al., 2010).
We name this approach unambiguity regularization.
The resulting family of algorithms includes standard
EM and Viterbi EM, as well as an algorithm that
falls between standard EM and Viterbi EM which
we call softmax-EM. The softmax-EM algorithm
can be implemented with a simple and computation-
ally efficient extension to standard EM. The fact that
Viterbi EM is a special case of our approach also
gives an explanation of the advantage of Viterbi EM
observed in previous work: it is because Viterbi EM
implicitly utilizes unambiguity regularization. In
our experiments of unsupervised dependency gram-
mar learning, we show that unambiguity regulariza-
tion is beneficial to learning, and in combination
with annealing (of the regularization strength) and
sparsity priors it leads to improvement over the cur-
rent state of the art.

It should be noted that our approach is closely
related to the deterministic annealing (DA) tech-
nique studied in the optimization literature (Rose,
1998). However, DA has a very different motiva-
tion than ours and differs from our approach in a few
important algorithmic details, as will be discussed
in section 5. When applied to unsupervised gram-
mar learning, DA has been shown to lead to worse
parsing accuracy than standard EM (Smith and Eis-
ner, 2004); in contrast, we show that our approach
leads to significantly higher parsing accuracy than
standard EM in unsupervised dependency grammar
learning.

The rest of the paper is organized as follows. Sec-
tion 2 analyzes the degree of unambiguity of natural
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language grammars. Section 3 introduces the unam-
biguity regularization approach and shows that stan-
dard EM, Viterbi EM and softmax-EM are its special
cases. We show the experimental results in section
4, discuss related work in section 5 and conclude the
paper in section 6.

2 The (Un)ambiguity of Natural Language
Grammars

A grammar is said to be ambiguous on a sentence if
the sentence can be parsed in more than one way by
the grammar. It is widely acknowledged that natu-
ral language grammars are ambiguous on a signifi-
cant proportion of natural language sentences. For
example, Manning and Schiitze (1999) show that a
sentence randomly chosen from the Wall Street Jour-
nal — “The post office will hold out discounts and
service concessions as incentives” — has at least
five plausible syntactic parses. When we parse this
sentence using the Berkeley parser (Petrov et al.,
2006), one of the state-of-the-art English language
parsers, we find many alternative parses in addition
to the parses shown in (Manning and Schiitze, 1999).
Indeed, with a probabilistic context-free grammar
of only 26 nonterminals (as used in the Berke-
ley parser), the estimated total number of possible
parses' of the example sentence is 2 x 1037. How-
ever, upon closer examination, we find that among
this very large number of possible parses, only a few
have significant probabilities. Figure 1 shows the
probabilities of the 100 best parses of the example
sentence. We can see that most of the parses have
probabilities that are negligible compared with the
probability of the best parse (i.e., the parse with the
largest probability). Quantitatively, we find that the
probabilities of the parses decrease roughly expo-
nentially as we go from the best parse to the less
likely parses. We confirmed this observation by ex-
amining the parses of many other natural language
sentences obtained using the Berkeley parser. This
observation suggests that natural language gram-
mars are indeed remarkably unambiguous on natu-
ral language sentences, in the sense that for a typical

! Given a sentence of length m and a complete Chomsky nor-
mal form grammar with n nonterminals, the number of all pos-
sible parses is Cy—1 x n>™ ™!, where Cy,_1 is the (m — 1)-th
Catalan number. This number is further increased if there are
unary rules between nonterminals in the grammar.
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Figure 1: The probabilities of the 100 best parses of the
example sentence.

natural language sentence, the probability mass of
the parses is concentrated to a tiny portion of all pos-
sible parses. This is not surprising in light of the fact
that the main purpose of natural language is commu-
nication and in the course of language evolution the
selection pressure for more efficient communication
would favor unambiguous languages.

