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Abstract

Pairwise coreference resolution models must
merge pairwise coreference decisions to gen-
erate final outputs. Traditional merging meth-
ods adopt different strategies such as the best-
first method and enforcing the transitivity con-
straint, but most of these methods are used
independently of the pairwise learning meth-
ods as an isolated inference procedure at the
end. We propose a joint learning model which
combines pairwise classification and mention
clustering with Markov logic. Experimen-
tal results show that our joint learning sys-
tem outperforms independent learning sys-
tems. Our system gives a better performance
than all the learning-based systems from the
CoNLL-2011 shared task on the same dataset.
Compared with the best system from CoNLL-
2011, which employs a rule-based method,
our system shows competitive performance.

1 Introduction

The task of noun phrase coreference resolution is to
determine which mentions in a text refer to the same
real-world entity. Many methods have been pro-
posed for this problem. Among them the mention-
pair model (McCarthy and Lehnert, 1995) is one of
the most influential ones and can achieve the state-
of-the-art performance (Bengtson and Roth, 2008).
The mention-pair model splits the task into three
parts: mention detection, pairwise classification and
mention clustering. Mention detection aims to iden-
tify anaphoric noun phrases, including proper nouns,
common noun phrases and pronouns. Pairwise clas-
sification takes a pair of detected anaphoric noun

phrase candidates and determines whether they re-
fer to the same entity. Because these classification
decisions are local, they do not guarantee that can-
didate mentions are partitioned into clusters. There-
fore a mention clustering step is needed to resolve
conflicts and generate the final mention clusters.

Much work has been done following the mention-
pair model (Soon et al., 2001; Ng and Cardie, 2002).
In most work, pairwise classification and mention
clustering are done sequentially. A major weak-
ness of this approach is that pairwise classification
considers only local information, which may not be
sufficient to make correct decisions. One way to
address this weakness is to jointly learn the pair-
wise classification model and the mention cluster-
ing model. This idea has been explored to some
extent by McCallum and Wellner (2005) using con-
ditional undirected graphical models and by Finley
and Joachims (2005) using an SVM-based super-
vised clustering method.

In this paper, we study how to use a different
learning framework, Markov logic (Richardson and
Domingos, 2006), to learn a joint model for both
pairwise classification and mention clustering un-
der the mention-pair model. We choose Markov
logic because of its appealing properties. Markov
logic is based on first-order logic, which makes
the learned models readily interpretable by humans.
Moreover, joint learning is natural under the Markov
logic framework, with local pairwise classification
and global mention clustering both formulated as
weighted first-order clauses. In fact, Markov logic
has been previously used by Poon and Domingos
(2008) for coreference resolution and achieved good

1245



results, but it was used for unsupervised coreference
resolution and the method was based on a different
model, the entity-mention model.

More specifically, to combine mention cluster-
ing with pairwise classification, we adopt the com-
monly used strategies (such as best-first clustering
and transitivity constraint), and formulate them as
first-order logic formulas under the Markov logic
framework. Best-first clustering has been previously
studied by Ng and Cardie (2002) and Bengtson and
Roth (2008) and found to be effective. Transitivity
constraint has been applied to coreference resolution
by Klenner (2007) and Finkel and Manning (2008),
and also achieved good performance.

We evaluate Markov logic-based method on the
dataset from CoNLL-2011 shared task. Our ex-
periment results demonstrate the advantage of joint
learning of pairwise classification and mention clus-
tering over independent learning. We examine
best-first clustering and transitivity constraint in our
methods, and find that both are very useful for coref-
erence resolution. Compared with the state of the
art, our method outperforms a baseline that repre-
sents a typical system using the mention-pair model.
Our method is also better than all learning systems
from the CoNLL-2011 shared task based on the re-
ported performance. Even with the top system from
CoNLL-2011, our performance is still competitive.

In the rest of this paper, we first describe a stan-
dard pairwise coreference resolution system in Sec-
tion 2. We then present our Markov logic model for
pairwise coreference resolution in Section 3. Exper-
imental results are given in Section 4. Finally we
discuss related work in Section 5 and conclude in
Section 6.

2 Standard Pairwise Coreference
Resolution

In this section, we describe standard learning-based
framework for pairwise coreference resolution. The
major steps include mention detection, pairwise
classification and mention clustering.

