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Abstract

Constituency parser performance is primarily
interpreted through a single metric, F-score
on WSJ section 23, that conveys no linguis-
tic information regarding the remaining errors.
We classify errors within a set of linguisti-
cally meaningful types using tree transforma-
tions that repair groups of errors together. We
use this analysis to answer a range of ques-
tions about parser behaviour, including what
linguistic constructions are difficult for state-
of-the-art parsers, what types of errors are be-
ing resolved by rerankers, and what types are
introduced when parsing out-of-domain text.

1 Introduction

Parsing has been a major area of research within
computational linguistics for decades, and con-
stituent parser F-scores onWSJ section 23 have ex-
ceeded90% (Petrov and Klein, 2007), and92%
when using self-training and reranking (McClosky
et al., 2006; Charniak and Johnson, 2005). While
these results give a useful measure of overall per-
formance, they provide no information about the na-
ture, or relative importance, of the remaining errors.

Broad investigations of parser errors beyond the
PARSEVAL metric (Abney et al., 1991) have either
focused on specific parsers, e.g. Collins (2003), or
have involved conversion to dependencies (Carroll
et al., 1998; King et al., 2003). In all of these cases,
the analysis has not taken into consideration how a
set of errors can have a common cause, e.g. a single
mis-attachment can create multiple node errors.

We propose a new method of error classifica-
tion using tree transformations. Errors in the parse

tree are repaired using subtree movement, node cre-
ation, and node deletion. Each step in the process is
then associated with a linguistically meaningful er-
ror type, based on factors such as the node that is
moved, its siblings, and parents.

Using our method we analyse the output of thir-
teen constituency parsers on newswire. Some of
the frequent error types that we identify are widely
recognised as challenging, such as prepositional
phrase (PP) attachment. However, other significant
types have not received as much attention, such as
clause attachment and modifier attachment.

Our method also enables us to investigate where
reranking and self-training improve parsing. Pre-
viously, these developments were analysed only in
terms of their impact on F-score. Similarly, the chal-
lenge of out-of-domain parsing has only been ex-
pressed in terms of this single objective. We are able
to decompose the drop in performance and show that
a disproportionate number of the extra errors are due
to coordination and clause attachment.

This work presents a comprehensive investigation
of parser behaviour in terms of linguistically mean-
ingful errors. By applying our method to multiple
parsers and domains we are able to answer questions
about parser behaviour that were previously only ap-
proachable through approximate measures, such as
counts of node errors. We show which errors have
been reduced over the past fifteen years of parsing
research; where rerankers are making their gains and
where they are not exploiting the full potential of k-
best lists; and what types of errors arise when mov-
ing out-of-domain. We have released our system1 to
enable future work to apply our methodology.

1http://code.google.com/p/berkeley-parser-analyser/
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2 Background

Most attempts to understand the behaviour of con-
stituency parsers have focused on overall evaluation
metrics. The three main methods are intrinsic eval-
uation withPARSEVAL, evaluation on dependencies
extracted from the constituency parse, and evalua-
tion on downstream tasks that rely on parsing.

Intrinsic evaluation withPARSEVAL, which calcu-
lates precision and recall over labeled tree nodes, is
a useful indicator of overall performance, but does
not pinpoint which structures the parser has most
difficulty with. Even when the breakdown for par-
ticular node types is presented (e.g. Collins, 2003),
the interaction between node errors is not taken into
account. For example, a VP node could be missing
because of incorrect PP attachment, a coordination
error, or a unary production mistake. There has been
some work that addresses these issues by analysing
the output of constituency parsers on linguistically
motivated error types, but only by hand on sets of
around 100 sentences (Hara et al., 2007; Yu et al.,
2011). By automatically classifying parse errors we
are able to consider the output of multiple parsers on
thousands of sentences.

The second major parser evaluation method in-
volves extraction of grammatical relations (King et
al., 2003; Briscoe and Carroll, 2006) or dependen-
cies (Lin, 1998; Briscoe et al., 2002). These met-
rics have been argued to be more informative and
generally applicable (Carroll et al., 1998), and have
the advantage that the breakdown over dependency
types is more informative than over node types.
There have been comparisons of multiple parsers
(Foster and van Genabith, 2008; Nivre et al., 2010;
Cer et al., 2010), as well as work on finding rela-
tions between errors (Hara et al., 2009), and break-
ing down errors by a range of factors (McDonald and
Nivre, 2007). However, one challenge is that results
for constituency parsers are strongly influenced by
the dependency scheme being used and how easy it
is to extract the dependencies from a given parser’s
output (Clark and Hockenmaier, 2002). Our ap-
proach does not have this disadvantage, as we anal-
yse parser output directly.

