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Abstract

Approximate search algorithms, such as cube
pruning in syntactic machine translation, rely
on the language model to estimate probabili-
ties of sentence fragments. We contribute two
changes that trade between accuracy of these
estimates and memory, holding sentence-level
scores constant. Common practice uses lower-
order entries in an /N-gram model to score
the first few words of a fragment; this vio-
lates assumptions made by common smooth-
ing strategies, including Kneser-Ney. Instead,
we use a unigram model to score the first
word, a bigram for the second, etc. This im-
proves search at the expense of memory. Con-
versely, we show how to save memory by col-
lapsing probability and backoff into a single
value without changing sentence-level scores,
at the expense of less accurate estimates for
sentence fragments. These changes can be
stacked, achieving better estimates with un-
changed memory usage. In order to interpret
changes in search accuracy, we adjust the pop
limit so that accuracy is unchanged and re-
port the change in CPU time. In a German-
English Moses system with target-side syntax,
improved estimates yielded a 63% reduction
in CPU time; for a Hiero-style version, the
reduction is 21%. The compressed language
model uses 26% less RAM while equivalent
search quality takes 27% more CPU. Source
code is released as part of KenLM.

1 Introduction

Language model storage is typically evaluated in
terms of speed, space, and accuracy. We introduce
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a fourth dimension, rest cost quality, that captures
how well the model scores sentence fragments for
purposes of approximate search. Rest cost quality is
distinct from accuracy in the sense that the score of
a complete sentence is held constant. We first show
how to improve rest cost quality over standard prac-
tice by using additional space. Then, conversely, we
show how to compress the language model by mak-
ing a pessimistic rest cost assumption!.

Language models are designed to assign probabil-
ity to sentences. However, approximate search algo-
rithms use estimates for sentence fragments. If the
language model has order N (an N-gram model),
then the first N — 1 words of the fragment have in-
complete context and the last N — 1 words have not
been completely used as context. Our baseline is
common practice (Koehn et al., 2007; Dyer et al.,
2010; Li et al., 2009) that uses lower-order entries
from the language model for the first words in the
fragment and no rest cost adjustment for the last few
words. Formally, the baseline estimate for sentence
fragment w? is

k

N-1
H v (wlwi ™) H pN(wn|w2:le+1)
n=1 n=N
where each w,, is a word and py is an N-gram lan-
guage model.

The problem with the baseline estimate lies in
lower order entries py (w, [w} ). Commonly used
Kneser-Ney (Kneser and Ney, 1995) smoothing,

"Here, the term rest cost means an adjustment to the score of
a sentence fragment but not to whole sentences. The adjustment
may be good or bad for approximate search.
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including the modified version (Chen and Good-
man, 1998), assumes that a lower-order entry will
only be used because a longer match could not
be found®>. Formally, these entries actually eval-
uate py (wy,|w? ™!, did not find wf}). For purposes
of scoring sentence fragments, additional context is
simply indeterminate, and the assumption may not
hold.

As an example, we built 5-gram and unigram lan-
guage models with Kneser-Ney smoothing on the
same data. Sentence fragments frequently begin
with “the”. Using a lower-order entry from the 5-
gram model, log;, ps(the) = —2.49417. The uni-
gram model does not condition on backing off, as-
signing log,, p1(the) = —1.28504. Intuitively, the
5-gram model is surprised, by more than an order of
magnitude, to see “the” without matching words that
precede it.

To remedy the situation, we train [N language
models on the same data. Each model p,, is an n-
gram model (it has order n). We then use p, to
score the nth word of a sentence fragment. Thus,
a unigram model scores the first word of a sentence
fragment, a bigram model scores the second word,
and so on until either the n-gram is not present in
the model or the first N — 1 words have been scored.
Storing probabilities from these models requires one
additional value per n-gram in the model, except for
N-grams where this probability is already stored.

Conversely, we can lower memory consumption
relative to the baseline at the expense of poorer rest
costs. Baseline models store two entries per n-gram:
probability and backoff. We will show that the prob-
ability and backoff values in a language model can
be collapsed into a single value for each n-gram
without changing sentence probability. This trans-
formation saves memory by halving the number of
values stored per entry, but it makes rest cost esti-
mates worse. Specifically, the rest cost pessimisti-
cally assumes that the model will back off to uni-
grams immediately following the sentence fragment.