To highlight the unambiguity of natural language
grammars, here we compare the parse probabilities
shown in Figure 1 with the parse probabilities pro-
duced by two other probabilistic context-free gram-
mars. In figure 2(a) we show the probabilities of the
100 best parses of the example sentence produced
by a random grammar. The random grammar has a
similar number of nonterminals as in the Berkeley
parser, and its grammar rule probabilities are sam-
pled from a uniform distribution and then normal-
ized. It can be seen that unlike the natural language
grammar, the random grammar produces a very uni-
form probability distribution over parses. Figure
2(b) shows the probabilities of the 100 best parses
of the example sentence produced by a maximum-
likelihood grammar learned from the unannotated
Wall Street Journal corpus of the Penn Treebank us-
ing the EM algorithm. An exponential decrease can
be observed in the probabilities, but the probabil-
ity mass is still much less concentrated than in the
case of the natural language grammar. Again, we
confirmed this observation by repeating the exper-
iments on many other natural language sentences.
This suggests that both the random grammar and the
maximum-likelihood grammar are far more ambigu-
ous on natural language sentences than true natural
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language grammars.

3 Learning with Unambiguity
Regularization

Motivated by the preceding observation, we want to
incorporate into learning an inductive bias in favor
of grammars that are unambiguous on natural lan-
guage sentences. First of all, we need a precise defi-
nition of the ambiguity of a grammar on a sentence.
Assume a grammar with a fixed set of grammar rules
and let 6 be the rule probabilities. Let x represent a
sentence and let z represent the parse of . One natu-
ral measurement of the ambiguity is the information
entropy of z conditioned on x and 6:

H(z|z,0) = = po(z|x) log py(z|)

The lower the entropy is, the less ambiguous the
grammar is on sentence x. When the entropy
reaches 0, the grammar is strictly unambiguous on
sentence z, i.e., sentence z has a unique parse ac-
cording to the grammar.

Now we need to modify the objective function
of grammar learning to favor low ambiguity of the
learned grammar in parsing natural langauge sen-
tences. One approach is to use a prior distribu-
tion that favors grammars with low ambiguity on
the sentences that they generate. Since the likeli-
hood term in the objective function would ensure
that the learned grammar will have high probability
of generating natural language sentences, combin-
ing the likelihood and the prior would lead to low
ambiguity of the learned grammar on natural lan-
guage sentences. Unfortunately, adding this prior
to the objective function makes learning intractable.
Hence, here we adopt an alternative approach using
the posterior regularization framework (Ganchev et
al., 2010). Posterior regularization biases learning
in favor of solutions with desired behavior by con-
straining the model posteriors on the unlabeled data.
In our case, we use the constraint that the probability
distributions on the parses of the training sentences
given the learned grammar must have low entropy,
which is equivalent to requiring the learned grammar
to have low ambiguity on the training sentences.

Let X = {z1, 2, ...,y } denote the set of train-
ing sentences, Z = {z1, 22,..., 2z, } denote the set
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Figure 2: The probabilities of the 100 best parses of the example sentence produced by (a) a random grammar and (b)
a maximum-likelihood grammar learned by the EM algorithm.

of parses of the training sentences, and ¢ denote the
rule probabilities of the grammar. We use the slack-
penalized version of the posterior regularization ob-
jective function:

J(0) = log p(0]X)

—min (KL(Q(Z)Ilpe(ZIX)) +o Z&)

sV H(z) ==Y qlzi)logq(z) < &

2

where o is a nonnegative constant that controls the
strength of the regularization term; ¢ is an auxil-
iary distribution such that ¢(Z) = [, q(z). The
first term in the objective function is the log poste-
rior probability of the grammar parameters given the
training corpus, and the second term minimizes the
KL-divergence between the auxiliary distribution ¢
and the posterior distribution on Z while constrains
q to have low entropy. We can incorporate the con-
straint into the objective function, so we get

J(0) = log p(0|X)

— min (KL(Q(Z)HPB(ZDQ) +o Z H(Zi))

To optimize this objective function, we can per-
form coordinate ascent on a two-variable function:

F(0,q) = logp(0]X)

- <KL(q(Z)Hp9(Z\X)) +o Z H(Zi)>
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There are two steps in each coordinate ascent itera-
tion. In the first step, we fix ¢ and optimize 6. It can
be shown that

0 = argmeaxF(G,q)
= argmax Eq[log(py(X, Z)p(0))]

This is equivalent to the M-step in the EM algorithm.
The second step fixes 6 and optimizes q.

q* = argmax F (0, q)
q

= argmin <KL(Q(Z)| Ipo(Z|X)) + o Z H(Z@))

It is different from the E-step of the EM algorithm
in that it contains an additional regularization term
oY, H(z;). Ganchev et al. (2010) propose to use
the projected subgradient method to solve this op-
timization problem in the general case of posterior
regularization. In our case, however, it is possible to
obtain an analytical solution as shown below.