The third major approach involves extrinsic eval-
uation, where the parser’s output is used in a down-
stream task, such as machine translation (Quirk

and Corston-Oliver, 2006), information extraction
(Miyao et al., 2008), textual entailment (Yuret et
al., 2010), or semantic dependencies (Dridan and
Oepen, 2011). While some of these approaches give
a better sense of the impact of parse errors, they re-
quire integration into a larger system, making it less
clear where a given error originates.

The work we present here differs from existing
approaches by directly and automatically classifying
errors into meaningful types. This enables the first
very broad, yet detailed, study of parser behaviour,
evaluating the output of thirteen parsers over thou-
sands of sentences.

3 Parsers

Our evaluation is over a wide range ofPTB con-
stituency parsers and their variants from the past fif-
teen years. For all parsers we used the publicly avail-
able version, with the standard parameter settings.

Berkeley (Petrov et al., 2006; Petrov and Klein,
2007). An unlexicalised parser with a grammar
constructed with automatic state splitting.

Bikel (2004) implementation of Collins (1997).

BUBS (Dunlop et al., 2011; Bodenstab et al.,
2011). A ‘grammar-agnostic constituent
parser,’ which uses a Berkeley Parser grammar,
but parses with various pruning techniques to
improve speed, at the cost of accuracy.

Charniak (2000). A generative parser with a max-
imum entropy-inspired model. We also use the
reranker (Charniak and Johnson, 2005), and the
self-trained model (McClosky et al., 2006).

Collins (1997). A generative lexicalised parser,
with three models, a base model, a model that
uses subcategorisation frames for head words,
and a model that takes into account traces.

SSN (Henderson, 2003; Henderson, 2004). A sta-
tistical left-corner parser, with probabilities es-
timated by a neural network.

Stanford (Klein and Manning, 2003a; Klein and
Manning, 2003b). We consider both the un-
lexicalised PCFG parser (-U) and the factored
parser (-F), which combines the PCFG parser
with a lexicalised dependency parser.
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System F P R Exact Speed

ENHANCED TRAINING / SYSTEMS

Charniak-SR 92.07 92.44 91.70 44.87 1.8
Charniak-R 91.41 91.78 91.04 44.04 1.8
Charniak-S 91.02 91.16 90.89 40.77 1.8

STANDARD PARSERS

Berkeley 90.06 90.30 89.81 36.59 4.2
Charniak 89.71 89.88 89.55 37.25 1.8
SSN 89.42 89.96 88.89 32.74 1.8
BUBS 88.50 88.57 88.43 31.62 27.6
Bikel 88.16 88.23 88.10 32.33 0.8
Collins-3 87.66 87.82 87.50 32.22 2.0
Collins-2 87.62 87.77 87.48 32.51 2.2
Collins-1 87.09 87.29 86.90 30.35 3.3
Stanford-L 86.42 86.35 86.49 27.65 0.7
Stanford-U 85.78 86.48 85.09 28.35 2.7

Table 1: PARSEVAL results onWSJ section 23 for the
parsers we consider. The columns are F-score, precision,
recall, exact sentence match, and speed (sents/sec). Cov-
erage was left out as it was above 99.8% for all parsers.
In the ENHANCED TRAINING / SYSTEMSsection we in-
clude the Charniak parser with reranking (R), with a self-
trained model (S), and both (SR).

Table 1 shows the standard performance metrics,
measured on section 23 of theWSJ, using all sen-
tences. Speeds were measured using a Quad-Core
Xeon CPU (2.33GHz 4MB L2 cache) with 16GB
of RAM. These results clearly show the variation in
parsing performance, but they do not show which
constructions are the source of those variations.