2.1 Mention Detection

For mention detection, traditional methods include
learning-based and rule-based methods. Which kind
of method to choose depends on specific dataset. In

this paper, we first consider all the noun phrases
in the given text as candidate mentions. With-
out gold standard mention boundaries, we use a
well-known preprocessing tool from Stanford’s NLP
group1 to extract noun phrases. After obtaining all
the extracted noun phrases, we also use a rule-based
method to remove some erroneous candidates based
on previous studies (e.g. Lee et al. (2011), Uryupina
et al. (2011)). Some examples of these erroneous
candidates include stop words (e.g. uh, hmm), web
addresses (e.g. http://www.google.com),
numbers (e.g. $9,000) and pleonastic “it” pronouns.

2.2 Pairwise Classification

For pairwise classification, traditional learning-
based methods usually adopt a classification model
such as maximum entropy models and support vec-
tor machines. Training instances (i.e. positive and
negative mention pairs) are constructed from known
coreference chains, and features are defined to rep-
resent these instances.

In this paper, we build a baseline system that uses
maximum entropy models as the classification algo-
rithm. For generation of training instances, we fol-
low the method of Bengtson and Roth (2008). For
each predicted mention m, we generate a positive
mention pair between m and its closest preceding
antecedent, and negative mention pairs by pairing m
with each of its preceding predicted mentions which
are not coreferential with m. To avoid having too
many negative instances, we impose a maximum
sentence distance between the two mentions when
constructing mention pairs. This is based on the in-
tuition that for each anaphoric mention, its preced-
ing antecedent should appear quite near it, and most
coreferential mention pairs which have a long sen-
tence distance can be resolved using string match-
ing. During the testing phase, we generate men-
tion pairs for each mention candidate with each of
its preceding mention candidates and use the learned
model to make coreference decisions for these men-
tion pairs. We also impose the sentence distance
constraint and use string matching for mention pairs
with a sentence distance exceeding the threshold.

1http://nlp.stanford.edu/software/corenlp.shtml
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2.3 Mention Clustering

After obtaining the coreferential results for all men-
tion pairs, some clustering method should be used to
generate the final output. One strategy is the single-
link method, which links all the mention pairs that
have a prediction probability higher than a threshold
value. Two other alternative methods are the best-
first clustering method and clustering with the tran-
sitivity constraint. Best-first clustering means that
for each candidate mention m, we select the best
one from all its preceding candidate mentions based
on the prediction probabilities. A threshold value
is given to filter out those mention pairs that have a
low probability to be coreferential. Transitivity con-
straint means that if a and b are coreferential and
b and c are coreferential, then a and c must also be
coreferential. Previous work has found that best-first
clustering and transitivity constraint-based cluster-
ing are better than the single-link method. Finally
we remove all the singleton mentions.

3 Markov Logic for Pairwise Coreference
Resolution

In this section, we present our method for joint
learning of pairwise classification and mention clus-
tering using Markov logic. For mention detection,
training instance generation and postprocessing, our
method follows the same procedures as described in
Section 2. In what follows, we will first describe
the basic Markov logic networks (MLN) framework,
and then introduce the first-order logic formulas we
use in our MLN including local formulas and global
formulas which perform pairwise classification and
mention clustering respectively. Through this way,
these two isolated parts are combined together, and
joint learning and inference can be performed in a
single framework. Finally we present inference and
parameter learning methods.

3.1 Markov Logic Networks

Markov logic networks combine Markov networks
with first-order logic (Richardson and Domingos,
2006; Riedel, 2008). A Markov logic network con-
sists of a set of first-order clauses (which we will re-
fer to as formulas in the rest of the paper) just like in
first-order logic. However, different from first-order
logic where a formula represents a hard constraint,

in an MLN, these constraints are softened and they
can be violated with some penalty. An MLN M
is therefore a set of weighted formulas {(ϕi, wi)}i,
where ϕi is a first order formula and wi is the penalty
(the formula’s weight). These weighted formulas
define a probability distribution over sets of ground
atoms or so-called possible worlds. Let y denote a
possible world, then we define p(y) as follows:

p(y) =
1

Z
exp

( ∑
(ϕi,wi)∈M

wi

∑
c∈C

nϕi

fϕi
c (y)

)
. (1)

Here each c is a binding of free variables in ϕi to
constants. Each fϕi

c represents a binary feature func-
tion that returns 1 if the ground formula we get by
replacing the free variables in ϕi with the constants
in c under the given possible world y is true, and 0
otherwise. nϕi

denotes the number of free variables
of a formula ϕi. Cnϕi is the set of all bindings for the
free variables in ϕi. Z is a normalization constant.
This distribution corresponds to a Markov network
where nodes represent ground atoms and factors rep-
resent ground formulas.