First, note that the optimization objective of this
step can be rewritten as the sum over functions of
individual training sentences.

KL(¢(2)lpo(ZIX) + 0 Y H () = 3 fila)
where
fila) = KL(q(z)||po(zi|xi)) + o H(2;)

= (q(Zi) log %)

< Po



So we can optimize f;(q) for each training sentence
x;. The optimum of f;(q) depends on the value of
the constant o.

Case 1: 0 = 0.

fi(q) contains only the KL-divergence term, so the
second step in the coordinate ascent iteration be-
comes the standard E-step of the EM algorithm.

q*(2i) = po(zilz;)
Case2: 0 <o < 1.
The space of valid assignments of the distribution
q(z;) is a unit (m — 1)-simplex, where m is the num-
ber of valid parses of sentence ;. Denote this space
by A.

Theorem 1. f;(q) is strictly convex on the unit sim-
plex A when 0 < o < 1.

Proof Sketch. Define g(z) = = logx, where g(0) is
defined to be 0. For any ¢ € (0,1), for any two
points ¢1 and ¢ in the unit simplex A, we can show
that

tfila) + (1 =) filgz) — filtar + (1 — 1)g2)
tg(qi(zi)) + (1 — t)g(ga(2:)) ]
1—
(=02 ot + e
It is easy to prove that g(z) is strictly convex on the
interval [0, 1]. Because Vz;,0 < q1(z:), q2(zi) < 1,
we have

tg(qi(2i)) + (1 — t)g(ga(z:))
> g(tqi(z) + (1 —1)g2(2i))

Because 1 — o > 0, we have

tfi(q1) + (L —t) fi(q2) — filtqr + (1 —t)g2) >0
O

By applying the Lagrange multiplier, we get the
stationary point of f;(g) on the unit simplex A:

1
q*(z) = aupg(zi|zs) =7

ey

where «; 18 the normalization factor

1
o =

= 1
>, po(zilzi) =7
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Because f;(q) is strictly convex on the unit simplex
A, this stationary point is the global minimum. Note
that because ﬁ > 1, ¢*(z;) can be seen as the re-
sult of applying a variant of the softmax function to
po(zi|zi). To compute ¢*, note that py(z;|z;) is the
product of a set of grammar rule probabilities, so we
can raise all the rule probabilities of the grammar to
the power of ﬁ and then run the normal E-step of
the EM algorithm. The normalization of ¢* is in-
cluded in the normal E-step.
With ¢*, the objective function becomes

(1-0)Y logy plzi2il0) =

+ log p(6) — log p(X)

F(0,q7)

The first term is proportional to the log “likelihood”
of the corpus computed with the exponentiated rule
probabilities. So we can use the parsing algorithm to
efficiently compute the value of the objective func-
tion (on the training corpus or on a separate devel-
opment set) to determine when the coordinate ascent
iteration shall be terminated.

Case3:0=1
We need to minimize
fila) = = (a(z) log py(zil:))

Zi

Because log py(z;|z;) < 0 for any z;, the minimum
of fi(q) is reached at

¢ (2) = {

Cased4: 0 >1

1 if z; = argmax, pp(zi|x;)
0 otherwise

Theorem 2. f;(q) is strictly concave on the unit sim-
plex A when o > 1.

The proof is the same as that of theorem 1, ex-
cept that 1 — o is now negative which reverses the
direction of the last inequality in the proof.

Theorem 3. The minimum of f;(q) is attained at a
vertex of the unit simplex A.

Proof. Assume the minimum of f;(¢) is attained
at ¢* that is not a vertex of the unit simplex A,
so there are at least two assignments of z;, say 2!
and 22, such that ¢*(z') and ¢*(2?) are nonzero.



