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Abstract

Existing vector space models typically map
synonyms and antonyms to similar word vec-
tors, and thus fail to represent antonymy. We
introduce a new vector space representation
where antonyms lie on opposite sides of a
sphere: in the word vector space, synonyms
have cosine similarities close to one, while
antonyms are close to minus one.

We derive this representation with the aid of a
thesaurus and latent semantic analysis (LSA).
Each entry in the thesaurus — a word sense
along with its synonyms and antonyms — is
treated as a “document,” and the resulting doc-
ument collection is subjected to LSA. The key
contribution of this work is to show how to as-
sign signs to the entries in the co-occurrence
matrix on which LSA operates, so as to induce
a subspace with the desired property.

We evaluate this procedure with the Grad-
uate Record Examination questions of (Mo-
hammed et al., 2008) and find that the method
improves on the results of that study. Further
improvements result from refining the sub-
space representation with discriminative train-
ing, and augmenting the training data with
general newspaper text. Altogether, we im-
prove on the best previous results by 11 points
absolute in F measure.

1 Introduction

Vector space representations have proven useful
across a wide variety of text processing applications
ranging from document clustering to search rele-
vance measurement. In these applications, text is
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represented as a vector in a multi-dimensional con-
tinuous space, and a similarity metric such as co-
sine similarity can be used to measure the related-
ness of different items. Vector space representations
have been used both at the document and word lev-
els. At the document level, they are effective for
applications including information retrieval (Salton
and McGill, 1983; Deerwester et al., 1990), docu-
ment clustering (Deerwester et al., 1990; Xu et al.,
2003), search relevance measurement (Baeza-Yates
and Ribiero-Neto, 1999) and cross-lingual docu-
ment retrieval (Platt et al., 2010). At the word level,
vector representations have been used to measure
word similarity (Deerwester et al., 1990; Turney and
Littman, 2005; Turney, 2006; Turney, 2001; Lin,
1998; Agirre et al., 2009; Reisinger and Mooney,
2010) and for language modeling (Bellegarda, 2000;
Coccaro and Jurafsky, 1998). While quite success-
ful, these applications have typically been consistent
with a very general notion of similarity in which
basic association is measured, and finer shades of
meaning need not be distinguished. For example,
latent semantic analysis might assign a high degree
of similarity to opposites as well as synonyms (Lan-
dauer and Laham, 1998; Landauer, 2002).

Independent of vector-space representations, a
number of authors have focused on identifying dif-
ferent kinds of relatedness. At the simplest level,
we may wish to distinguish between synonyms and
antonyms, which can be further differentiated. For
example, in synonymy, we may wish to distinguish
hyponyms and hypernyms. Moreover, Cruse (1986)
notes that numerous kinds of antonymy are possible,
for example antipodal pairs like “top-bottom” or
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gradable opposites like “light-heavy.” Work in this
area includes (Turney, 2001; Lin et al., 2003; Tur-
ney and Littman, 2005; Turney, 2006; Curran and
Moens, 2002; van der Plas and Tiedemann, 2006;
Mohammed et al., 2008; Mohammed et al., 2011).
Despite the existence of a large amount of related
work in the literature, distinguishing synonyms and
antonyms is still considered as a difficult open prob-
lem in general (Poon and Domingos, 2009).

In this paper, we fuse these two strands of re-
search in an attempt to develop a vector space rep-
resentation in which the synonymy and antonymy
are naturally differentiated. We follow Schwab et
al. (2002) in requiring a representation in which
two lexical items in an antonymy relation should lie
at opposite ends of an axis. However, in contrast
to the logical axes used previously, we desire that
antonyms should lie at the opposite ends of a sphere
lying in a continuous and automatically induced vec-
tor space. To generate this vector space, we present
a novel method for assigning both negative and pos-
itive values to the TF-IDF weights used in latent se-
mantic analysis.

To determine these signed values, we exploit the
information present in a thesaurus. The result is a
vector space representation in which synonyms clus-
ter together, and the opposites of a word tend to clus-
ter together at the opposite end of a sphere.

This representation provides several advantages
over the raw thesaurus. First, by finding the items
most and least similar to a word, we are able to dis-
cover new synonyms and antonyms. Second, as dis-
cussed in Section 5, the representation provides a
natural starting point for gradient-descent based op-
timization. Thirdly, as we discuss in Section 6, it is
straightforward to embed new words into the derived
subspace by using information from a large unsuper-
vised text corpus such as Wikipedia.