4 Error Classification

While the statistics in Table 1 give a sense of over-
all parser performance they do not provide linguisti-
cally meaningful intuition for the source of remain-
ing errors. Breaking down the remaining errors by
node type is not particularly informative, as a sin-
gle attachment error can cause multiple node errors,
many of which are for unrelated node types. For
example, in Figure 1 there is a PP attachment error
that causes seven bracket errors (extra S, NP, PP, and
NP, missing S, NP, and PP). Determining that these
correspond to a PP attachment error from just the la-
bels of the missing and extra nodes is difficult. In
contrast, the approach we describe below takes into
consideration the relations between errors, grouping
them into linguistically meaningful sets.

We classify node errors in two phases. First, we
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Figure 1: Grouping errors by node type is of limited use-
fulness. In this figure and those that follow the top tree
is the incorrect parse and the bottom tree is the correct
parse. Bold, boxed nodes are either extra (marked in the
incorrect tree) or missing (marked in the correct tree).
This is an example ofPP Attachment (in 1986 is too
low), but that is not at all clear from the set of incorrect
nodes (extra S, NP, PP, and NP, missing S, NP, and PP).

find a set of tree transformations that convert the out-
put tree into the gold tree. Second, the transforma-
tion are classified into error types such as PP attach-
ment and coordination. Pseudocode for our method
is shown in Algorithm 1. The tree transformation
stage corresponds to the main loop, while the sec-
ond stage corresponds to the final loop.

4.1 Tree Transformation

The core of our transformation process is a set of op-
erations that move subtrees, create nodes, and delete
nodes. Searching for the shortest path to transform
one tree into another is prohibitively slow.2 We find

2We implemented various search procedures and found sim-
ilar results on the sentences that could be processed in a reason-
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Algorithm 1 Tree transformation error classification
U = initial set of node errors
SortU by the depth of the error in the tree, deepest first
G = ∅
repeat

for all errorse ∈ U do
if e fits an environment templatet then

g = new error group
Correcte as specified byt
for all errorsf thatt correctsdo

Removef fromU

Insertf into g

end for
Add g toG

end if
end for

until unable to correct any further errors
for all remaining errorse ∈ U do

Insert a group intoG containinge
end for
for all groupsg ∈ G do

Classifyg based on properties of the group
end for

a path by applying a greedy bottom–up approach,
iterating through the errors in order of tree depth.

We match each error with a template based on
nearby tree structure and errors. For example, in
Figure 1 there are four extra nodes that all cover
spans ending atApplied in 1986: S, NP, PP, NP.
There are also three missing nodes with spans end-
ing betweenAppliedandin: PP, NP, and S. Figure 2
depicts these errors as spans, showing that this case
fits three criteria: (1) there are a set of extra spans all
ending at the same point, (2) there are a set of miss-
ing spans all ending at the same point, and (3) the ex-
tra spans cross the missing spans, extending beyond
their end-point. This indicates that the node start-
ing afterApplied is attaching too low and should be
moved up, outside all of the extra nodes. Together,
the criteria and transformation form a template.

Once a suitable template is identified we correct
the error by moving subtrees, adding nodes and re-
moving nodes. In the example this is done by mov-
ing the node spanningin 1986up in the tree until it
is outside of all the extra spans. Since moving the PP
leaves a unary production from an NP to an NP, we
also collapse that level. In total this corrects seven

able amount of time.

named chief executive officer of Applied in 1986

Figure 2: Templates are defined in terms of extra and
missing spans, shown here with unbroken lines above and
dashed lines below, respectively. This is an example of a
set of extra spans that cross a set of missing spans (which
in both cases all end at the same position). If the last two
words are moved, two of the extra spans will match the
two missing spans. The other extra span is deleted during
the move as it creates an NP→NP unary production.

errors, as there are three cases in which an extra node
is present that matches a missing node once the PP
is moved. All of these errors are placed in a single
group and information about the nearby tree struc-
ture before and after the transformation is recorded.

We continue to make passes through the list until
no errors are corrected on a pass. For each remaining
node error an individual error group is created.

The templates were constructed by hand based on
manual analysis of parser output. They cover a range
of combinations of extra and missing spans, with
further variation for whether crossing is occurring
and if so whether the crossing bracket starts or ends
in the middle of the correct bracket. Errors that do
not match any of our templates are left uncorrected.