Let ¢’ be the same distribution as ¢* except that
() = 0and (%) = ¢*(+)) + ¢*(=%). Let "
be the same distribution as ¢* except that ¢”(z!) =
q*(z1) + ¢*(2%) and q"(2?) = 0. Obviously, both ¢’
and ¢” are in the unit simplex A and ¢’ # ¢”. Let

t= #%’ and obviously we have 0 < ¢ < 1.
So we get ¢* = tq' + (1 — t)q”. According to The-
orem 2, f;(q) is strictly concave on the unit simplex
A, so we have fi(g") > tfi(¢) + (1 — £)i(d").
Without loss of generality, suppose f;(¢") > fi(¢").
So we have £;(¢) + (1 — £)fi¢") > fi(¢") and
therefore f;(¢*) > fi(¢"), which means f;(q) does
not attain the minimum at ¢*. This contradicts the

assumption. O

Now we need to find out at which of the vertices
of the unit simplex A is the minimum of f;(q) at-
tained. At the vertex where the probability mass is
concentrated at the assignment z, the value of f;(q)
is — log pp(z|x;). So the minimum is attained at

“(5) = 1 if z; = arg max,, pg(zi|x;)
4 1% 0 otherwise

It can be seen that the minimum in the case of
o > 1is attained at the same point as in the case of
o = 1, at which all the probability mass is assigned
to the best parse of the sentence. So ¢* can be com-
puted using the E-step of the Viterbi EM algorithm.
Denote the best parse by z;. With ¢*, the objective
function becomes

F(0,q") = ) logp(z,xi6)
+ log p(0) — log p(X)

The first term is the sum of the log probabilities of
the best parses of the corpus. So again we can use
the parsing algorithm to efficiently compute it to de-
cide when to terminate the iterative algorithm.

Summary

Our unambiguity regularization approach is an ex-
tension of the EM algorithm. The behavior of our
approach is controlled by the value of the nonneg-
ative parameter o. A larger value of o corresponds
to a stronger bias in favor of an unambiguous gram-
mar. When o = 0, our approach reduces to the stan-
dard EM algorithm. When o > 1, our approach
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reduces to the Viterbi EM algorithm, which consid-
ers only the best parses of the training sentences in
the E-step. When 0 < o < 1, our approach falls
between standard EM and Viterbi EM: it applies a
softmax function (Eq.1) to the distributions of parses
of the training sentences in the E-step. The softmax
function can be computed by simply exponentiating
the grammar rule probabilities before the standard
E-step, which does not increase the time complexity
of the E-step. We refer to the algorithm in the case
of 0 < o < 1 as the softmax-EM algorithm.

3.1 Annealing the Strength of Regularization

In unsupervised learning of probabilistic grammars,
the initial grammar is typically very ambiguous
(e.g., arandom grammar). So we need to set o to a
value that is large enough to induce unambiguity. On
the other hand, natural language grammars do con-
tain some degree of ambiguity, so if the value of o
is too large, then the learned grammar might be ex-
cessively unambiguous and thus not a good model
of natural languages. Hence, it is unclear how to
choose an optimal value of o.

One way to avoid choosing a fixed value of o is
to anneal its value. We start learning with a large
value of o (e.g., 0 = 1) to strongly push the learner
away from the highly ambiguous initial grammar;
then we gradually reduce the value of o, possibly
ending with ¢ = 0, to avoid inducing excessive un-
ambiguity in the learned grammar. Note that if the
value of ¢ is annealed to 0, then our approach can be
seen as providing an unambiguous initialization for
standard EM.

3.2 Unambiguity Regularization with
Mean-field Variational Inference

Variational inference approximates the posterior of
the model given the data. It typically leads to more
accurate predictions than the maximum a posteriori
(MAP) estimation. In addition, for certain types of
prior distributions (e.g., a Dirichlet prior with hy-
perparameters set to values less than 1), variational
inference is able to find a solution when MAP esti-
mation fails. Here we incorporate unambiguity reg-
ularization into mean-field variational inference.

The objective function with unambiguity regular-



ization for mean-field variational inference is:
F(q(9),q(Z)) = log p(X)

- <KL<q<9>q<z>| p(6.2IX) + Y H<z»>

where Vi, H(z;)

—> q(z)logg(z)

Zi

We can perform coordinate ascent that alternately
optimizes ¢(6) and ¢(Z). Since the regularization
term does not contain ¢(), the optimization of ¢(6)
is exactly the same as in the standard mean-field
variational inference. To optimize ¢(Z), we have

q"(Z)

arg min (KL(q(Z) IP(X,2Z)) + 0o Z H(Zi))

where p(X, Z) is defined as
logp(X,Z) = Eq0) [logp(6,Z,X)] + const

Now we can follow a derivation similar to that in the
setting of MAP estimation with unambiguity regu-
larization, and we can obtain a similar result but with
po(zi|x;) replaced with p(x;, z;) in each of the four
cases.