The remainder of this paper is organized as fol-
lows. Section 2 describes previous work. Section 3
presents the classical LSA approach and analyzes
some of its limitations. In Section 4 we present our
polarity inducing extension to LSA. Section 5 fur-
ther extends the approach by optimizing the vector
space representation with supervised discriminative
training. Section 6 describes the proposed method of
embedding new words in the thesaurus-derived sub-
space. The experimental results of Section 7 indi-
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cate that the proposed method outperforms previous
approaches on a GRE test of closest-opposites (Mo-
hammed et al., 2008). Finally, Section 8 concludes
the paper.

2 Related Work

The detection of antonymy has been studied in a
number of previous papers. Mohammed et al. (2008)
approach the problem by combining information
from a published thesaurus with corpus statistics de-
rived from the Google n-gram corpus (Brants and
Franz, 2006). Their method consists of two main
steps: first, detecting contrasting word categories
(e.g. “WORK” vs. “ACTIVITY FOR FUN”) and
then determining the degree of antonymy. Cate-
gories are defined by a thesaurus; contrasting cat-
egories are found by using affix rules (e.g., un- &
dis-) and WordNet antonymy links. Words belong-
ing to contrasting categories are treated as antonyms
and the degree of contrast is determined by distri-
butional similarity. Mohammed et al. (2008) also
provides a publicly available dataset for detection of
antonymy, which we have adopted. This work has
been extended in (Mohammed et al., 2011) to in-
clude a study of antonymy based on crowd-sourcing
experiments.

Turney (2008) proposes a unified approach to
handling analogies, synonyms, antonyms and asso-
ciations by transforming the last three cases into
cases of analogy. A supervised learning method
is then used to solve the resulting analogical prob-
lems. This is evaluated on a set of 136 ESL ques-
tions. Lin et al. (2003) builds on (Lin, 1998) and
identifies antonyms as semantically related words
which also happen to be found together in a database
in pre-identified phrases indicating opposition. Lin
et al. (2003) further note that whereas synonyms
will tend to translate to the same word in another
language, antonyms will not. This observation is
used to select antonyms from amongst distribution-
ally similar words.  Antonymy is used in (de Si-
mone and Kazakov, 2005) for document clustering
and (Harabagiu et al., 2006) to find contradiction.

The automatic detection of synonyms has been
more extensively studied. Lin (1998) presents
a thorough comparison of word-similarity metrics
based on distributional similarity, where this is de-



termined from co-occurrence statistics in depen-
dency triples extracted by parsing a large dataset.
Related studies are described in (Curran and Moens,
2002; van der Plas and Bouma, 2005). Later, van
der Plas and Tiedemann (2006) extend the use of
multilingual data present in Lin et al. (2003) by mea-
suring distributional similarity based on the contexts
that a word occurs in once translated into a new lan-
guage. This is used to improve the precision/recall
characteristics on synonym pairs. Structured infor-
mation can be important in determining relatedness,
and thesauri and Wikipedia links have been studied
in (Milne and Witten, 2008; Jarmasz and Szpakow-
icz, 2003). Combinations of approaches are studied
in (Turney et al., 2003).

Vector-space models and latent semantic analysis
in particular have a long history of use in synonym
detection, which in fact was suggested in some of
the earliest LSA papers. Deerwester et al. (1990)
defines a metric for measuring word similarity based
on LSA, and it has been used in (Landauer and Du-
mais, 1997; Landauer et al., 1998) to answer word
similarity questions derived from the Test of English
as a Foreign Language (TOEFL). Turney (2001)
proposes the use of point-wise mutual information in
conjunction with LSA, and again presents results on
synonym questions derived from the TOEFL. Vari-
ants of vector space models are further analyzed
in (Turney and Littman, 2005; Turney, 2006; Tur-
ney and Pantel, 2010).