Each formula consists of a set of first-order predi-
cates, logical connectors and variables. Take the fol-
lowing formula as one example:

(ϕi, wi) : headMatch(a, b)∧(a ̸= b) ⇒ coref (a, b).

The formula above indicates that if two different
candidate mentions a and b have the same head
word, then they are coreferential. Here a and b are
variables which can represent any candidate men-
tion, headMatch and coref are observed predicate
and hidden predicate respectively. An observed
predicate is one whose value is known from the ob-
servations when its free variables are assigned some
constants. A hidden predicate is one whose value is
not known from the observations. From this exam-
ple, we can see that headMatch is an observed pred-
icate because we can check whether two candidate
mentions have the same head word. coref is a hid-
den predicate because this is something we would
like to predict.

3.2 Formulas

We use two kinds of formulas for pairwise classi-
fication and mention clustering, respectively. For
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describing the attributes of mi

mentionType(i,t) mi has mention type NAM(named entities), NOM(nominal) or PRO(pronouns).
entityType(i,e) mi has entity type PERSON, ORG, GPE or UN...
genderType(i,g) mi has gender type MALE, FEMALE, NEUTRAL or UN.
numberType(i,n) mi has number type SINGULAR, PLURAL or UN.
hasHead(i,h) mi has head word h, here h can represent all possible head words.
firstMention(i) mi is the first mention in its sentence.
reflexive(i) mi is reflexive.
possessive(i) mi is possessive.
definite(i) mi is definite noun phrase.
indefinite(i) mi is indefinite noun phrase.
demonstrative(i) mi is demonstrative.
describing the attributes of relations between mj and mi

mentionDistance(j,i,m) Distance between mj and mi in mentions.
sentenceDistance(j,i,s) Distance between mj and mi in sentences.
bothMatch(j,i,b) Gender and number of both mj and mi match: AGREE YES, AGREE NO

and AGREE UN).
closestMatch(j,i,c) mj is the first agreement in number and gender when looking backward

from mi: CAGREE YES, CAGREE NO and CAGREE UN.
exactStrMatch(j,i) Exact strings match between mj and mi.
pronounStrMatch(j,i) Both are pronouns and their strings match.
nopronounStrMatch(j,i) Both are not pronouns and their strings match.
properStrMatch(j,i) Both are proper names and their strings match.
headMatch(j,i) Head word strings match between mj and mi.
subStrMatch(j,i) Sub-word strings match between mj and mi.
animacyMatch(j,i) Animacy types match between mj and mi.
nested(j,i) mj/i is included in mi/j .
c command(j,i) mj/i C-Commands mi/j .
sameSpeaker(j,i) mj and mi have the same speaker.
entityTypeMatch(j,i) Entity types match between mj and mi.
alias(j,i) mj/i is an alias of mi/j .
srlMatch(j,i) mj and mi have the same semantic role.
verbMatch(j,i) mj and mi have semantic role for the same verb.

Table 1: Observed predicates.

pairwise classification, because the decisions are lo-
cal, we use a set of local formulas. For mention
clustering, we use global formulas to implement
best-first clustering or transitivity constraint. We
naturally combine pairwise classification with men-
tion clustering via local and global formulas in the
Markov logic framework, which is the essence of
“joint learning” in our work.

3.2.1 Local Formulas

A local formula relates any observed predicates to
exactly one hidden predicate. For our problem, we
define a list of observed predicates to describe the
properties of individual candidate mentions and the
relations between two candidate mentions, shown in
Table 1. For our problem, we have only one hidden
predicate, i.e. coref. Most of our local formulas are

from existing work (e.g. Soon et al. (2001), Ng and
Cardie (2002), Sapena et al. (2011)). They are listed
in Table 2, where the symbol “+” indicates that for
every value of the variable preceding “+” there is a
separate weight for the corresponding formula.

