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Abstract

Adjectival modification, particularly by ex-
pressions that have been treated as higher-
order modifiers in the formal semantics tradi-
tion, raises interesting challenges for semantic
composition in distributional semantic mod-
els. We contrast three types of adjectival mod-
ifiers – intersectively used color terms (as in
white towel, clearly first-order), subsectively
used color terms (white wine, which have been
modeled as both first- and higher-order), and
intensional adjectives (former bassist, clearly
higher-order) – and test the ability of different
composition strategies to model their behav-
ior. In addition to opening up a new empir-
ical domain for research on distributional se-
mantics, our observations concerning the at-
tested vectors for the different types of adjec-
tives, the nouns they modify, and the resulting
noun phrases yield insights into modification
that have been little evident in the formal se-
mantics literature to date.

1 Introduction

One of the most appealing aspects of so-called dis-
tributional semantic models (see Turney and Pan-
tel (2010) for a recent overview) is that they af-
ford some hope for a non-trivial, computationally
tractable treatment of the context dependence of lex-
ical meaning that might also approximate in inter-
esting ways the psychological representation of that
meaning (Andrews et al., 2009). However, in or-
der to have a complete theory of natural language
meaning, these models must be supplied with or
connected to a compositional semantics; otherwise,

we will have no account of the recursive potential
that natural language affords for the construction of
novel complex contents.

In the last 4-5 years, researchers have begun
to introduce compositional operations on distribu-
tional semantic representations, for instance to com-
bine verbs with their arguments or adjectives with
nouns (Erk and Padó, 2008; Mitchell and Lapata,
2010; Baroni and Zamparelli, 2010; Grefenstette
and Sadrzadeh, 2011; Socher et al., 2011)1. Al-
though the proposed operations have shown vary-
ing degrees of success in a number of tasks such as
detecting phrase similarity and paraphrasing, it re-
mains unclear to what extent they can account for
the full range of meaning composition phenomena
found in natural language. Higher-order modifica-
tion (that is, modification that cannot obviously be
modeled as property intersection, in contrast to first-
order modification, which can) presents one such
challenge, as we will detail in the next section.

The goal of this paper is twofold. First, we exam-
ine how the properties of different types of adjecti-
val modifiers, both in isolation and in combination
with nouns, are represented in distributional mod-
els. We take as a case study three groups of adjec-
tives: 1) color terms used to ascribe true color prop-
erties (referred to here as intersective color terms),
as prototypical representative of first-order modi-
fiers; 2) color terms used to ascribe properties other
than simple color (here, subsective color terms), as
representatives of expressions that could in principle

1In a complementary direction, Garrette et al. (2011) con-
nect distributional representations of lexical semantics to logic-
based compositional semantics.
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be given a well-motivated first-order or higher-order
analysis; and 3) intensional adjectives (e.g. former),
as representative of modifiers that arguably require a
higher-order analysis. Formal semantic models tend
to group the second and third groups together, de-
spite the existence of some natural language data
that questions this grouping. However, our results
show that all three types of modifiers behave differ-
ently from each other, suggesting that their semantic
treatment needs to be differentiated.

Second, we test how five different composition
functions that have been proposed in recent literature
fare in predicting the attested properties of nominals
modified by each type of adjective. The model by
Baroni and Zamparelli (2010) emerges as a suitable
model of adjectival composition, while multiplica-
tion and addition shed mixed results.

The paper is structured as follows. Section 2 pro-
vides the necessary background on the semantics of
adjectival modification. Section 3 presents the meth-
ods used in our study. Section 4 describes the char-
acteristics of the different types of adjectival modifi-
cation, and Section 5, the results of the composition
operations. The paper concludes with a general dis-
cussion of the results and prospects for future work.

2 The semantics of adjectival modification

Accounting for inference in language is an impor-
tant concern of semantic theory. Perhaps for this rea-
son, within the formal semantics tradition the most
influential classification of adjectives is based on
the inferences they license (see (Parsons, 1970) and
(Kamp, 1975) for early discussion). We very briefly
review this classification here.

First, so called intersective adjectives, such as (the
literally used) white in white dress, yield the infer-
ence that both the property contributed by the ad-
jective and that contributed by the noun hold of the
individual described; in other words, a white dress
is white and is a dress. The semantics for such mod-
ifiers is easily characterized in terms of the intersec-
tion of two first-order properties, that is, properties
that can be ascribed to individuals.