3 Latent Semantic Analysis

Latent Semantic Analysis (Deerwester et al., 1990)
is a widely used method for representing words and
documents in a low dimensional vector space. The
method is based on applying singular value decom-
position (SVD) to a matrix W which indicates the
occurrence of words in documents. To perform
LSA, one proceeds as follows. The input is a col-
lection of d documents which are expressed in terms
of words from a vocabulary of size n. These docu-
ments may be actual documents such as newspaper
articles, or simply notional documents such as sen-
tences, or any other collection in which words are
grouped together. Next, a d X n document-term ma-
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trix W is formed'. At its simplest form, the ijt®
entry contains the number of times word j has oc-
curred in document ¢ — its term frequency or TF
value. More conventionally, the entry is weighted
by some notion of the importance of word j, for ex-
ample the negative logarithm of the fraction of doc-
uments that contain it, resulting in a TF-IDF weight-
ing (Salton et al., 1975). The similarity between two
documents can be computed using the cosine simi-
larity of their corresponding row vectors:

Xy
=y

Similarly, the cosine similarity of two column vec-
tors can be used to judge the similarity of the corre-

sponding words. Finally, to obtain a subspace repre-
sentation of dimension k, W is decomposed as

W ~USVT

where Uisd x k, VT isk x n,and Sisa k x k
diagonal matrix. In applications, k < n and k < d;
for example one might have a 50,000 word vocab-
ulary and 1, 000,000 documents and use a 300 di-
mensional subspace representation.

An important property of SVD is that the columns
of SV — which now represent the words — behave
similarly to the original columns of W, in the sense
that the cosine similarity between two columns in
SVT approximates the cosine similarity between the
corresponding columns in W. This follows from
the observation that WIW = V' S2V 7T and the fact
that the i5*® entry of W7 W is the dot product of
the i*® and j*® columns (words) in W. We will
use this observation subsequently in the derivation
of polarity-inducing LSA. For efficiency, we nor-
malize the columns of SV to unit length, allow-
ing the cosine similarity between two words to be
computed with a single dot-product; this also has the
property of mapping each word to a point on a multi-
dimensional sphere.

A second important property of LSA is that in the
word representations which result can by viewed as
the result of applying a projection matrix U to the
original vectors as:

Utw = sv?
I(Bellegarda, 2000) constructs the transpose of this, but we

have found it convenient in data processing for documents to
represent rows.

sim(x,y) =



In Section 5, we will view U simply as a d x k matrix
learned through gradient descent so as to optimize
an objective function.

3.1 Limitation of LSA

Word similarity as determined by LSA assigns high
values to words which tend to co-occur in doc-
uments. However, as noted by (Landauer and
Laham, 1998; Landauer, 2002), there is no no-
tion of antonymy; words with low or negative co-
sine scores are simply unrelated. In comparison,
words with high cosine similarity scores are typi-
cally semantically related, which includes both syn-
onyms and antonyms, as contrasting words often co-
occur (Murphy and Andrew, 1993; Mohammed et
al., 2008). To illustrate this, we have performed
SVD with the aid of the Encarta thesaurus developed
by Bloomsbury Publishing Plc. This thesaurus con-
tains approximately 47k word senses and a vocab-
ulary of 50k words and phrases. Each “document”
is taken to be the thesaurus entry for a word-sense,
including synonyms and antonyms. For example,
the word “admirable” induces a document consist-
ing of {admirable, estimable, commendable, vener-
able, good, splendid, worthy, marvelous, excellent,
unworthy}. Note that the last word in this set is its
antonym. Performing SVD on this set of thesaurus
derived “meaning-documents” results in a subspace
representation for each word. This form of LSA is
similar to the use of Wikipedia in (Gabrilovich and
Markovitch, 2007).

Table 1 shows some words, their original the-
saurus documents, and the most and least similar
words in the LSA subspace. Several properties are
apparent:

e The vector-space representation of words is
able to identify related words that are not ex-
plicitly present in the original thesaurus. For
example, “meritorious” for “admirable” — ar-
guably better than any of the words given in the
thesaurus itself.

e Similarity is based on co-occurrence, so the
co-occurrence of antonyms in the thesaurus-
derived documents induces their presence as
LSA-similar words.  For example, “con-
temptible” is identified as similar to “ad-
mirable.” In the case of “mourning,” opposites
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acrimony | rancor | goodwill | affection
acrimony 1 1 1 1
affection 1 1 1 1

Table 2: The W matrix for two thesaurus entries in
its original form. Rows represent documents; columns
words.

acrimony | rancor | goodwill | affection
acrimony 1 1 -1 -1
affection -1 -1 1 1

Table 3: The W matrix for two thesaurus entries in its
polarity-inducing form.

such as “joy” and “elation” actually dominate
the list of LSA-similar words.

e The LSA-least-similar words have no relation-
ship at all to the word they are least-similar to.
For example, the least-similar word to “consid-
ered” is “ready-made-meal.”