3.2.2 Global Formulas

Global formulas are designed to add global con-
straints for hidden predicates. Since in our problem
there is only one hidden predicate, i.e. coref, our
global formulas incorporate correlations among dif-
ferent ground atoms of the coref predicates. Next we
will show the best-first and transitivity global con-
straints. Note that we treat them as hard constraints
so we do not set any weights for these global formu-
las.
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Lexical Features
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ exactStrMatch(j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ pronounStrMatch (j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ properStrMatch(j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ nopronounStrMatch(j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ headMatch(j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ subStrMatch(j,i) ∧ j ̸= i ⇒ coref(j,i)
hasHead(j,h1+) ∧ hasHead(i,h2+) ∧ j ̸= i ⇒ coref(j,i)
Grammatical Features
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ genderType(j,g1+) ∧ genderType(i,g2+) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ numberType(j,n1+) ∧ numberType(i,n2+) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ bothMatch(j,i,b+) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ closestMatch(j,i,c+) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ animacyMatch(j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ nested(j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ c command(j,i) ∧ j ̸= i ⇒ coref(j,i)
(mentionType(j,t1+) ∨ mentionType(i,t2+)) ∧ j ̸= i ⇒ coref(j,i)
(reflexive(j) ∨ reflexive(i)) ∧ j ̸= i ⇒ coref(j,i)
(possessive(j) ∨ possessive(i)) ∧ j ̸= i ⇒ coref(j,i)
(definite(j) ∨ definite(i)) ∧ j ̸= i ⇒ coref(j,i)
(indefinite(j) ∨ indefinite(i)) ∧ j ̸= i ⇒ coref(j,i)
(demonstrative(j) ∨ demonstrative(i)) ∧ j ̸= i ⇒ coref(j,i)
Distance and position Features
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ sentenceDistance(j,i,s+) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ mentionDistance (j,i,m+) ∧ j ̸= i ⇒ coref(j,i)
(firstMention(j) ∨ firstMention(i)) ∧ j ̸= i ⇒ coref(j,i)
Semantic Features
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ alias(j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ sameSpeaker(j,i) ∧ j̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ entityTypeMatch(j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ srlMatch(j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ verbMatch(j,i) ∧ j ̸= i ⇒ coref(j,i)
(entityType(j,e1+) ∨ entityType(i,e2+)) ∧ j ̸= i ⇒ coref(j,i)

Table 2: Local Formulas.

Best-First constraint:

coref(j, i) ⇒ ¬coref(k, i) ∀j, k < i(k ̸= j) (2)

Here we assume that coref(j,i) returns true if can-
didate mentions j and i are coreferential and false
otherwise. Therefore for each candidate mention i,
we should only select at most one candidate mention
j to return true for the predicate coref(j,i) from all its
preceding candidate mentions.

Transitivity constraint:

coref(j, k)∧coref(k, i)∧j < k < i ⇒ coref(j, i) (3)

coref(j, k)∧coref(j, i)∧j < k < i ⇒ coref(k, i) (4)

coref(j, i)∧coref(k, i)∧j < k < i ⇒ coref(j, k) (5)

With the transitivity constraint, it means for given
mentions j, k and i, if any two pairs of them are
coreferential, then the third pair of them should be
also coreferential.

We use best-first clustering and transitivity con-
straint in our joint learning model respectively. De-
tailed comparisons between them will be shown in
Section 4.

3.3 Inference
We use MAP inference which is implemented by In-
teger Linear Programming (ILP). Its objective is to
maximize a posteriori probability as follows. Here
we use x to represent all the observed ground atoms
and y to represent the hidden ground atoms. For-
mally, we have

ŷ = arg max
y

p(y|x) ≃ arg max
y

s(y, x),

where

s(y, x) =
∑

(ϕi,wi)∈M

wi

∑
c∈C

nϕi

fϕi
c (y, x). (6)

Each hidden ground atom can only takes a value of
either 0 or 1. And global formulas should be satis-
fied as hard constraints when inferring the best ŷ. So
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the problem can be easily solved using ILP. Detailed
introduction about transforming ground Markov net-
works in Markov logic into an ILP problem can be
found in (Riedel, 2008).