On the other extreme, intensional adjectives, such
as former or alleged in former/alleged criminal, do
not license the inference that either of the properties
holds of the individual to which the modified nom-

inal is ascribed. Indeed, such adjectives cannot be
used as predicates at all:

(1) ??The criminal was former/alleged.

The infelicity of (1) is generally attributed to the
fact that these adjectives do not describe individu-
als directly but rather effect more complex opera-
tions on the meaning of the modified noun. It is for
this reason that these adjectives can be considered
higher-order modifiers: they behave as properties of
properties. Though rather abstract, the higher-order
analysis is straightforwardly implementable in for-
mal semantic models and captures a range of lin-
guistic facts successfully.

Finally, subsective adjectives such as (the non-
literally-used) white in white wine, consitute an in-
termediate case: they license the inference that the
property denoted by the noun holds of the indi-
vidual being described, but not the property con-
tributed by the adjective. That is, white wine is
not white but rather a color that we would proba-
bly call some shade of yellow. This use of color
terms, in general, is distinguished primarily by the
fact that color serves as a proxy for another prop-
erty that is related to color (e.g. type of grape),
though the color in question may or may not match
the color identified by the adjective on the intersec-
tive use (see (Gärdenfors, 2000) and (Kennedy and
McNally, 2010) for discussion and analysis). The
effect of the adjective, rather than to identify a value
for an incidental COLOR attribute of an object, is of-
ten to characterize a subclass of the class described
by the noun (white wine is a kind of wine, brown
rice a kind of rice, etc.).

This use of color terms can be modeled by prop-
erty intersection in formal semantic models only if
the term is previously disambiguated or allowed to
depend on context for its precise denotation. How-
ever, it is easily modeled if the adjective denotes a
(higher-order) function from properties (e.g. that de-
noted by wine) to properties (that denoted by white
wine), since the output of the function denoted by
the color term can be made to depend on the input it
receives from the noun meaning. Nonetheless, there
is ample evidence in natural language that a first-
order analysis of the subsective color terms would
be preferable, as they share more features with pred-
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icative adjectives such as happy than they do with
adjectives such as former.

The trio of intersective color terms, subsective
color terms, and intensional adjectives provides fer-
tile ground for exploring the different composition
functions that have been proposed for distributional
semantic representations. Most of these functions
start from the assumption that composition takes
pairs of vectors (e.g. a verb vector and a noun vec-
tor) and returns another vector (e.g. a vector for
the verb with the noun as its complement), usually
by some version of vector addition or multiplication
(Erk and Padó, 2008; Mitchell and Lapata, 2010;
Grefenstette and Sadrzadeh, 2011). Such func-
tions, insofar as they yield representations which
strengthen distributional features shared by the com-
ponent vectors, would be expected to model inter-
sective modification.

Consider the example of white dress. We might
expect the vector for dress to include non-zero fre-
quencies for words such as wedding and funeral.
The vector for white, on the other hand, is likely
to have higher frequencies for wedding than for fu-
neral, at least in corpora obtained from the U.S. and
the U.K. Combining the two vectors with an addi-
tive or multiplicative operation should rightly yield
a vector for white dress which assigns a higher fre-
quency to wedding than to funeral.

Additive and multiplicative functions might also
be expected to handle subsective modification with
some success because these operations provide a
natural account for how polysemy is resolved in
meaning composition. Thus, the vector that results
from adding or multiplying the vector for white with
that for dress should differ in crucial features from
the one that results from combining the same vector
for white with that for wine. For example, depend-
ing on the details of the algorithm used, we should
find the frequencies of words such as snow or milky
weakened and words like straw or yellow strength-
ened in combination with wine, insofar as the former
words are less likely than the latter to occur in con-
texts where white describes wine than in those where
it describes dresses. In contrast, it is not immedi-
ately obvious how these operations would fare with
intensional adjectives such as former. In particular,
it is not clear what specific distributional features of
the adjective would capture the effect that the ad-

jective has on the meaning of the resulting modified
nominal.

Interestingly, recent approaches to the semantic
composition of adjectives with nouns such as Baroni
and Zamparelli (2010) and Guevara (2010) draw on
the classical analysis of adjectives within the Mon-
tagovian tradition of formal semantic theory (Mon-
tague, 1974), on which they are treated as higher or-
der predicates, and model adjectives as matrices of
weights that are applied to noun vectors. On such
models, the distributional properties of observed oc-
currences of adjective-noun pairs are used to induce
the effect of adjectives on nouns. Insofar as it is
grounded in the intuition that adjective meanings
should be modeled as mappings from noun mean-
ings to adjective-noun meanings, the matrix anal-
ysis might be expected to perform better than ad-
ditive or multiplicative models for adjective-noun
combinations when there is evidence that the adjec-
tive denotes only a higher-order property. There is
also no a priori reason to think that it would fare
more poorly at modeling the intersective and subsec-
tive adjectives than would additive or multiplicative
analyses, given its generality.