In the next section, we will present a method for
inducing polarity in LSA subspaces, where opposite
words will tend to have negative cosine similarities,
analogous to the positive similarities of synonyms.
Thus, the least-similar words to a given word will be
its opposites.

4 Polarity Inducing LSA

We modify LSA so that we may exploit a thesaurus
to embed meaningful axes in the induced subspace
representation. Words with opposite meaning will
lie at opposite positions on a sphere. Recall that the
cosine similarity between word-vectors in the orig-
inal matrix W are preserved in the subspace repre-
sentation of words. Thus, if we construct the original
matrix so that the columns representing antonyms
will tend to have negative cosine similarities while
columns representing synonyms will tend to have
positive similarities, we will achieve the desired be-
havior.

This can be achieved by negating the TF-IDF en-
tries for the antonyms of a word when constructing
W from the thesaurus, which is illustrated in Ta-
bles 2 and 3. The two rows in these tables corre-
spond to thesaurus entries for the sense-categories



Word

Thesaurus Entry

LSA Most-Similar Words

LSA Least-Similar Words

admirable | estimable, commendable, | commendable, creditable, | easy-on-the-eye, peace-
venerable, good, splen- | laudable, praiseworthy, | keeper, peace-lover,
did, worthy, marvelous, | worthy, meritorious, | conscientious-objector,
excellent, unworthy scurvy, contemptible, | uninviting, dishy, dessert,
despicable, estimable pudding, seductive
considered | careful, measured, well- | calculated, premeditated, | ready-made-meal, ready-
thought-out, painstaking, | planned, tactical, strate- | meal, disposed-to, apt-to,
rash gic, thought-through, in- | wild-animals, big-game,
tentional, fortuitous, pur- | game-birds, = game-fish,
poseful, unpremeditated rugger, rugby
mourning | grief, bereavement, sor- | sorrowfulness, anguish, | muckiness, turn-the-
row, sadness, lamenta- | exultation, rejoicing, ju- | corner, impassibility,
tion, woe, grieving, exul- | bilation, glee, heartache, | filminess, pellucidity,
tation travail, joy, elation limpidity, sheerness

Table 1: LSA on a thesaurus. Thesaurus entries include antonyms in italics.

“acrimony,” and “affection.” The thesaurus entries
induce two “documents” containing the words and
their synonyms and antonyms. The complete set of
words is acrimony, rancor, goodwill, affection. For
simplicity, we assume that all TF-IDF weights are
1. In the original LSA formulation, we have the rep-
resentation of Table 2. “Rancor” is listed as a syn-
onym of “acrimony,” which has “goodwill” and “‘af-
fection” as its antonyms. This results in the first row.
Note that the cosine similarity between every pair of
words (columns) is 1.

Table 3 shows the polarity-inducing representa-
tion. Here, the cosine similarity between synony-
mous words (columns) is 1, and the cosine similarity
between antonymous words is -1. Since LSA tends
to preserve cosine similarities between words, in the
resulting subspace we may expect to find meaning-
ful axes, where opposite senses map to opposite ex-
tremes. We refer to this as polarity-inducing LSA or
PILSA.

In Table 4, we show the PILSA-similar and
PILSA-least-similar words for the same words as in
Table 1. We see now that words which are least
similar in the sense of having the lowest cosine-
similarity are indeed opposites. In this table gen-
erally the most similar words have similarities in the
range of 0.7 to 1.0 and the least similar in the range
of -0.7 to -1.0.
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5 Discriminative Training

Although the cosine similarity of LSA-derived word
vectors are generally very effective in applications
such as judging the relevance of words or docu-
ments, or detecting antonyms as in our construction,
the process of singular value decomposition in LSA
does not explicitly try to achieve such goals. In this
section, we see that when supervised training data is
available, the projection matrix of LSA can be en-
hanced through a discriminative training technique
explicitly designed to create a representation suited
to a specific task.

Because LSA is closely related to principle com-
ponent analysis (PCA), extensions of PCA such as
canonical correlation analysis (CCA) and oriented
principle component analysis (OPCA) can leverage
the labeled data and produce the projection matrix
through general eigen-decomposition (Platt et al.,
2010). Along this line of work, Yih et al. (2011)
proposed a Siamese neural network approach called
S2Net, which tunes the projection matrix directly
through gradient descent, and has shown to outper-
form other methods in several tasks. Below we de-
scribe briefly this technique and explain how we
adopt it for the task of antonym detection.