3.4 Parameter Learning
For parameter learning, we employ the online
learner MIRA (Crammer and Singer, 2003), which
establishes a large margin between the score of the
gold solution and all wrong solutions to learn the
weights. This is achieved by solving the quadratic
program as follows

min ∥ wt −wt−1 ∥ . (7)

s.t. s(yi, xi)− s(y′, xi) ≥ L(yi, y
′)

∀y′ ̸= yi, (yi, xi) ∈ D

Here D = {(yi, xi)}N
i=1 represents N training in-

stances (each instance represents one single docu-
ment in the dataset) and t represents the number of
iterations. In our problem, we adopt 1-best MIRA,
which means that in each iteration we try to find wt

which can guarantee the difference between the right
solution yi and the best solution y′ (i.e. the one with
the highest score s(y′, xi), equivalent to ŷ in Section
3.3)) is at least as big as the loss L(yi, y

′), while
changing wt−1 as little as possible. The number of
false ground atoms of coref predicate is selected as
loss function in our experiments. Hard global con-
straints (i.e. best-first clustering or transitivity con-
straint) must be satisfied when inferring the best y′

in each iteration, which can make learned weights
more effective.

4 Experiments

In this section, we will first describe the dataset and
evaluation metrics we use. We will then present the
effect of our joint learning method, and finally dis-
cuss the comparison with the state of the art.

4.1 Data Set
We use the dataset from the CoNLL-2011 shared
task, “Modeling Unrestricted Coreference in
OntoNotes” (Pradhan et al., 2011)2. It uses the En-
glish portion of the OntoNotes v4.0 corpus. There
are three important differences between OntoNotes

2http://conll.cemantix.org/2011/

and another well-known coreference dataset from
ACE. First, OntoNotes does not label any singleton
entity cluster, which has only one reference in the
text. Second, only identity coreference is tagged in
OntoNotes, but not appositives or predicate nomi-
natives. Third, ACE only considers mentions which
belong to ACE entity types, whereas OntoNotes
considers more entity types. The shared task is to
automatically identify both entity coreference and
event coreference, although we only focus on entity
coreference in this paper. We don’t assume that
gold standard mention boundaries are given. So we
develop a heuristic method for mention detection.
See details in Section 2.1.

The training set consists of 1674 documents from
newswire, magazine articles, broadcast news, broad-
cast conversations and webpages, and the develop-
ment set consists of 202 documents from the same
source. For training set, there are 101264 mentions
from 26612 entities. And for development set, there
are 14291 mentions from 3752 entities (Pradhan et
al., 2011).

4.2 Evaluation Metrics

We use the same evaluation metrics as used in
CoNLL-2011. Specifically, for mention detection,
we use precision, recall and the F-measure. A men-
tion is considered to be correct only if it matches
the exact same span of characters in the annotation
key. For coreference resolution, MUC (Vilain et al.,
1995), B-CUBED (Bagga and Baldwin, 1998) and
CEAF-E (Luo, 2005) are used for evaluation. The
unweighted average F score of them is used to com-
pare different systems.

4.3 The Effect of Joint Learning

To assess the performance of our method, we set up
several variations of our system to compare with the
joint learning system. The MLN-Local system uses
only the local formulas described in Table 2 with-
out any global constraints under the MLN frame-
work. By default, the MLN-Local system uses the
single-link method to generate clustering results.
The MLN-Local+BF system replaces the single-link
method with best-first clustering to infer mention
clustering results after learning the weights for all
the local formulas. The MLN-Local+Trans sys-
tem replaces the best-first clustering with transitivity
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System Mention Detection MUC B-cube CEAF Avg
R P F R P F R P F R P F F

MLN-Local 62.52 74.75 68.09 56.07 65.55 60.44 65.67 72.95 69.12 45.55 37.19 40.95 56.84
MLN-Local+BF 65.74 73.2 69.27 56.79 64.08 60.22 65.71 74.18 69.69 47.29 40.53 43.65 57.85

MLN-Local+Trans 68.49 70.32 69.40 57.16 60.98 59.01 66.97 72.90 69.81 46.96 43.34 45.08 57.97
MLN-Joint(BF) 64.36 75.25 69.38 55.47 66.95 60.67 64.14 77.75 70.29 50.47 39.85 44.53 58.50

MLN-Joint(Trans) 64.46 75.37 69.49 55.48 67.15 60.76 64.00 78.11 70.36 50.63 39.84 44.60 58.57

Table 3: Comparison between different MLN-based systems, using 10-fold cross validation on the training dataset.

constraint. The MLN-Joint system is a joint model
for both pairwise classification and mention cluster-
ing. It can combine either best-first clustering or en-
forcing transitivity constraint with pairwise classifi-
cation, and we denote these two variants of MLN-
Joint as MLN-Joint(BF) and MLN-Joint(Trans) re-
spectively.