4.2 Transformation Classification

We began with a large set of node errors, in the first
stage they were placed into groups, one group per
tree transformation used to get from the test tree to
the gold tree. Next we classify each group as one of
the error types below.

PP Attachment Any case in which the transforma-
tion involved moving a Prepositional Phrase, or
the incorrect bracket is over a PP, e.g.
He was(VP named chief executive officer of
fill (NPApplied(PPin 1986)))
where (PPin 1986) should modify the entire
VP, rather than justApplied.

NP Attachment Several cases in which NPs had to
be moved, particularly for mistakes in appos-
itive constructions and incorrect attachments
within a verb phrase, e.g.
The bonds(VP go (PPon sale(NPOct. 19)))
whereOct. 19should be an argument ofgo.
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Figure 3: NP Attachment: today is too high, it should
be the argument ofappearing, rather thanwrote. This
causes three node errors (extra NP, missing NP and VP).
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Figure 4: Modifier Attachment : ahead of timeis too
high, it should modifythink, not had. This causes six
node errors (extra S, VP, and VP, missing S, VP, and VP).

Modifier Attachment Cases involving incorrectly
placed adjectives and adverbs, including errors
corrected by subtree movement and errors re-
quiring only creation of a node, e.g.
(NP (ADVPeven more) severe setbacks)
where there should be an extra ADVP node
overeven more severe.

Clause Attachment Any group that involves move-
ment of some form of S node.
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Figure 5: Clause Attachment: unless the agency re-
ceives specific congressional authorizationis attaching
too low. This causes six node errors (extra S, VP, and
VP, missing S, VP and VP).
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(c) Gold tree with traces and function tags

Figure 6: TwoUnary errors, a missing S and a missing
NP. The third tree is thePTB tree before traces and func-
tion tags are removed. Note that the missing NP is over
another NP, a production that does occur widely in the
treebank, particularly over the wordit.
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Figure 7: Coordination: and Dresdner AG’s 10% de-
cline is too low. This causes four node errors (extra PP
and NP, missing NP and PP).

Unary Mistakes involving unary productions that
are not linked to a nearby error such as a match-
ing extra or missing node. We do not include a
breakdown by unary type, though we did find
that clause labeling (S, SINV, etc) accounted
for a large proportion of the errors.

Coordination Cases in which a conjunction is an
immediate sibling of the nodes being moved, or
is the leftmost or rightmost node being moved.

NP Internal Structure While most NP structure is
not annotated in thePTB, there is some use of
ADJP, NX, NAC and QP nodes. We form a
single group for each NP that has one or more
errors involving these types of nodes.

Different label In many cases a node is present in
the tree that spans the correct set of words, but
has the wrong label, in which case we group the
two node errors, (one extra, one missing), as a
single error.

Single word phrase A range of node errors that
span a single word, with checks to ensure this
is not linked to another error (e.g. one part of a
set of internal noun phrase errors).

Other There is a long tail of other errors. Some
could be placed within the categories above,
but would require far more specific rules.

For many of these error types it would be diffi-
cult to extract a meaningful understanding from only
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(a) Parser output
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Figure 8:NP Internal Structure : Bakeris too low, caus-
ing four errors (extra PP and NP, missing PP and NP).

the list of node errors involved. Even for error types
that can be measured by counting node errors or rule
production errors, our approach has the advantage
that we identify groups of errors with a single cause.
For example, a missing unary production may corre-
spond to an extra bracket that contains a subtree that
attached incorrectly.

4.3 Methodology

We used sections 00 and 24 as development data
while constructing the tree transformation and error
group classification methods. All of our examples
in text come from these sections as well, but for all
tables of results we ran our system on section 23.
We chose to run our analysis on section 23 as it is
the only section we are sure was not used in the de-
velopment of any of the parsers, either for tuning or
feature development. Our evaluation is entirely fo-
cused on the errors of the parsers, so unless there is
a particular construction that is unusually prevalent
in section 23, we are not revealing any information
about the test set that could bias future work.

5 Results

Our system enables us to answer questions about
parser behaviour that could previously only be
probed indirectly. We demonstrate its usefulness by
applying it to a range of parsers (here), to reranked
K-best lists of various lengths, and to output for out-
of-domain parsing (following sections).