The goal of S2Net is to learn a concept vector
representation of the original sparse term vectors.
Although such transformation can be non-linear in
general, its current design chooses the model form
to be a linear projection matrix, which is identical to



‘Word PILSA-Similar Words

PILSA-Least-Similar Words

admirable | commendable, creditable, laudable, | scurvy, contemptible, despicable,
praiseworthy, worthy, meritorious, es- | lamentable, shameful, reprehensible,
timable, deserving, tiptop, valued unworthy, disgraceful, discreditable,

undeserving

considered | calculated, premeditated, planned, tac- | fortuitous, unpremeditated, unconsid-
tical, strategic, thought-through, inten- | ered, off-your-own-bat, unintended,
tional, purposeful, intended, psycho- | undirected, objectiveless, hit-and-miss,
logical unforced, involuntary

mourning | sorrowful, doleful, sad, miserable, | smiley, happy, blissful, wooden, mirth-
wistful, pitiful, wailing, sobbing, | ful, joyful, deadpan, fulfilled, straight-
heavy-hearted, forlorn faced, content

Table 4: PILSA on a thesaurus. Thesaurus entries are as in Table 1.

that of LSA, PCA, OPCA or CCA. Given a d-by-1
input vector f, the model of S2Net is a d-by-k ma-
trix A = [a;j]qxx, which maps f to a k-by-1 output
vector g = ATf. The fact that the transformation
can be viewed as a two-layer neural network leads
to the method’s name.

What differentiates S2Net from other approaches
is its loss function and optimization process. In
the “parallel text” setting, the labeled data con-
sists of pairs of similar text objects such as doc-
uments. The objective of the training process is
to assign higher cosine similarities to these pairs
compared to others. More specifically, suppose the
training set consists of m pairs of raw input vectors
{(fm’ fth)v (fp27 fth)v T (fpmv me>}' Given a pro-
jection matrix A, the similarity score of any pair of
objects is sima (£,,,f,,) = cosine(ATE, , ATf, ).
Let Aj; = sima(fy,,fy,) — sima(fy,, ;) be the
difference of the similarity scores of (f,,,f;,) and
(fp,,fy;). The learning procedure tries to increase
A;; by using the following logistic loss:

L(Aj; A) = log(1 + exp(—yAy)),

where vy is a scaling factor that adjusts the loss func-
tion?. The loss of the whole training set is thus:

1
m(m — 1) Z

1<i,j<m, i

L(Aij; A)

Parameter learning (i.e., tuning A) can be done

2As suggested in (Yih et al., 2011), v is set to 10 in our
experiments.
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by standard gradient-based methods, such as L-
BFGS (Nocedal and Wright, 2006).

The original setting of S2Net can be directly ap-
plied to finding synonymous words, where the train-
ing data consists of pairs of vectors representing
two synonyms. It is also easy to modify the loss
function to apply it to the antonym detection prob-
lem. We first sample pairs of antonyms from the
thesaurus to create the training data. The raw input
vector f of a selected word is its corresponding col-
umn vector of the document-term matrix W (Sec-
tion 3) after inducing polarity (Section 4). When
each pair of vectors in the training data represents
two antonyms, we can redefine A;; by flipping the
sign: Ay; = sima(fy,,f,,) — sima(fp,, ), and
leave others unchanged. As the loss function encour-
ages A;; to be larger, an antonym pair will tend to
have a smaller cosine similarity than other pairs. Be-
cause S2Net uses a gradient descent technique and a
non-convex objective function, it is sensitive to ini-
tialization, and we have found that the PILSA pro-
jection matrix U (Section 3) provides an excellent
starting point. As illustrated in Section 7, learning
the word vectors with S2Net produces a significant
improvement over PILSA alone.

6 Extending PILSA to Out-of-thesaurus
Words

While PILSA is effective at representing synonym
and antonym information, in its pure form, it is lim-
ited to the vocabulary of the thesaurus. In order to
extend PILSA to operate on out-of-thesaurus words,



we employ a two-stage strategy. We first conduct
some lexical analysis and try to match an unknown
word to one or more in-thesaurus words in their lem-
matized forms. If no such match can be found,
we then attempt to find semantically related in-
thesaurus words by leveraging co-occurrence statis-
tics from general text data. These two steps are de-
scribed in detail below.