In this paper, we present the first studies that we
know of that explore these expectations.

3 Method

We built a semantic space and tested the composi-
tion functions as specified in what follows.

3.1 Semantic space
The semantic space we used for our experiments
consists of a matrix where each row vector repre-
sents an adjective, noun or adjective-noun phrase
(henceforth, AN). We first introduce the source cor-
pus, then the vocabulary that we represent in the
space, and finally the procedure to build the vectors
representing the vocabulary items from corpus data.

3.1.1 Source corpus
Our source corpus is the concatenation of the

ukWaC corpus2, a mid-2009 dump of the English
Wikipedia3 and the British National Corpus4. The
corpus is tokenized, POS-tagged and lemmatized

2http://wacky.sslmit.unibo.it/
3http://en.wikipedia.org
4http://www.natcorp.ox.ac.uk/
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with TreeTagger (Schmid, 1995) and contains about
2.8 billion tokens. We extracted all statistics at the
lemma level, ignoring inflectional information.

3.1.2 Vocabulary
The core vocabulary of the semantic space con-

sists of the 8K most frequent nouns and the 4K most
frequent adjectives from the corpus. By crossing the
set of 700 most frequent adjectives (reduced to 663
after removing questionable items like above, less
and very) and the 4K most frequent nouns and se-
lecting those ANs that occured at least 100 times
in the corpus, we obtained a set of 179K ANs that
we added to the semantic space, for a total of 191K
rows. These ANs were used for training the linear
models as well as for providing a basis for the anal-
ysis of the results.

3.1.3 Semantic space parameters
The dimensions (columns) of our semantic space

are the top 10K most frequent content words in the
corpus (nouns, adjectives, verbs and adverbs), ex-
cluding the 300 most frequent words of all parts of
speech.

For each word or AN, we collected raw co-
occurrence counts by recording their sentence-
internal co-occurrence with each of words in the di-
mensions. The counts were then transformed into
Local Mutual Information (LMI) scores, an associ-
ation measure that closely approximates the com-
monly used Log-Likelihood Ratio but is simpler to
compute (Evert, 2005). Specifically, given a row el-
ement r, a column element c and a counting function
C(r, c), then

LMI = C(r, c) · log
C(r, c)C(∗, ∗)
C(r, ∗)C(∗, c)

(1)

where C(r, c) is how many times r cooccurs with
c, C(r, ∗) is the total count of r, C(∗, c) is the to-
tal count of c, and C(∗, ∗) is the cumulative co-
occurrence count of any r with any c.

The dimensionality of the space was reduced us-
ing Singular Value Decomposition (SVD), as in La-
tent Semantic Analysis and related distributional
semantic methods (Landauer and Dumais, 1997;
Rapp, 2003; Schütze, 1997). Both LMI and SVD
were used for the core vocabulary, and the AN vec-
tors were computed based on the values for the

core vocabulary. All of the results discussed in the
article are based on the SVD-reduced space, be-
cause it yielded consistently better results, except for
those involving multiplicative composition, which
was carried out on the non-reduced model because
SVD reduction introduces negative values for the la-
tent dimensions used for the reduced space.

Some of the parameters of the space and com-
position functions were set based on performance
on independent word similarity and AN similarity
tasks (Rubenstein and Goodenough, 1965; Mitchell
and Lapata, 2010). In addition to LMI, we tested
the performance using log-transformed frequencies
and found very poor performance in the aforemen-
tioned tasks. The number of latent dimensions for
the SVD-reduced space was set at 300 after testing
the performance using 300, 600 and 900 latent di-
mensions.

In the discussion, we use the cosine of two vectors
as a measure of similarity. This is the most common
choice in related work, as it has shown to be robust
across different tasks and settings, though other op-
tions (in particular, measures that are not symmetric
or do not normalize) could be explored (Widdows,
2004).

3.2 Composition models
The experiments described below were carried out
using five compositional methods that have been ex-
plored in recent studies of compositionality in dis-
tributional semantic spaces (Mitchell and Lapata,
2010; Guevara, 2010; Baroni and Zamparelli, 2010).
For each function, we define p as the composition
of the adjective vector, u, and the noun vector, v,
a nomenclature that follows Mitchell and Lapata
(2010).