The two modifications can be used independently
or simultaneously. To measure the impact of their
different rest costs, we experiment with cube prun-
ing (Chiang, 2007) in syntactic machine transla-

2Other smoothing techniques, including Witten-Bell (Witten
and Bell, 1991), do not make this assumption.
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tion. Cube pruning’s goal is to find high-scoring
sentence fragments for the root non-terminal in the
parse tree. It does so by going bottom-up in the parse
tree, searching for high-scoring sentence fragments
for each non-terminal. Within each non-terminal, it
generates a fixed number of high-scoring sentence
fragments; this is known as the pop limit. Increasing
the pop limit therefore makes search more accurate
but costs more time. By moderating the pop limit,
improved accuracy can be interpreted as a reduction
in CPU time and vice-versa.

2 Related Work

Vilar and Ney (2011) study several modifications to
cube pruning and cube growing (Huang and Chiang,
2007). Most relevant is their use of a class-based
language model for the first of two decoding passes.
This first pass is cheaper because translation alter-
natives are likely to fall into the same class. Entries
are scored with the maximum probability over class
members (thereby making them no longer normal-
ized). Thus, paths that score highly in this first pass
may contain high-scoring paths under the lexicalized
language model, so the second pass more fully ex-
plores these options. The rest cost estimates we de-
scribe here could be applied in both passes, so our
work is largely orthogonal.

Zens and Ney (2008) present rest costs for phrase-
based translation. These rest costs are based on fac-
tors external to the sentence fragment, namely out-
put that the decoder may generate in the future. Our
rest costs examine words internal to the sentence
fragment, namely the first and last few words. We
also differ by focusing on syntactic translation.

A wide variety of work has been done on language
model compression. While data structure compres-
sion (Raj and Whittaker, 2003; Heafield, 2011) and
randomized data structures (Talbot and Osborne,
2007; Guthrie and Hepple, 2010) are useful, here
we are concerned solely with the values stored by
these data structures. Quantization (Whittaker and
Raj, 2001; Federico and Bertoldi, 2006) uses less
bits to store each numerical value at the expense
of model quality, including scores of full sentences,
and is compatible with our approach. In fact, the
lower-order probabilities might be quantized further
than normal since these are used solely for rest cost



purposes. Our compression technique reduces stor-
age from two values, probability and backoff, to one
value, theoretically halving the bits per value (ex-
cept INV-grams which all have backoff 1). This makes
the storage requirement for higher-quality modified
Kneser-Ney smoothing comparable to stupid back-
off (Brants et al., 2007). Whether to use one smooth-
ing technique or the other then becomes largely an
issue of training costs and quality after quantization.

3 Contribution

3.1 Better Rest Costs

As alluded to in the introduction, the first few words
of a sentence fragment are typically scored us-
ing lower-order entries from an N-gram language
model. However, Kneser-Ney smoothing (Kneser
and Ney, 1995) conditions lower-order probabilities
on backing off. Specifically, lower-order counts are
adjusted to represent the number of unique exten-
sions an n-gram has:

ifn< N

ny ) H{wo : e(wg) > 0}
alwt) _{ ’ ifn=N

c(wy)

where c(w?) is the number of times w} appears in
the training data’. This adjustment is also performed
for modified Kneser-Ney smoothing. The intuition
is based on the fact that the language model will
base its probability on the longest possible match. If
an N-gram was seen in the training data, the model
will match it fully and use the smoothed count. Oth-
erwise, the full N-gram was not seen in the train-
ing data and the model resorts to a shorter n-gram
match. Probability of this shorter match is based on
how often the n-gram is seen in different contexts.
Thus, these shorter n-gram probabilities are not rep-
resentative of cases where context is short simply
because additional context is unknown at the time of
scoring.

In some cases, we are able to determine that
the model will back off and therefore the lower-
order probability makes the appropriate assumption.
Specifically, if vw} does not appear in the model for
any word v, then computing p(w, |vw} 1) will al-

3Counts are not modified for n-grams bound to the begin-
ning of sentence, namely those with w; = <s>.
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ways back off to w?_l or fewer words*. This crite-
rion is the same as used to minimize the length of left
language model state (Li and Khudanpur, 2008) and
can be retrieved for each n-gram without using addi-
tional memory in common data structures (Heafield
etal., 2011).