Note that if Dirichlet priors are used over gram-
mar rule probabilities 6, then p(x;, z;) can be rep-
resented as the product of a set of weights in
mean-field variational inference (Kurihara and Sato,
2004). Therefore in order to compute ¢*(z;), when
0 < o < 1, we simply need to raise all the weights
to the power of 1; before running the normal step
of computing ¢*(z;) in standard mean-field varia-
tional inference; and when o > 1, we can simply
use the weights to find the best parse of the training
sentence and assign probability 1 to it.

4 Experiments

We tested the effectiveness of unambiguity regular-
ization in unsupervised learning of a type of depen-
dency grammar called the dependency model with
valence (DMV) (Klein and Manning, 2004). We
report the results on the Wall Street Journal cor-
pus (with section 2-21 for training and section 23
for testing) in section 4.1-4.3, and the results on
the corpora of eight additional languages in section
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Testing Accuracy
Value of o <10 [ <20 [ Al
0 (standard EM) | 46.2 | 39.7 | 349
0.25 53.7 | 447 | 40.3
0.5 519 | 429 | 38.8
0.75 51.6 | 43.1 | 38.8
1 (Viterbi EM) 583 | 45.2 | 394

Table 1: The dependency accuracies of grammars learned
by our approach with different values of o.

4.4. On each corpus, we trained the learner on the
gold-standard part-of-speech tags of the sentences
of length < 10 with punctuation stripped off. We
started our algorithm with the informed initialization
proposed in (Klein and Manning, 2004), and termi-
nated the algorithm when the increase in the value
of the objective function fell below a threshold of
0.001%. To evaluate a learned grammar, we used the
grammar to parse the testing corpus and computed
the dependency accuracy which is the percentage of
the dependencies that are correctly matched between
the parses generated by the grammar and the gold
standard parses. We report the dependency accu-
racy on subsets of the testing corpus corresponding
to sentences of length < 10, length < 20, and the
entire testing corpus.

4.1 Results with Different Values of o

We compared the performance of our approach with
five different values of the parameter o: 0O (i.e., stan-
dard EM), 0.25, 0.5, 0.75, 1 (i.e., Viterbi EM). Table
1 shows the experimental results. It can be seen that
learning with unambiguity regularization (i.e., with
o > 0) consistently outperforms learning without
unambiguity regularization (i.e., 0 = 0). The gram-
mar learned by Viterbi EM has significantly higher
dependency accuracy in parsing short sentences. We
speculate that this is because short sentences are less
ambiguous and therefore a strong unambiguity regu-
larization is especially helpful in learning the gram-
matical structures of short sentences. On the testing
sentences of all lengths, o = 0.25 achieves the best
dependency accuracy, which suggests that control-
ling the strength of unambiguity regularization can
contribute to improved performance.



Testing Accuracy

<10 [ <20 [ All
DMV Model
UR-Annealing 63.6 | 53.1 | 479
UR-Annealing&Prior 66.6 | 57.7 | 52.3
PR-S (Gillenwater et al., 2010) 62.1 53.8 49.1
SLN TieV&N (Cohen and Smith, 2009) 61.3 474 | 414
LN Families (Cohen et al., 2008) 59.3 45.1 39.0
Extended Models

UR-Annealing on E-DMV(2,2) 71.4 624 | 57.0
UR-Annealing on E-DMV(3,3) 71.2 61.5 | 56.0

L-EVG (Headden et al., 2009) 68.8 - -
LexTSG-DMYV (Blunsom and Cohn, 2010) | 67.7 - 55.7

Table 2: The dependency accuracies of grammars learned
by our approach (denoted by “UR”) with annealing and
prior, compared with previous published results.