Additive (add) AN vectors were obtained by
summing the corresponding adjective and noun vec-
tors. We also explored the effects of the additive
model with normalized component adjective and
noun vectors (addn).

p = u + v (2)

Multiplicative (mult) AN vectors were obtained
by component-wise multiplication of the adjective
and noun vectors in the non-reduced semantic space.

p = u� v (3)
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Dilation (dl) AN vectors were obtained by calcu-
lating the dot products of u·u and u·v and stretching
v by a factor λ (in our case, 16.7) in the direction of
u (Clark et al., 2008; Mitchell and Lapata, 2010).
The effect of this operation is to “stretch” the head
vector v (noun, in our case) in the direction of the
modifying vector u (adjective).

p = (u · u)v + (λ− 1)(u · v) (4)

The factor λ was selected based on the optimal pa-
rameters presented in Mitchell and Lapata (2010).
We tested both reported values (16.7 and 2.2) and
found λ = 16.7 to perform better in terms of rank of
observed equivalent (see Section 5).

The preceding functions produce an AN vector
from the component A and N vectors. The remain-
ing two functions do not use the vector for the ad-
jective, but learn a matrix representation for it. The
composed AN vector is obtained by multiplying the
matrix by the noun vector. The general equation for
the two functions is the following, where B is a ma-
trix of weights that is multiplied by the noun vector
v to produce the AN vector p.

p = Bv (5)

In the linear map (lim) approach proposed by
Guevara (2010), one single matrix B is learnt that
represents all adjectives. An AN vector is obtained
by multiplying the weight matrix by the concate-
nation of the adjective and noun vectors, so that
each dimension of the generated AN vector is a lin-
ear combination of dimensions of the correspond-
ing adjective and noun vectors. In our implementa-
tion, B is an 300 x 300 weight matrix representing
an adjective, and v is a 300-dimension noun vec-
tor. Following Guevara (2010), we estimate the co-
efficients of the equation using (multivariate) partial
least squares regression (PLSR) as implemented in
the R pls package (Mevik and Wehrens, 2007), set-
ting the latent dimension parameter of PLSR to 300.
This value was chosen after testing values 100, 200
and 300 on the AN similarity tasks (Mitchell and
Lapata, 2010). Coefficient matrix estimation is per-
formed by feeding PLSR a set of input-output exam-
ples, where the input is given by concatenated ad-
jective and noun vectors, and the output is the vector
of the corresponding AN directly extracted from our

semantic space. The matrix is estimated using a ran-
dom sample of 2.5K adjective-noun-AN tuples.5

In the adjective-specific linear map (alm) model,
proposed by Baroni and Zamparelli (2010), a dif-
ferent matrix B is learnt for each adjective. The
weights of each of the rows of the weight matrix
are the coefficients of a linear equation predicting
the values of one of the dimensions of the normal-
ized AN vector as a linear combination of the di-
mensions of the normalized component noun. The
linear equation coefficients are estimated again us-
ing PLSR, and in the present implementation we use
ridge regression generalized cross-validation (GCV)
to automatically choose the optimal ridge parameter
for each adjective (Golub et al., 1979). This pro-
cedure drastically outperforms setting a fixed num-
ber of dimensions. The model is trained on all N-
AN vector pairs available in the semantic space for
each adjective, and range from 100 to over 1K items
across the adjectives we tested.

3.3 Datasets
We built two datasets of adjective-noun phrases for
the present research, one with color terms and one
with intensional adjectives.6

Color terms. This dataset is populated with a ran-
domly selected set of adjective-noun pairs from the
space presented above. From the 11 colors in the ba-
sic set proposed by Berlin and Kay (1969), we cover
7 (black, blue, brown, green, red, white, and yel-
low), since the remaining (grey, orange, pink, and
purple) are not in the 700 most frequent set of ad-
jectives in the corpora used. From an original set
of 412 ANs, 43 were manually removed because of
suspected parsing errors (e.g. white photograph, for
black and white photograph) or because the head
noun was semantically transparent (white variety).
The remaining 369 ANs were tagged independently
by the second and fourth authors of this paper, both
native English speaker linguists, as intersective (e.g.
white towel), subsective (e.g. white wine), or id-
iomatic, i.e. compositionally non-transparent (e.g.
black hole). They were allowed the assignment of at