To compare the performance of the various sys-
tems above, we use 10-fold cross validation on
the training dataset. We empirically find that our
method has a fast convergence rate, to learn the
MLN model, we set the number of iterations to be
10.

The performance of these compared systems is
shown in Table 3. To provide some context for
the performance of this task, we report the median
average F-score of the official results of CoNLL-
2011, which is 50.12 (Pradhan et al., 2011). We can
see that MLN-Local achieves an average F-score of
56.84, which is well above the median score. When
adding best-first or transitivity constraint which
is independent of pairwise classification, MLN-
Local+BF and MLN-Local+Trans achieve better re-
sults of 57.85 and 57.97. Most of all, we can see
that the joint learning model (MLN-Joint(BF) or
MLN-Joint(Trans)) significantly outperforms inde-
pendent learning model (MLN-Local+BF or MLN-
Local+Trans) no matter whether best-first clustering
or transitivity constraint is used (based on a paired 2-
tailed t-test with p < 0.05) with the score of 58.50
or 58.57, which shows the effectiveness of our pro-
posed joint learning method.

Best-first clustering and transitivity constraint
are very useful in Markov logic framework, and
both MLN-Local and MLN-Joint benefit from them.
For MLN-Joint, these two clustering methods re-
sult in similar performance. But actually, transi-

tivity is harder than best-first, because it signifi-
cantly increases the number of formulas for con-
straints and slows down the learning process. In
our experiments, we find that MLN-Joint(Trans)3 is
much slower than MLN-Joint(BF). Overall, MLN-
Joint(BF) has a good trade-off between effectiveness
and efficiency.

4.4 Comparison with the State of the Art

In order to compare our method with the state-of-
the-art systems, we consider the following systems.
We implemented a traditional pairwise coreference
system using Maximum Entropy as the base classi-
fier and best-first clustering to link the results. We
used the same set of local features in MLN-Joint.
We refer to this system as MaxEnt+BF. To replace
best-first clustering with transitivity constraint, we
have another system named as MaxEnt+Trans. We
also consider the best 3 systems from CoNLL-2011
shared task. Chang’s system uses ILP to perform
best-first clustering after training a pairwise corefer-
ence model. Sapena’s system uses a relaxation label-
ing method to iteratively perform function optimiza-
tion for labeling each mention’s entity after learning
the weights for features under a C4.5 learner. Lee’s
system is a purely rule-based one. They use a battery
of sieves by precision (from highest to lowest) to it-
eratively choose antecedent for each mention. They
obtained the highest score in CoNLL-2011.

Table 4 shows the comparisons of our system with
the state-of-the-art systems on the development set
of CoNLL-2011. From the results, we can see that
our joint learning systems are obviously better than

3For MLN-Joint(Trans), not all training instances can be
learnt in a reasonable amount of time, so we set up a time out
threshold of 100 seconds. If the model cannot response in 100
seconds for some training instance, we remove it from the train-
ing set.
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System Mention Detection MUC B-cube CEAF Avg
R P F R P F R P F R P F F

MLN-Joint(BF) 67.33 72.94 70.02 58.03 64.05 60.89 67.11 73.88 70.33 47.6 41.92 44.58 58.60
MLN-Joint(Trans) 67.28 72.88 69.97 58.00 64.10 60.90 67.12 74.13 70.45 47.70 41.96 44.65 58.67

MaxEnt+BF 60.54 76.64 67.64 52.20 68.52 59.26 60.85 80.15 69.18 51.6 37.05 43.13 57.19
MaxEnt+Trans 61.36 76.11 67.94 51.46 68.40 58.73 59.79 81.69 69.04 53.03 37.84 44.17 57.31
Lee’s System - - - 57.50 59.10 58.30 71.00 69.20 70.10 48.10 46.50 47.30 58.60

Sapena’s System 92.45 27.34 42.20 54.53 62.25 58.13 63.72 73.83 68.40 47.20 40.01 43.31 56.61
Chang’s System - - 64.69 - - 55.8 - - 69.29 - - 43.96 56.35

Table 4: Comparisons with state-of-the-art systems on the development dataset.