6.1 Matching via Lexical Analysis

When a target word is not included in a thesaurus, it
is quite often that some of its morphological varia-
tions are covered. For example, although the Encarta
thesaurus does not have the word “corruptibility,”
it does contain other forms like “corruptible” and
“corruption.” Replacing the out-of-thesaurus target
word with these morphological variations may alter
the part-of-speech but typically does not change the
meaning>.

Given an out-of-thesaurus target word, we first
apply a morphological analyzer for English devel-
oped by Minnen et al. (2001), which removes the
inflectional affixes and returns the lemma. If the
lemma still does not exist in the thesaurus, we then
apply Porter’s stemmer (Porter, 1980) and check
whether the target word can match any of the in-
thesaurus words in their stemmed forms. A sim-
ple rule that checks whether removing hyphens from
words can lead to a match and whether the target
word occurs as part of a compound word in the the-
saurus is applied when both morphological analysis
and stemming fail to find a match. When there are
more than one matched words, the centroid of their
PILSA vectors is used to represent the target word.
When there is only one matched word, the matched
word is treated as the target word.

6.2 Leveraging General Text Data

If no words in the thesaurus can be linked to the
target word through the simple lexical analysis pro-
cedure, we try to find matched words by creating
a context vector space model from a large docu-
ment collection, and then mapping from this space
to the PILSA space. We use contexts because of the
distributional hypothesis — words that occur in the
same contexts tend to have similar meaning (Harris,

3The rules we use based on lexical analysis are moderately
conservative to avoid mistakes like mapping hopeless to hope.
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1954). When a word is not in the thesaurus but ap-
pears in the corpus, we predict its PILSA vector rep-
resentation from the context vector space model by
using its k-nearest neighbors which are in the the-
saurus and consistent with each other.

6.2.1 Context Vector Space Model

Given a corpus of documents, we construct the
raw context vectors as follows. For each target word,
we first create a bag of words by collecting all the
terms within a window of [-10,+10] centered at each
occurrence of the target word in the corpus. The
non-identical terms form a term-vector, where each
term is weighted using its TF-IDF value. We then
perform LSA on the context-word matrix. The se-
mantic similarity/relatedness of two words can then
be determined using the cosine similarity of their
corresponding LSA word vectors. In the following
text, we refer to this LSA context vector space model
as the corpus space, in contrast to the PILSA the-
saurus space.

6.2.2 Embedding Out-of-Vocabulary Words

Given the context space model, we may use a
linear regression or a k-nearest neighbors approach
to embed out-of-thesaurus words into the thesaurus-
space representation. However, as near words in the
context space may be synonyms in addition to other
semantically related words (including antonyms),
such approaches can potentially be noisy. For ex-
ample, words like “hot” and “cold” may be close
to each other in the context space due to their sim-
ilar usage in text. An affine transform cannot “tear
space” and map them to opposite poles in the the-
saurus space.

Therefore, we propose a revised k-nearest neigh-
bors approach. Suppose we are interested in an out-
of-thesaurus word w. We first find K-nearest in-
thesaurus neighbors to w in the context space. We
then select a subset of £k members of these K words
such that the pairwise similarity of each of the k
members with every other member is positive. The
thesaurus-space centroid of these £ items is com-
puted as w’s representation. This procedure has the
property that the k£ nearby words used to form the
embedding of a non-thesaurus word are selected to
be consistent with each other. In practice, we used
K = 10 and k£ = 3, which requires only around



1000 pairwise computations even done in a brute-
force way. To provide a concrete example, if we
had the out-of-thesaurus word “sweltering” with in-
thesaurus neighbors “hot, cold, burning, scorching,
...” the procedure would return the centroid of “hot,
burning, scorching” and exclude “cold.”

7 Experimental Validation

In this section, we present our experimental results
on applying PILSA and its extensions to answering
the closest-opposite GRE questions.