Where it is unknown if the model will back off,
we use a language model of the same order to pro-
duce a rest cost. Specifically, there are [N language
models, one of each order from 1 to N. The mod-
els are trained on the same corpus with the same
smoothing parameters to the extent that they apply.
We then compile these into one data structure where
each n-gram record has three values:

1. Probability p, from the n-gram language
model

2. Probability py from the N-gram language
model

3. Backoff b from the N-gram language model

For N-grams, the two probabilities are the same and
backoff is always 1, so only one value is stored.
Without pruning, the n-gram model contains the
same n-grams as the N-gram model. With prun-
ing, the two sets may be different, so we query the
n-gram model in the normal way to score every n-
gram in the N-gram model. The idea is that p,, is the
average conditional probability that will be encoun-
tered once additional context becomes known. We
also tried more complicated estimates by addition-
ally interpolating upper bound, lower bound, and px
with weights trained on cube pruning logs; none of
these improved results in any meaningful way.

Formalizing the above, let w¥ be a sentence frag-
ment. Choose the largest s so that vw] appears in
the model for some v; equivalently wy is the left
state described in Li and Khudanpur (2008). The

“Usually, this happens because w? does not appear, though
it can also happen that w{ appears but all vw] were removed
by pruning or filtering.



baseline estimate is

(k) = (HpN<wn|w;~>) -
n=1

N+1
( 11 pN<wnrw?—1>> W
n=s+1
k
( H pN(wn]wZ:]l\,H))
n=N
while our improved estimate is
S
pr(wh) = <H pn(wn!w?_1)> :
n=1
N+1
< I1 m(wnw?—1>> e
n=s+1
k
< H pN(wn]wZ_]lVH)>
n=N

The difference between these equations is that p,, is
used for words in the left state i.e. 1 < n < s.
We have also abused notation by using py to denote
both probabilities stored explicitly in the model and
the model’s backoff-smoothed probabilities when
not present. It is not necessary to store backoffs for
prn, because s was chosen such that all queried n-
grams appear in the model.

This modification to the language model improves
rest costs (and therefore quality or CPU time) at the
expense of using more memory to store p,. In the
next section, we do the opposite: make rest costs
worse to reduce storage size.

3.2 Less Memory

Many language model smoothing strategies, includ-
ing modified Kneser-Ney smoothing, use the back-
off algorithm shown in Figure 1. Given an n-gram
wy, the backoff algorithm bases probability on as
much context as possible. Equivalently, it finds
the minimum f so that wy is in the model then

uses p(wn\w;}_l) as a basis. Backoff penalties b
are charged because a longer match was not found,
forming the product

f-1
p(walwy™) = pwalwi™) TT o(w)™)
j=1

n—1

Notably, the backoff penalties {b(w;‘_l) i, arein-
dependent of w,,, though which backoff penalties are
charged depends on f and therefore w,.

backoff « 1
for f=1—ndo
if w? is in the model then
return p(wnlw}‘_l) - backoff
else
if w} ! is in the model then
backoff — backoff - b(w} ™)
end if
end if
end for

Figure 1: The baseline backoff algorithm to com-
pute p(w,|w ). It always terminates with a prob-
ability because even unknown words are treated as a
unigram.

for f=1—ndo
if fw? is in the model then
return q(wn]w?_l)
end if
end for

Figure 2: The run-time pessimistic backoff algo-
rithm to find g(w,, |w} ™). It assumes that q has been
computed at model building time.

In order to save memory, we propose to account
for backoff in a different way, defining ¢

plwnfw; ) T b(wy)
[T b))

J

Q(wn|w?_1) =

where again w? is the longest matching entry in the
model. The idea is that ¢ is a term in the telescop-
ing series that scores a sentence fragment, shown
in equation (1) or (2). The numerator pessimisti-
cally charges all backoff penalties, as if the next
word wy,+1 will only match a unigram. When w;, 41
is scored, the denominator of g(w,+1|w}) cancels
out backoff terms that were wrongly charged. Once
these terms are canceled, all that is left is p, the cor-
rect backoff penalties, and terms on the edge of the
series.



Proposition 1. The terms of q telescope. Formally,
let w]f be a sentence fragment and f take the mini-
mum value so that w’]i is in the model. Then,

k
g(wt) = p(wt) [T o(w)

i=f

Proof. By induction on k. When k = 1, f = 1 since
the word w is either in the vocabulary or mapped to
<unk> and treated like a unigram.

p(w) [Tj—; b(w})

o) ="y = P
For k > 1,
a(w}) = g(wi ™ a(wilwi™)
_ alwf (el T b))
R [T5=f bl f 7

where f has the lowest value such that w’jﬁ is in the
model. Applying the inductive hypothesis to expand
q(wF™1), we obtain

p(t ™) (TRt b ™)) pleoghwl ™) TTh; b(wh)
[T} b))

where e has the lowest value such that w;
model. The backoff terms cancel to yield