MaxEnt+BF and MaxEnt+Trans. They also out-
perform the learning-based systems of Sapena et al.
(2011) and Chang et al. (2011), and perform com-
petitively with Lee’s system (Lee et al., 2011). Note
that Lee’s system is purely rule-based, while our
methods are developed in a theoretically sound way,
i.e., Markov logic framework.

5 Related Work

Supervised noun phrase coreference resolution has
been extensively studied. Besides the mention-pair
model, two other commonly used models are the
entity-mention model (Luo et al., 2004; Yang et al.,
2008) and ranking models (Denis and Baldridge,
2008; Rahman and Ng, 2009). Interested readers
can refer to the literature review by Ng (2010).

Under the mention-pair model, Klenner (2007)
and Finkel and Manning (2008) applied Integer Lin-
ear Programming (ILP) to enforce transitivity on the
pairwise classification results. Chang et al. (2011)
used the same ILP technique to incorporate best-first
clustering and generate the mention clusters. In all
these studies, however, mention clustering is com-
bined with pairwise classification only at the infer-
ence stage but not at the learning stage.

To perform joint learning of pairwise classifi-
cation and mention clustering, in (McCallum and
Wellner, 2005), each mention pair corresponds to
a binary variable indicating whether the two men-
tions are coreferential, and the dependence between
these variables is modeled by conditional undirected
graphical models. Finley and Joachims (2005) pro-
posed a general SVM-based framework for super-
vised clustering that learns item-pair similarity mea-
sures, and applied the framework to noun phrase

coreference resolution. In our work, we take a differ-
ent approach and apply Markov logic. As we have
shown in Section 3, given the flexibility of Markov
logic, it is straightforward to perform joint learning
of pairwise classification and mention clustering.

In recent years, Markov logic has been widely
used in natural language processing problems (Poon
and Domingos, 2009; Yoshikawa et al., 2009; Che
and Liu, 2010). For coreference resolution, the most
notable one is unsupervised coreference resolution
by Poon and Domingos (2008). Poon and Domin-
gos (2008) followed the entity-mention model while
we follow the mention-pair model, which are quite
different approaches. To seek good performance in
an unsupervised way, Poon and Domingos (2008)
highly rely on two important strong indicators:
appositives and predicate nominatives. However,
OntoNotes corpus (state-of-art NLP data collection)
on coreference layer for CoNLL-2011 has excluded
these two conditions of annotations (appositives and
predicate nominatives) from their judging guide-
lines. Compared with it, our methods are more ap-
plicable for real dataset. Huang et al. (2009) used
Markov logic to predict coreference probabilities
for mention pairs followed by correlation cluster-
ing to generate the final results. Although they also
perform joint learning, at the inference stage, they
still make pairwise coreference decisions and clus-
ter mentions sequentially. Unlike their method, We
formulate the two steps into a single framework.

Besides combining pairwise classification and
mention clustering, there has also been some work
that jointly performs mention detection and coref-
erence resolution. Daumé and Marcu (2005) de-
veloped such a model based on the Learning as
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Search Optimization (LaSO) framework. Rahman
and Ng (2009) proposed to learn a cluster-ranker
for discourse-new mention detection jointly with
coreference resolution. Denis and Baldridge (2007)
adopted an Integer Linear Programming (ILP) for-
mulation for coreference resolution which models
anaphoricity and coreference as a joint task.

6 Conclusion

In this paper we present a joint learning method with
Markov logic which naturally combines pairwise
classification and mention clustering. Experimental
results show that the joint learning method signifi-
cantly outperforms baseline methods. Our method
is also better than all the learning-based systems in
CoNLL-2011 and reaches the same level of perfor-
mance with the best system.

In the future we will try to design more global
constraints and explore deeper relations between
training instances generation and mention cluster-
ing. We will also attempt to introduce more predi-
cates and transform structure learning techniques for
MLN into coreference problems.
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