7.1 Data Resources

The primary thesaurus we use is the Encarta The-
saurus developed by Bloomsbury Publishing Plc*.
Our version of this has approximately 47k word
senses and a vocabulary of 50k words, and con-
tains 125,724 pairs of antonyms. To experiment with
the effect of using a different thesaurus, we used
WordNet as an information source. Each synset in
WordNet maps to a row in the document-term ma-
trix; synonyms in a synset are weighted with posi-
tive TFIDF values, and antonyms are weighted neg-
ative TFIDF values. Entries corresponding to other
words in the vocabulary are 0. WordNet provides
significantly greater coverage with approximately
227k synsets involving multiple words, and a vo-
cabulary of about 190k words. However, it is also
much sparser, with 5.3 words per sense on average
as opposed to 10.3 in the thesaurus, and has only
62,821 pairs of antonyms. As general text data for
use in embedding out-of-vocabulary words, we used
a Nov-2010 dump of English Wikipedia, which con-
tains approximately 917M words.

7.2 Development and Test Data

For testing, we use the closest-opposite questions
from GRE tests provided by (Mohammed et al.,
2008). Each question contains a target word and
five choices, and asks which of the choice words has
the most opposite meaning to the target word. Two
datasets are made publicly available by Mohammad
et al. (2008): the development set, which consists of
162 questions, and the test set, which has 950 ques-
tions>. We considered making our own, more exten-

*http://www.bloomsbury.com/
Shttp://www.umiacs.umd.edu/~saif/WebDocs/LC-
data/{devset,testset }.txt
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Dimensions | Bloomsbury Prec. | WordNet Prec.

50 0.778 0.475
100 0.850 0.563
200 0.856 0.569
300 0.863 0.625
400 0.843 0.625
500 0.843 0.613
750 0.830 0.613
1000 0.837 0.544
2000 0.784 0.519
3000 0.778 0.494

Table 5: The performance of PILSA vs. the number of di-
mensions when applied to the closest-opposite questions
from the GRE development set. Out of the 162 ques-
tions, using the Bloomsbury thesaurus data we are able
to answer 153 of them. Using 300 dimensions gives the
best precision (132/153 = 0.863). This dimension set-
ting is also optimal when using the WordNet data, which
answers 100 questions correctly out of the 160 attempts
(100/160 = 0.625).

sive, test — for example one which would require the
use of sentence context to choose between related
yet distributionally different antonyms (e.g. “little,
small” as antonyms of “big”) but chose to stick to a
previously used benchmark. This allows the direct
comparison with previously reported methods.

Some of these questions contain very rarely used
target or choice words, which are not included in
the thesaurus vocabulary. In order to provide a fair
comparison to existing methods, we do not try to
randomly answer these questions. Instead, when the
target word is out of vocabulary, we skip the whole
question. When the target word is in vocabulary but
one or more choices are unknown words, we ignore
those unknown words and pick the word with the
lowest cosine similarity from the rest as the answer.
The results of our methods are reported in precision
(the number of questions answered correctly divided
by the number of questions attempted), recall (the
number of questions answered correctly divided by
the number of all questions) and F; (the harmonic
mean of precision and recall)®. We now turn to an
in-depth evaluation.

®Precision/recall/F; were used in (Mohammed et al., 2008)
as when their system “did not find any evidence of antonymy
between the target and any of its alternatives, then it refrained
from attempting that question.” We adopt this convention to
provide a fair comparison to their system.



Dev. Set Test Set
Prec \ Rec \ Fy Prec \ Rec \ Fy
WordNet lookup 0.40 | 0.40 | 0.40 || 0.42 | 0.41 | 0.42
WordNet signed-TFIDF w/o LSA 041 | 041 | 0.41 || 043 | 042 | 0.43
WordNet PILSA 0.63 | 0.62 | 0.62 || 0.60 | 0.60 | 0.60
Bloomsbury lookup 0.65 | 0.61 | 0.63 || 0.61 | 0.56 | 0.59
Bloomsbury signed TFIDF w/o LSA 0.68 | 0.64 | 0.66 || 0.63 | 0.57 | 0.60
Bloomsbury PILSA 0.86 | 0.81 | 0.84 || 0.81 | 0.74 | 0.77
Bloomsbury PILSA + S2Net 0.89 | 0.84 | 0.86 || 0.84 | 0.77 | 0.80
Bloomsbury PILSA + S2Net + Embedding || 0.88 | 0.87 | 0.87 || 0.81 | 0.80 | 0.81

’ (Mohammed et al., 2008)

1 0.76 ] 0.66 | 0.70 | 0.76 | 0.64 | 0.70

Table 6: The overall results. PILSA performs LSA on the signed TF-IDF vectors.

7.3 Basic PILSA

When applying PILSA, we need to determine the
number of dimensions in the projected space. Eval-
uated on the GRE development set, Table 5 shows
the precision of PILSA, using two different training
datasets, Bloomsbury and WordNet, at different di-
mensions.