Hb

k=1 {5 in the

k

k—1 k
plwilwf™") T b(w})
j=f
By construction of e, w;.“*l

j < e. Hence, b(wf_1
Multiplying by 1,

Hb

is not in the model for all

) = 1 implicitly for all j < e.

plwilwh™) H b(wh)

Recognizing the backoff equation (3) to simplify,

k

1o

j=f

k— 1

p(wy wk|w
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Finally, the conditional probability folds as desired

k
g(wt) = p(wt) [T o(w)

i=f

O]

We note that entries ending in </s> have back-
off 1, so it follows from Proposition 1 that sentence-
level scores are unchanged.

q(<s> wi </s>) = p(<s> wh </s>)

Proposition 1 characterizes ¢ as a pessimistic rest
cost on sentence fragments that scores sentences in
exactly the same way as the baseline using p and
b. To save memory, we simply store ¢ in lieu of
p and b. Compared with the baseline, this halves
number of values from two to one float per n-gram,
except N-grams that already have one value. The
impact of this reduction is substantial, as seen in
Section 4.3. Run-time scoring is also simplified
as shown in Figure 2 since the language model lo-
cates the longest match w’ then returns the value

q(wp |0 q(wn|w}“1) without any calcula-
tion or additional lookup. Baseline language mod-
els either retrieve backoffs values with additional
lookups (Stolcke, 2002; Federico et al., 2008) or
modify the decoder to annotate sentence fragments
with backoff information (Heafield, 2011); we have
effectively moved this step to preprocessing. The
disadvantage is that ¢ is not a proper probability and
it produces worse rest costs than does the baseline.

Language models are actually applied at two
points in syntactic machine translation: scoring lexi-
cal items in grammar rules and during cube pruning.
Grammar scoring is an offline and embarrassingly
parallel process where memory is not as tight (since
the phrase table is streamed) and fewer queries
are made, so slow non-lossy compression and even
network-based sharding can be used. We there-
fore use an ordinary language model for grammar
scoring and only apply the compressed model dur-
ing cube pruning. Grammar scoring impacts gram-
mar pruning (by selecting only top-scoring grammar
rules) and the order in which rules are tried during
cube pruning.



3.3 Combined Scheme

Our two language model modifications can be triv-
ially combined by using lower-order probabilities on
the left of a fragment and by charging all backoff
penalties on the right of a fragment. The net result is
a language model that uses the same memory as the
baseline but has better rest cost estimates.

4 Experiments

To measure the impact of different rest costs, we
use the Moses chart decoder (Koehn et al., 2007)
for the WMT 2011 German-English translation task
(Callison-Burch et al., 2011). Using the Moses
pipeline, we trained two syntactic German-English
systems, one with target-side syntax and the other
hierarchical with unlabeled grammar rules (Chiang,
2007). Grammar rules were extracted from Europarl
(Koehn, 2005) using the Collins parser (Collins,
1999) for syntax on the English side. The language
model interpolates, on the WMT 2010 test set, sep-
arate models built on Europarl, news commentary,
and the WMT news data for each year. Models were
built and interpolated using SRILM (Stolcke, 2002)
with modified Kneser-Ney smoothing (Kneser and
Ney, 1995; Chen and Goodman, 1998) and the de-
fault pruning settings. In all scenarios, the primary
language model has order 5. For lower-order rest
costs, we also built models with orders 1 through 4
then used the n-gram model to score n-grams in the
5-gram model. Feature weights were trained with
MERT (Och, 2003) on the baseline using a pop limit
of 1000 and 100-best output. Since final feature val-
ues are unchanged, we did not re-run MERT in each
condition. Measurements were collected by running
the decoder on the 3003-sentence test set.

4.1 Rest Costs as Prediction

Scoring the first few words of a sentence fragment
is a prediction task. The goal is to predict what
the probability will be when more context becomes
known. In order to measure performance on this
task, we ran the decoder on the hierarchical system
with a pop limit of 1000. Every time more context
became known, we logged® the prediction error (es-
timated log probability minus updated log probabil-

SLogging was only enabled for this experiment.