4.2 Results with Annealing and Prior

We annealed the value of ¢ from 1 to 0 when run-
ning our approach. We reduced the value of o at
a constant speed such that it reaches 0O at iteration
100. The results of this experiment (shown as “UR-
Annealing” in Table 2) suggest that annealing the
value of ¢ not only helps circumvent the problem of
choosing an optimal value of o, but may also lead to
substantial improvements over the results of learn-
ing using any fixed value of o.

Dirichlet priors with the hyperparameter « set to a
value less than 1 are often used to induce parameter
sparsity. We added Dirichlet priors over grammar
rule probabilities and ran the variational inference
version of our approach. The value of a was set to
0.25 as suggested by previous work (Cohen et al.,
2008; Gillenwater et al., 2010). When tested with
different values of o, adding Dirichlet priors with
a = 0.25 consistently boosted the dependency ac-
curacy of the learned grammar by 1-2%. When the
value of o was annealed during variational inference
with Dirichlet priors, the dependency accuracy was
further improved (shown as “UR-Annealing&Prior”
in Table 2).

The first part of Table 2 also compares our re-
sults with the best results that have been published in
the literature for unsupervised learning of the DMV
model (with different priors or regularizations than
ours). It can be seen that our best result (unambigu-
ity regularization with annealing and prior) clearly
outperforms previous results. Furthermore, we ex-
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pect our approach to be more computationally ef-
ficient than the other approaches, because our ap-
proach only inserts an additional parameter expo-
nentiation step into each iteration of standard EM or
variational inference, in contrast to the other three
approaches all of which involve additional gradient
descent optimization steps in each iteration.

4.3 Results on Extended Models

It has been pointed out that the DMV model is very
simplistic and cannot capture many linguistic phe-
nomena; therefore a few extensions of DMV have
been proposed, which achieve significant improve-
ment over DMV in unsupervised grammar learn-
ing (Headden et al., 2009; Blunsom and Cohn,
2010). We examined the effect of unambiguity reg-
ularization on E-DMYV, an extension of DMV (with
two different settings: (2,2) and (3,3)) (Headden et
al., 2009; Gillenwater et al., 2010). As shown in
the second part of Table 2, unambiguity regular-
ization with annealing on E-DMV achieves better
dependency accuracies than the state-of-the-art ap-
proaches to unsupervised parsing with extended de-
pendency models. Addition of Dirichlet priors, how-
ever, did not further improve the accuracies in this
setting. Note that E-DMYV is an unlexicalized ex-
tension of DMV that is relatively simple. We spec-
ulate that the performance of unambiguity regular-
ization can be further improved if applied to more
advanced models like LexTSG-DMYV (Blunsom and
Cohn, 2010).

4.4 Results on More Languages

We examined the effect of unambiguity regulariza-
tion with the DMV model on the corpora of eight
additional languages®. The experimental results of
all the nine languages are summarized in Table 3. It
can be seen that learning with unambiguity regular-
ization (i.e., with o > 0) outperforms learning with-
out unambiguity regularization (i.e., o = 0) on eight
out of the nine languages, but the optimal value of
o is very different across languages. Annealing the
value of ¢ from 1 to 0 does not always lead to fur-
ther improvement over using the optimal value of o

’The corpora are from the PASCAL Challenge on
Grammar  Induction (http://wiki.cs.ox.ac.uk/
InducinglLinguisticStructure/SharedTask).



for each language, but on average it has better per-
formance than using any fixed value of o and hence
is useful when the optimal value of ¢ is hard to iden-
tify.

5 Related Work

Deterministic annealing (DA) (Rose, 1998; Smith
and Eisner, 2004) also extends the standard EM al-
gorithm by exponentiating the posterior probabili-
ties of the hidden variables in the E-step. However,
the goal of DA is to improve the optimization of a
non-concave objective function, which is achieved
by setting the exponent in the E-step to a value close
to 0, so that the distribution of the hidden variables
becomes nearly uniform and the objective function
becomes almost concave and therefore easy to opti-
mize; this exponent is then gradually increased to
1 to optimize the original objective function. In
contrast, the goal of unambiguity regularization is
to bias learning in favor of unambiguous grammars,
which is achieved by setting the exponent in the E-
step (i.e., i in Eq.1) to a value larger than I, so
that the distribution of the hidden variables becomes
less uniform (i.e., parses become less ambiguous); in
our annealing approach, the exponent is initialized
to a very large value (positive infinity in our experi-
ment) to push the learner away from the ambiguous
initial grammar, and then gradually decreased to I to
avoid inducing excessive unambiguity in the learned
grammar. The empirical results of Smith and Eisner
(2004) show that DA resulted in lower parsing ac-
curacy compared with standard EM in unsupervised
constituent parsing; and a “skew” posterior term had
to be inserted into the E-step formulation of DA to
boost its accuracy over that of standard EM. In con-
trast, the results of our experiments show that unam-
biguity regularization leads to significantly higher
parsing accuracy than standard EM.