The Bloomsbury-based system is able to answer
153 questions, and the best dimension setting is
300, which answers 132 questions correctly and thus
archives 0.863 in precision. In contrast, the larger
vocabulary in WordNet helps the system answer 160
questions but the quality is not as good. We find
dimensions 300 and 400 are equally good, where
both answer 100 questions correctly (0.625 in pre-
cision)’. Because a lower number of dimensions
is preferred for saving storage space and computing
time, we choose 300 as the number of dimensions in
PILSA.

We now compare the proposed methods. All re-
sults are summarized in Table 6. When evaluated on
the GRE test set, the Bloomsbury thesaurus-based
methods (Lines 4-7) attempted 865 questions. The
precision, recall and F; of the Bloomsbury-based
PILSA model (Line 6) are 0.81, 0.74 and 0.77,
which are all better than the best reported method
in (Mohammed et al., 2008)%. 1In contrast, the
WordNet-based methods (Lines 1-3) attempted 936

"Note that the number of questions attempted is not a func-
tion of the number of dimensions.

8We take a conservative approach and assume that skipped
questions are answered incorrectly. The difference is statisti-
cally significant at 99% confidence level using a binomial test.
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questions. However, consistent with what we ob-
served on the development set, the WordNet-based
model is inferior. Its precision, recall and F; on
the test set are 0.60, 0.60 and 0.60 (Line 3). Al-
though the quality of the data source plays an im-
portant role, we need to emphasize that performing
LSA using our polarity inducing construction is in
fact a critical step in enhancing the model perfor-
mance. For example, directly using the antonym sets
in the Bloomsbury thesaurus gives 0.59 in F; (Line
4), while using cosine similarity on the signed vec-
tors prior to LSA only reaches 0.60 in F; (Line 5).

7.4 Improving Precision with Discriminative
Training

Building on the success of the unsupervised PILSA
model, we refine the projection matrix. As described
in Section 5, we take the PILSA projection matrix
as the initial model in S2Net and train the model
using 20,517 pairs of antonyms sampled from the
Bloomsbury thesaurus. A separate sample of 5,000
antonym pairs is used as the validation set for hyper-
parameter tuning in regularization. Encouragingly,
we found that the already strong results of PILSA
can indeed be improved, which gives 3 more points
in both precision (0.84), recall (0.77) and F; (0.80).

7.5 Improving Recall with Unsupervised Data

We next evaluate our approach of extending the
word coverage with the help of an external text cor-
pus, as well as the lexical analysis procedure. Using
the Bloomsbury PILSA-S2Net thesaurus space and
the Wikipedia corpus space, our method increases



recall by 3 points on the test set. Compared to the in-
vocabulary only setting, it attempted 75 more ques-
tions (865 — 940) and had 33 of them correctly an-
swered.

While the accuracy on these questions is much
higher than random, the fact that it is substantially
below the precision of the original indicates some
room for improvement. We notice that the out-of-
thesaurus words are either offensive words excluded
in the thesaurus (e.g., moronic) or some very rarely
used words (e.g., froward). When the lexical analy-
sis procedure fails to match the target word to some
in-thesaurus words, the context vector embedding
approach solves the former case, but has difficulty
in handling the latter. The main reason is that such
words occur very infrequently in a general corpus,
which result in significant uncertainty in their se-
mantic vectors. Other than using a much larger
corpus, approaches that leverage character n-grams
may help. We leave this as future work.

8 Conclusion

In this paper we have tackled the problem of find-
ing a vector-space representation of words where,
by construction, synonyms and antonyms are easy
to distinguish. Specifically, we have defined a way
of assigning sign to the entries in the co-occurrence
matrix on which LSA operates, such that synonyms
will tend to have positive cosine similarity, and
antonyms will tend to have negative similarities. To
the best of our knowledge, our method of inducing
polarity to the document-term matrix before apply-
ing LSA is novel and has shown to effectively pre-
serve and generalize the synonymous/antonymous
information in the projected space. With this vector
space representation, we were able to bring to bear
the machinery of discriminative training in order to
further optimize the word representations. Finally,
by using the notion of closeness in this space, we
were able to embed new out-of-vocabulary words
into the space. On a standard test set, the proposed
methods improved the F measure by 11 points abso-
lute over previous results.
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