In Table 2 we consider the breakdown of parser
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PP Clause Diff Mod NP 1-Word NP
Parser F-score Attach Attach Label Attach Attach Co-ord Span Unary aInt.a Other

Best 0.60 0.38 0.31 0.25 0.25 0.23 0.20 0.14 0.14 0.50
Charniak-RS 92.07
Charniak-R 91.41
Charniak-S 91.02
Berkeley 90.06
Charniak 89.71
SSN 89.42
BUBS 88.63
Bikel 88.16
Collins-3 87.66
Collins-2 87.62
Collins-1 87.09
Stanford-F 86.42
Stanford-U 85.78
Worst 1.12 0.61 0.51 0.39 0.45 0.40 0.42 0.27 0.27 1.13

Table 2: Average number of bracket errors per sentence due tothe top ten error types. For instance, Stanford-U
produces output that has, on average, 1.12 bracket errors per sentence that are due to PP attachment. The scale for
each column is indicated by the Best and Worst values.

Nodes
Error Type Occurrences Involved Ratio

PP Attachment 846 1455 1.7
Single word phrase 490 490 1.0
Clause Attachment 385 913 2.4
Modifier Attachment 383 599 1.6
Different Label 377 754 2.0
Unary 347 349 1.0
NP Attachment 321 597 1.9
NP Internal Structure 299 352 1.2
Coordination 209 557 2.7
Unary Clause Label 185 200 1.1
VP Attachment 64 159 2.5
Parenthetical Attachment 31 74 2.4
Missing Parenthetical 12 17 1.4
Unclassified 655 734 1.1

Table 3: Breakdown of errors on section 23 for the Char-
niak parser with self-trained model and reranker. Errors
are sorted by the number of times they occur. Ratio is the
average number of node errors caused by each error we
identify (i.e. Nodes Involved / Occurrences).

errors on WSJ section 23. The shaded area of
each bar indicates the frequency of parse errors (i.e.
empty means fewest errors). The area filled in is
determined by the expected number of node errors
per sentence that are attributed to that type of error.
The average number of node errors per sentence for
a completely full bar is indicated by the Worst row,
and the value for a completely empty bar is indicated
by the Best row. Exact error counts are available at

http://code.google.com/p/berkeley-parser-analyser/.
We use counts of node errors to make the con-

tributions of each type of error more interpretable.
As Table 3 shows, some errors typically cause only
a single node error, where as others, such as co-
ordination, generally cause several. This means
that considering counts of error groups would over-
emphasise some error types, e.g. single word phrase
errors are second most important by number of
groups (in Table 3), but seventh by total number of
node errors (in Table 2).

As expected, PP attachment is the largest contrib-
utor to errors, across all parsers. Interestingly, coor-
dination is sixth on the list, though that is partly due
to the fact that there are fewer coordination decisions
to be made in the treebank.3

By looking at the performance of the Collins
parser we can see the development over the past
fifteen years. There has been improvement across
the board, but in some cases, e.g. clause attach-
ment errors and different label errors, the change has
been more limited (24% and 29% reductions respec-
tively). We investigated the breakdown of the differ-
ent label errors by label, but no particular cases of la-

3This is indicated by the frequency of CCs and PPs in sec-
tions 02–21 of the treebank, 16,844 and 95,581 respectively.
These counts are only an indicator of the number of decisions
as the nodes can be used in ways that do not involve a decision,
such as sentences that start with a conjunction.
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PP Clause Diff Mod NP 1-Word NP
System K F-score Attach Attach Label Attach Attach Co-ord Span Unary aInt.a Other

Best 0.08 0.04 0.08 0.05 0.06 0.04 0.08 0.04 0.04 0.11
1000 98.30
100 97.54
50 97.18

Oracle 20 96.40
10 95.66
5 94.61
2 92.59

1000 92.07
100 92.08
50 92.07

Charniak 20 92.05
10 92.16
5 91.94
2 91.56
1 91.02

Worst 0.66 0.43 0.33 0.26 0.28 0.26 0.23 0.16 0.19 0.60

Table 4: Average number of bracket errors per sentence for a range of K-best list lengths using the Charniak parser
with reranking and the self-trained model. The oracle results are determined by taking the parse in each K-best list
with the highest F-score.

bel confusion stand out, and we found that the most
common cases remained the same between Collins
and the top results.