52.5K ANs is the upper bound of the software package used.
6Available at http://dl.dropbox.com/u/513347/

resources/data-emnlp2012.zip. See Bruni et al. (to
appear) for an analysis of the color term dataset from a multi-
modal perspective.
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most two labels in case of polysemy, for instance for
black staff for the person vs. physical object senses
of the noun or yellow skin for the race vs. literally
painted interpretations of the AN. In this paper, only
the first label (most frequent interpretation, accord-
ing to the judges) has been used. The κ coefficient of
the annotation on the three categories (first interpre-
tation only) was 0.87 (conf. int. 0.82-0.92, according
to Fleiss et al. (1969)), observed agreement 0.96.7

There were too few instances of idioms (17) for a
quantitative analysis of the sort presented here, so
these are collapsed with the subsective class in what
follows.8 The dataset as used here consists of 239
intersective and 130 subsective ANs.

Intensional adjectives. The intensional dataset
contains all ANs in the semantic space with a pre-
selected list of 10 intensional adjectives, manually
pruned by one of the authors of the paper to elimi-
nate erroneous examples and to ensure that the ad-
jective was being intensionally used. Examples of
the ANs eliminated on these grounds include past
twelve (cp. accepted past president), former girl
(probably former girl friend or similar), false rumor
(which is a real rumor that is false, vs. e.g. false
floor, which is not a real floor), or theoretical work
(which is real work related to a theory, vs. e.g. theo-
retical speed, which is a speed that should have been
reached in theory). Other AN pairs were excluded
on the grounds that the noun was excessively vague
(e.g. past one) or because the AN formed a fixed
expression (e.g. former USSR). The final dataset
contained 1,200 ANs, distributed as follows: former
(300 examples), possible (244), future (243), poten-
tial (183), past (87), false (44), apparent (39), arti-
ficial (36), likely (18), theoretical (6).9

Table 1 contains examples of each type of AN we
are considering.

7Code for the computation of inter-annotator agreement by
Stefan Evert, available at http://www.collocations.
de/temp/kappa_example.zip.

8An alternative would have been to exclude idiomatic ANs
from the analysis.

9Alleged, one of the most prototypical intensional adjectives,
is not considered here because it was not among the 700 most
frequent adjectives in the space. We will consider it in future
work.

Intersective Subsective Intensional
white towel white wine artificial leg
black sack black athlete former bassist
green coat green politics likely suspect
red disc red ant possible delay
blue square blue state theoretical limit

Table 1: Example ANs in the datasets.

4 Observed vectors

We began by exploring the empirically observed
vectors for the adjectives (A), nouns (N), and
adjective-noun phrases (AN) in the datasets, as they
are represented in the semantic space. Note that
we are working with the AN vectors directly har-
vested from the corpora (that is, based on the co-
occurrence of, say, the phrase white towel with each
of the 10K words in the space dimensions), with-
out doing any composition. AN vectors obtained by
composition will be examined in the following sec-
tion. Though observed AN vectors should not be
regarded as a gold standard in the sense of, for in-
stance, Machine Learning approaches, because they
are typically sparse10 and thus the vectors of their
component adjective and noun will be richer, they
are still useful for exploration and as a compari-
son point for the composition operations (Baroni and
Lenci, 2010; Guevara, 2010).

Figure 1 shows the distribution of the cosines be-
tween A, N, and AN vectors with intensional adjec-
tives (I, white box), intersective uses of color terms
(IE, lighter gray box), and subsective uses of color
terms (S, darker gray box).

In general, the similarity of the A and N vectors is
quite low (cosine < 0.2, left graph of Figure 1), and
much lower than the similarities between both the
AN and A vectors and the AN and N vectors. This
is not surprising, given that adjectives and nouns de-
scribe rather different sorts of things.

We find significant differences between the three
types of adjectives in the similarity between AN and
A vectors (middle graph of Figure 1). The adjec-
tive and adjective-noun phrase vectors are nearer for

10The frequency of the adjectives in the datasets range from
3.5K to 3.7M, with a median frequency of 109,114. The nouns
range from 4.9K to 2.5M, with a median frequency of 148,459.
While the frequency of the ANs range from 100 to 18.5K, with
a median frequency of 239.
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Figure 1: Cosine distance distribution in the different types of AN. We report the cosines between the component
adjective and noun vectors (cos(A,N)), between the observed AN and adjective vectors (cos(AN,A)), and between the
observed AN and noun vectors (cos(AN,N)). Each chart contains three boxplots with the distribution of the cosine
scores (y-axis) for the intensional (I), intersective (IE), and subsective (S) types of ANs. The boxplots represent the
value distribution of the cosine between two vectors. The horizontal lines in the rectangles represent the first quartile,
median, and third quartile. Larger rectangles correspond to a more spread distribution, and their (a)symmetry mirrors
the (a)symmetry of the distribution. The lines above and below the rectangle stretch to the minimum and maximum
values, at most 1.5 times the length of the rectangle. Values outside this range (outliers) are represented as points.