1174

Lower Baseline
n Mean | Bias MSE Var | Bias MSE Var
1 -3.21 0 84 83| -12 .87 .86
2 -2.27 04 18 17| -14 23 24
3-18 )| .02 .07 .07| -09 .10 .09
4 -1.29 .01 .04 041 -10 .09 .08

Table 1: Bias (mean error), mean squared error, and
variance (of the error) for the lower-order rest cost
and the baseline. Error is the estimated log prob-
ability minus the final probability. Statistics were
computed separately for the first word of a fragment
(n = 1), the second word (n = 2), etc. The lower-
order estimates are better across the board, reducing
error in cube pruning. All numbers are in log base
ten, as is standard for ARPA-format language mod-
els. Statistics were only collected for words with
incomplete context.

ity) for both lower-order rest costs and the baseline.
Table 1 shows the results.

Cube pruning uses relative scores, so bias mat-
ters less, though positive bias will favor rules with
more arity. Variance matters the most because lower
variance means cube pruning’s relative rankings are
more accurate. Our lower-order rest costs are bet-
ter across the board in terms of absolute bias, mean
squared error, and variance.

4.2 Pop Limit Trade-Offs

The cube pruning pop limit is a trade-off between
search accuracy and CPU time. Here, we mea-
sure how our rest costs improve (or degrade) that
trade-off. Search accuracy is measured by the aver-
age model score of single-best translations. Model
scores are scale-invariant and include a large con-
stant factor; higher is better. We also measure over-
all performance with uncased BLEU (Papineni et al.,
2002). CPU time is the sum of user and system time
used by Moses divided by the number of sentences
(3003). Timing includes time to load, though files
were forced into the disk cache in advance. Our test
machine has 64 GB of RAM and 32 cores. Results
are shown in Figures 3 and 4.

Lower-order rest costs perform better in both sys-
tems, reaching plateau model scores and BLEU with
less CPU time. The gain is much larger for tar-



Baseline Lower Order Pessimistic Combined
Pop | CPU Model BLEU | CPU Model BLEU | CPU Model BLEU | CPU Model BLEU
2| 329 -105.56 20.45 3.68 -105.44 20.79 3.74 -105.62 20.01 3.18 -10549 2043
10 | 5.21 -104.74 21.13 5.50 -104.72 2126 | 543 -104.77 20.85 5.67 -104.75 21.10
50 | 23.30 -104.31 21.36 | 23.51 -104.24 21.38 | 23.68 -104.33 21.25 | 24.29 -104.22 21.34
500 | 54.61 -104.25 21.33 | 55.92 -104.15 21.38 | 54.23 -104.26 21.31 | 55.74 -104.15 21.40
700 | 64.08 -104.25 21.34 | 87.02 -104.14 21.42 | 68.74 -104.25 21.29 | 78.84 -104.15 21.41
(a) Numerical results for select pop limits.
-104.1
214
-104.2 21.35
ot 21.3
3 =)
- 1043 - 2105
2 /M
= )
= 2 212
0] <
D 1044 S IS
§ = 2115 /i -
< ! i
) 21.1 Hx o -
-104.5 ! Lower —— T Lower ——
i Combined --»x-- 2105 Lf ! Combined --x-- |
! Baseline ---%-- : | Baseline ---%--
, Pessimistic & o Pessimistic &
-104.6 \ \ \ | \ \ \ s\ \ \ \ \ \ \ \
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

CPU seconds/sentence

CPU seconds/sentence

(b) Model and BLEU scores near the plateau.

Figure 3: Target-syntax performance. CPU time and model score are averaged over 3003 sentences.

get syntax, where a pop limit of 50 outperforms the
baseline with pop limit 700. CPU time per sen-
tence is reduced to 23.5 seconds from 64.0 seconds,
a 63.3% reduction. The combined setting, using the
same memory as the baseline, shows a similar 62.1%
reduction in CPU time. We attribute this differ-
ence to improved grammar rule scoring that impacts
pruning and sorting. In the target syntax model,
the grammar is not saturated (i.e. less pruning will
still improve scores) but we nonetheless prune for
tractability reasons. The lower-order rest costs are
particularly useful for grammar pruning because lex-
ical items are typically less than five words long (and
frequently only word).

The hierarchical grammar is nearly saturated with
respect to grammar pruning, so improvement there is
due mostly to better search. In the hierarchical sys-
tem, peak BLEU 22.34 is achieved under the lower-
order condition with pop limits 50 and 200, while
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other scenarios are still climbing to the plateau. With
a pop limit of 1000, the baseline’s average model
score is -101.3867. Better average models scores
are obtained from the lower-order model with pop
limit 690 using 79% of baseline CPU, the combined
model with pop limit 900 using 97% CPU, and the
pessimistic model with pop limit 1350 using 127%
CPU.

Pessimistic compression does worsen search, re-
quiring 27% more CPU in the hierarchical system to
achieve the same quality. This is worthwhile to fit
large-scale language models in memory, especially
if the alternative is a remote language model.