Unambiguity regularization is also related to
the minimum entropy regularization framework for
semi-supervised learning (Grandvalet and Bengio,
2005; Smith and Eisner, 2007), which tries to min-
imize the entropy of the class label or hidden vari-
ables on unlabeled data in addition to maximizing
the likelihood of labeled data. However, entropy
regularization is either motivated by the theoreti-
cal result that unlabeled data samples are informa-
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tive when classes are well separated (Grandvalet and
Bengio, 2005), or derived from the expected condi-
tional log-likelihood (Smith and Eisner, 2007). In
contrast, our approach is motivated by the observed
unambiguity of natural language grammars. One
implication of this difference is that if our approach
is applied to semi-supervised learning, the regular-
ization term would be applied to labeled sentences
as well (by ignoring the labels) because the target
grammar shall be unambiguous on all the training
sentences.

The sparsity bias, which favors a grammar with
fewer grammar rules, has been widely used in un-
supervised grammar learning (Chen, 1995; Johnson
et al., 2007; Gillenwater et al., 2010). Although a
more sparse grammar is often less ambiguous, in
general that is not always the case. We have shown
that unambiguity regularization could lead to better
performance than approaches utilizing the sparsity
bias, and that the two types of biases can be applied
together for further improvement in the learning per-
formance.

6 Conclusion

We have introduced unambiguity regularization, a
novel approach to unsupervised learning of proba-
bilistic natural language grammars. It is based on
the observation that natural language grammars are
remarkably unambiguous in the sense that in parsing
natural language sentences they tend to concentrate
the probability mass to a tiny portion of all possi-
ble parses. By using posterior regularization, we
incorporate an inductive bias into learning in favor
of grammars that are unambiguous on natural lan-
guage sentences. The resulting family of algorithms
includes standard EM and Viterbi EM, as well as
the softmax-EM algorithm which falls between stan-
dard EM and Viterbi EM. The softmax-EM algo-
rithm can be implemented by adding a simple pa-
rameter exponentiation step into standard EM. In
our experiments of unsupervised dependency gram-
mar learning, we show that unambiguity regulariza-
tion is beneficial to learning, and by incorporating
regularization strength annealing and sparsity priors
our approach outperforms the current state-of-the-
art grammar learning algorithms. For future work,
we plan to combine unambiguity regularization with



l \ Arabic Basque Czech Danish Dutch English | Portuguese | Slovene | Swedish
o = 0 (standard EM) 27.4 32.1 27.8 35.6 29.4 34.9 23.7 30.6 31.9
o=0.25 30.6 39.3 27.2 35.2 30.9 40.3 27.7 23.8 42.0
oc=0.5 32.6 40.6 33.0 374 32.7 38.8 27.5 15.3 29.3
o=0.75 31.6 41.8 16.1 36.0 351 38.8 26.2 15.1 32.7
o = 1 (Viterbi EM) 29.6 39.8 28.6 33.6 28.0 394 27.3 14.6 37.2
UR-Annealing 26.7 41.6 39.3 34.1 43.1 47.8 26.4 16.4 46.0

Table 3: The dependency accuracies (on sentences of all lengths in the testing corpus) of grammars learned by our
approach from the corpora of the following languages: Arabic (Hajic et al., 2004), Basque (Aduriz et al., 2003), Czech
(Hajic¢ et al., 2000), Danish (Buch-Kromann et al., 2007), Dutch (Beek et al., 2002), English, Portuguese (Afonso et
al., 2002), Slovene (Erjavec et al., 2010), Swedish (Nivre et al., 2006).

other types of priors and regularizations for unsu-
pervised grammar learning, to apply it to more ad-
vanced grammar models, and to explore alternative
formulations of unambiguity regularization.
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