intersective uses than for subsective uses of color
terms, a pattern that parallels the difference in the
distance between component A and N vectors. Since
intersective uses correspond to the prototypical use
of color terms (a white dress is the color white, while
white wine is not), the greater similarity for the in-
tersective cases is unsurprising – it suggests that in
the case of subsective adjectival modifiers, the noun
“pulls” the AN further away from the adjective than
happens with the cases of intersective modification.
This is compatible with the intuition (manifest in the
formal semantics tradition in the treatment of sub-
sective adjectives as higher-order rather than first-
order, intersective modifiers) that the adjective’s ef-
fect on the AN in cases of subsective modification
depends heavily on the interpretation of the noun
with which the adjective combines, whereas that is
less the case when the adjective is used intersec-
tively.

As for intensional adjectives, the middle graph
shows that their AN vectors are quite distant from
the corresponding A vectors, in sharp contrast to
what we find with both intersective and subsective

color terms. We hypothesize that the results for the
intensional adjectives are due to the fact that they
cannot plausibly be modeled as first order attributes
(i.e. being potential or apparent is not a property
in the same sense that being white or yellow is) and
thus typically do not restrict the nominal description
per se, but rather provide information about whether
or when the nominal description applies. The re-
sult is that intensional adjectives should be even
weaker than subsectively used adjectives, in com-
parison with the nouns with which they combine, in
their ability to “pull” the AN vector in their direc-
tion. Note, incidentally, that an alternative expla-
nation, namely that the effect mentioned could be
due to the fact that most nouns in the intensional
dataset are abstract and that adjectives modifying
abstract nouns might tend to be further away from
their nouns altogether, is ruled out by the compari-
son between the A and N vectors: the A-N cosines
of the intensional and intersective ANs are similar.
We thus conclude that here we see an effect of the
type of modification involved.

An examination of the average distances among
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the nearest neighbors of the intensional and of the
color adjectives in the distributional space supports
our hypothesized account of their contrasting be-
haviors. We predict that the nearest neighbors are
more dispersed for adjectives that cannot be mod-
eled as first-order properties (i.e., intensional adjec-
tives), than for those that can (here, the color terms).
We find that the average cosine distance among the
nearest ten neighbors of the intensional adjectives is
0.74 with a standard deviation of 0.13, which is sig-
nificantly lower (t-test, p<0.001) than the average
similarity among the nearest neighbors of the color
adjectives, 0.96 with astandard deviation of 0.04.

Finally, with respect to the distances between the
adjective-noun and head noun vectors (right graph
of Figure 1), there is no significant difference for the
intersective vs. subsective color terms. This can be
explained by the fact that both kinds of modifiers
are subsective, that is, the fact that a white dress is a
dress and that white wine is wine.

In contrast, intensional ANs are closer to their
component Ns than are color ANs (the difference
is qualitatively quite small, but significant even for
the intersective vs. intensional ANs according to a
t-test, p-value = 0.015). This effect, the inverse of
what we find with the AN-A vectors, can similarly
be explained by the fact that intensional adjectives
do not restrict the descriptive content of the noun
they modify, in contrast to both the intersective and
subsective color ANs. Restriction of the nominal
description may lead to significantly restricted dis-
tributions (e.g. the phrase red button may appear
in distinctively different contexts than does button;
similarly for green politics and politics), while we
do not expect the contexts in which former bassist
and bassist appear to diverge in a qualitatively dif-
ferent way because the basic nominal descriptions
are identical, though further research will be neces-
sary to confirm these explanations.

Finally, note that, contrary to predictions from
some approaches in formal semantics, subsective
color ANs and intensional ANs do not pattern to-
gether: subsective ANs are closer to their compo-
nent As, and intensional ANs closer to their compo-
nent Ns. This unexpected behavior underscores the
fact highlighted in the previous paragraph: that the
distributional properties of modified expressions are
more sensitive to whether the modification restricts

the nominal description than to whether the modifier
is intersective in the strictest sense of term.

We now discuss the extent to which the different
composition functions account for these patterns.

5 Composed vectors

Since intersective modification is the point of com-
parison for both subsective and intensional modifi-
cation, we first discuss the composed vectors for the
intersective vs. subsective uses of color terms, and
then turn to intersective vs. intensional modification.