4.3 Memory Usage

Our rest costs add a value (for lower-order prob-
abilities) or remove a value (pessimistic compres-
sion) for each n-gram except those of highest order
(n = N). The combined condition adds one value



Baseline Lower Order Pessimistic Combined
Pop | CPU Model BLEU | CPU Model BLEU | CPU Model BLEU | CPU Model BLEU
2| 296 -101.85 21.19 | 244 -101.80 21.63 2.71 -101.90 20.85 3.05 -101.84 21.37
10 | 2.80 -101.60 21.90 | 242 -101.58 2220 | 295 -101.63 21.74 | 2.69 -101.60 21.98
50 | 3.02 -101.47 22.18 | 3.11 -101.46 2234 | 3.46 -101.48 22.08 2.67 -101.47 22.14
690 | 10.83 -101.39 22.28 | 11.45 -101.39 22.25 | 10.88 -101.40 22.25 | 11.19 -101.39 22.23
900 | 13.41 -101.39 22.27 | 14.00 -101.38 22.24 | 13.38 -101.39 22.25 | 14.09 -101.39 2222
1000 | 14.50 -101.39 2227 | 15.17 -101.38 22.25 | 15.09 -101.39 22.26 | 15.23 -101.39 22.23
1350 | 18.52 -101.38 2227 | 19.16 -101.38 22.23 | 1846 -101.39 22.25 | 18.61 -101.38 22.23
5000 | 59.67 -101.38 2224 | 61.41 -101.38 2222 | 59.76 -101.38 22.27 | 61.38 -101.38 22.22
(a) Numerical results for select pop limits.
10138 F 22.35
-101.385 | 223 -
22.25 +
o -101.39
Q
2 -101.395 |- R 22
) —
'8 [as]
g -1014 g 2215
o 3
50 3]
£ -101.405 5 221 ¢
= ,/ .
-101.41 + e 2205 - ¢
- I~
) N ombined --x-- _| I ombined --x--
101.415 .‘;‘f Baseline ---*-- 22 ‘o Baseline ---*---
i Pessimistic &~ Vi Pessimistic &
-101.42 - ‘ ‘ ‘ 21.95 L ‘ ‘ ‘
0 5 10 15 20 25 0 5 10 15 20 25

CPU seconds/sentence

CPU seconds/sentence

(b) Model and BLEU scores near the plateau.

Figure 4: Hierarchical system performance. All values are averaged over 3003 sentences.

and removes another, so it uses the same memory
as the baseline. The memory footprint of adding or
removing a value depends on the number of such n-
grams, the underlying data structure, and the extent
of quantization. Our test language model has 135
million n-grams for n < 5 and 56 million 5-grams.
Memory usage was measured for KenL.M data struc-
tures (Heafield, 2011) and minimal perfect hashing
(Guthrie and Hepple, 2010). For minimal perfect
hashing, we assume the Compress, Hash and Dis-
place algorithm (Belazzougui et al., 2008) with 8-bit
signatures and 8-bit quantization. Table 2 shows the
results. Storage size of the smallest model is reduced
by 26%, bringing higher-quality smoothed models
in line with stupid backoff models that also store one
value per n-gram.
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Structure Baseline Change %
Probing 4,072 517 13%
Trie 2,647 506 19%
8-bit quantized trie 1,236 140 11%
8-bit minimal perfect hash 540 140 26%

Table 2: Size in megabytes of our language model,
excluding operating system overhead. Change is the
cost of adding an additional value to store lower-
order probabilities. Equivalently, it is the savings
from pessimistic compression.



5 Conclusion

Our techniques reach plateau-level BLEU scores
with less time or less memory. Efficiently stor-
ing lower-order probabilities and using them as rest
costs improves both cube pruning (21% CPU reduc-
tion in a hierarchical system) and model filtering
(net 63% CPU time reduction with target syntax) at
the expense of 13-26% more RAM for the language
model. This model filtering improvement is surpris-
ing both in the impact relative to changing the pop
limit and simplicity of implementation, since it can
be done offline. Compressing the language model to
halve the number of values per n-gram (except N-
grams) results in a 13-26% reduction in RAM with
26% over the smallest model, costing 27% more
CPU and leaving overall sentence scores unchanged.
This compression technique is likely to have more
general application outside of machine translation,
especially where only sentence-level scores are re-
quired. Source code is being released® under the
LGPL as part of KenLM (Heafield, 2011).
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