5.1 Intersective and subsective modification
with color terms

To adequately model the differences between inter-
sective and subsective modification observed in the
previous section, a successful composition function
should yield a significantly smaller distance between
the adjective and AN vectors for intersectively used
adjectives, whereas it should yield no significant dif-
ference for the distances between the noun and AN
vectors.

Table 2 provides a summary of the results with
the observed data (obs) and the composition func-
tions discussed in Section 3.2. The median rank of
observed equivalent (ROE) is provided as a general
measure of the quality of the composition function.
It is computed by finding the cosine between the
composed AN vectors and all rows in the semantic
space and then determining the rank in which the ob-
served ANs are found.11 The remaining columns re-
port the differences in standardized (z-score) cosines
between the vector built with each of the composi-
tion functions and the observed AN, A, and N vec-
tors. A positive value means that the cosines for
intersective uses are higher, while a negative value
means that the cosines for subsective uses are higher.
The first row (obs) contains a numerical summary
of the tendencies for observed ANs explained in the
previous section. This is the behavior that we expect
to model.

Two composition functions come close to mod-
eling the observed behavior: alm and mult, though
alm is better in terms of ROE, consistent with the

11The ROE is provided as a general guide; however, recall
that the ROE was taken into account to tune the λ parameter in
the dilation model, and that the ANs of the color dataset were
included when training the matrices for the alm model.
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model ROE ∆:AN ∆:A ∆:N
obs - - .54 ∗∗∗ .10
add 286 .40 ∗∗∗ .14 .15
addn 11 .40 ∗∗∗ .65 ∗∗∗ .65 ∗∗∗

mult 111 .40 ∗∗∗ .74 ∗∗∗ .29 ∗

dl 298 .63 ∗∗∗ .85 ∗∗∗ -.66 ∗∗∗

lim 1,940 .46 ∗∗∗ .20 .38 ∗∗

alm 1 .16 .52 ∗∗∗ .27 ∗

Table 2: Intersective vs. subsective uses of color terms.
The first column reports the rank of the observed equiva-
lent (ROE), the rest report the differences (∆) betwen the
intersective and subsective uses of color terms when com-
paring the composed AN with the observed vectors for:
AN, adjective (A), noun (N). See text for details. Signifi-
cances according to a t-test: *** for p< 0.001, **< 0.01,
* < 0.05.

results reported in Baroni and Zamparelli (2010).
In both cases, we find that these functions yield
higher similarities for AN-A for the intersective than
for the subsective uses of color terms, and a very
slight (though still mildly significant) difference for
the distance to the head noun. The addn function
performs very good in terms of ROE (median 11).
This suggests that, for adjectival modification, pro-
viding a vector that is in the middle of the two
component vectors (which is what normalized ad-
dition does) is a reasonable approximation of the
observed vectors. However, precisely because the
resulting vector is in the middle of the two com-
ponent vectors, this function cannot account for the
asymmetries in the distances found in the observed
data. The non-normalized version also cannot ac-
count for these effects because the adjective vec-
tor, being much longer (as color terms are very fre-
quent), totally dominates the AN, which results in
no difference across uses when comparing to the ad-
jective or to the noun.

The dilation model shows a strange pattern, as it
yields a strongly significant negative difference in
the AN-N distance. The lim function exhibits the op-
posite pattern as predicted, yielding no difference for
the AN-A similarities and a difference for the AN-
N similarities. A possible explanation for the AN-
A results is that lim learns from such a broad range
of AN pairs that the impact of the distance between
intersective vs. subsective uses of color terms from
their component adjectives is dampened. Moreover,

lim is by far the worst function in terms of ROE.
All composition functions except for alm find in-

tersective uses easier to model. This is shown in the
positive values in column ∆:AN, which mean that
the similarity between observed and composed AN
vectors is greater for intersective than for subsective
ANs. This is consistent with expectations. The sub-
sective uses are specific to the nouns with which the
color terms combine, and the exact interpretation of
the adjective varies across those nouns. In contrast,
the interpretation associated with intersective use is
consistent across a larger variety of nouns, and in
that sense should be predominantly reflected in the
adjective’s vector. The exception in this respect is
the alm function, since the weights for each adjec-
tive matrix are estimated in relation to the noun vec-
tors with which the adjective combines, on the one
hand, and the related observed AN vectors, on the
other; thus, the basic lexical representation of the
adjective is inherently reflective of the distributions
of the ANs in which it appears in a way that is not
the case for the adjective representations used in the
other composition models. And indeed, alm is the
only function that shows no difference in difficulty
(distance) between the predicted and observed AN
vectors for intersective vs. subsective ANs.

Both mult and alm seem to account for the ob-
served patterns in color terms. However, an exam-
ination of the nearest neighbors of the composed
ANs suggest that alm captures the semantics of ad-
jective composition in this case to a larger extent
than mult. For instance, the NN for blue square (in-
tersective) are the following according to mul: blue,
red, official colour, traditional colour, blue num-
ber, yellow; while alm yields the following: blue
square, red square, blue circle, blue triangle, blue
pattern, yellow circle. Similarly, for green poli-
tics (subsective) mul yields: pleasant land, green
business, green politics, green issue, green strategy,
green product, while alm yields green politics, green
movement, political agenda, environmental move-
ment, progressive government, political initiative.

5.2 Intensional modification

Table 3 contains the results of the composition func-
tions comparing the behavior of intersective color
ANs and intensional ANs. The tendencies in the
ROE are as in Table 2, so we will not comment on
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model ROE ∆:AN ∆:A ∆:N
obs - - 1.39 ∗∗∗ -.27 ∗∗∗

add 198 .66 ∗∗∗ .71 ∗∗∗ -.81 ∗∗∗

addn 40 .93 ∗∗∗ .20 ∗ .20 ∗

mult 110 .58 ∗∗∗ 1.09 ∗∗∗ -.25 ∗∗∗

dl 354 .97 ∗∗∗ -.27 ∗∗ .47 ∗∗∗

lim 7,943 .27 ∗∗∗ .65 ∗∗∗ -.47 ∗∗∗

alm 1 .81 ∗∗∗ 1.43 ∗∗∗ -.59 ∗∗∗

Table 3: Intersective vs. intensional ANs. Information as
in Table 2.

them further (note the very poor performance of lim,
though). As noted above, we expect more difficulty
in modeling intensional modification vs. other kinds
of modification, and this is verified in the results
(cf. the positive values in second column). The dif-
ference with the results in the previous subsection
is that in this case the alm function does present a
higher difficulty in modeling intensional ANs, un-
like with the color terms. This points to a qualitative
difference between subsective and intensional adjec-
tives that could be evidence for a first-order analysis
of subsective color terms.

A good composition function should provide a
large positive difference when comparing the AN
to the A, and a small negative difference (because
the effect is very small in the observed data) when
comparing the AN to the N. The functions that best
match the observed data are again alm and mult.
Add and lim show the predicted pattern, but to a
much lesser degree (cf. smaller differences in col-
umn ∆:A). Dl yields the exact opposite effect and
addn, though good in terms of ROE, is subject to
the problems discussed in the previous section.

Again, alm seems to be capturing relevant seman-
tic aspects of composition with intensional adjec-
tives. For instance, the nearest neighbors of artificial
leg according to alm are artificial leg, artificial limb,
artificial joint, artificial hip, scar, small wound.

6 Discussion and conclusions

The present research provides some evidence for
treating adjectives as matrices or functions, rather
than vectors, although simple operations on vectors
such as addition (for its excellent approximation to
observed vectors) and multiplication (for its ability
to reproduce the observed trends in the data) still ac-

count for some aspects of adjectival modification.
The dilation model, in contrast, is not suitable for
adjectival modification.

Our results also show that alm performs better
than lim, but it is worth observing that it does so
at the expense of modeling each adjective as a com-
pletely different function. We consider lim very at-
tractive in principle because it generalizes across ad-
jectives and is thus more parsimonious. Part of the
poor results on lim were due to limitations of our
implementation, as we trained the matrices on only
2.5K ANs, while our semantic space contains more
than 170K ANs. However, the linguistic literature
and the present results suggest that it might be use-
ful to try a compromise between alm and lim, train-
ing one matrix for each subclass of adjectives under
analysis.

Beyond the new data it offers regarding the com-
parative ability of the different composition func-
tions to account for different kinds of adjectival
modification, the study presented here underscores
the complexity of modification as a semantic phe-
nomenon. The role of adjectival modifiers as restric-
tors of descriptive content is reflected differently in
distributional data than is their role in providing in-
formation about whether or when a description ap-
plies to some individual. Formal semantic models,
thanks to their abstractness, are able to handle these
two roles with little difficulty, but also with limited
insight. Distributional models, in contrast, offer the
promise of greater insight into each of these roles,
but face serious challenges in handling both of them
in a unified manner.
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