It is also interesting to compare pairs of parsers
that share aspects of their architecture. One such
pair is the Stanford parser, where the factored parser
combines the unlexicalised parser with a lexicalised
dependency parser. The main sources of the 0.64
gain in F-score are PP attachment and coordination.

Another interesting pair is the Berkeley parser and
the BUBS parser, which uses a Berkeley grammar,
but improves speed by pruning. The pruning meth-
ods used in BUBS are particularly damaging for PP
attachment errors and unary errors.

Various comparisons can be made between Char-
niak parser variants. We discuss the reranker be-
low. For the self-trained model McClosky et al.
(2006) performed some error analysis, considering
variations in F-score depending on the frequency of
tags such as PP, IN and CC in sentences. Here we
see gains on all error types, though particularly for
clause attachment, modifier attachment and coordi-
nation, which fits with their observations.

5.1 Reranking

The standard dynamic programming approach to
parsing limits the range of features that can be em-

ployed. One way to deal with this issue is to mod-
ify the parser to produce the topK parses, rather
than just the 1-best, then use a model with more so-
phisticated features to choose the best parse from
this list (Collins, 2000). While re-ranking has led to
gains in performance (Charniak and Johnson, 2005),
there has been limited analysis of how effectively
rerankers are using the set of available options. Re-
cent work has explored this question in more depth,
but focusing on how variation in the parameters
impacts performance on standard metrics (Huang,
2008; Ng et al., 2010; Auli and Lopez, 2011; Ng
and Curran, 2012).

In Table 4 we present a breakdown over error
types for the Charniak parser, using the self-trained
model and reranker. The oracle results use the parse
in each K-best list with the highest F-score. While
this may not give the true oracle result, as F-score
does not factor over sentences, it gives a close ap-
proximation. The table has the same columns as Ta-
ble 2, but the ranges on the bars now reflect the min
and max for these sets.

While there is improvement on all errors when us-
ing the reranker, there is very little additional gain
beyond the first 5-10 parses. Even for the oracle
results, most of the improvement occurs within the
first 5-10 parses. The limited utility of extra parses
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PP Clause Diff Mod NP 1-Word NP
Corpus F-score Attach Attach Label Attach Attach Co-ord Span Unary aInt.a Other

Best 0.022 0.016 0.013 0.011 0.011 0.010 0.009 0.006 0.005 0.021
WSJ23 92.07
Brown-F 85.91
Brown-G 84.56
Brown-K 84.09
Brown-L 83.95
Brown-M 84.65
Brown-N 85.20
Brown-P 84.09
Brown-R 83.60
G-Web Blogs 84.15
G-Web Email 81.18
Worst 0.040 0.035 0.053 0.020 0.034 0.023 0.046 0.009 0.029 0.073

Table 5: Average number of node errors per word for a range of domains using the Charniak parser with reranking and
the self-trained model. We use per word error rates here rather than per sentence as there is great variation in average
sentence length across the domains, skewing the per sentence results.

for the reranker may be due to the importance of
the base parser output probability feature (which, by
definition, decreases within the K-best list).

Interestingly, the oracle performance improves
across all error types, even at the 2-best level. This
indicates that the base parser model is not particu-
larly biased against a single error. Focusing on the
rows forK = 2 we can also see two interesting out-
liers. The PP attachment improvement of the ora-
cle is considerably higher than that of the reranker,
particularly compared to the differences for other er-
rors, suggesting that the reranker lacks the features
necessary to make the decision better than the parser.
The other interesting outlier is NP internal structure,
which continues to make improvements for longer
lists, unlike the other error types.

5.2 Out-of-Domain

Parsing performance drops considerably when shift-
ing outside of the domain a parser was trained on
(Gildea, 2001). Clegg and Shepherd (2005) evalu-
ated parsers qualitatively on node types and rule pro-
ductions. Bender et al. (2011) designed a Wikipedia
test set to evaluate parsers on dependencies repre-
senting ten specific linguistic phenomena.

To provide a deeper understanding of the er-
rors arising when parsing outside of the newswire
domain, we analyse performance of the Charniak
parser with reranker and self-trained model on the
eight parts of the Brown corpus (Marcus et al.,

Corpus Description Sentences Av. Length

WSJ23 Newswire 2416 23.5
Brown F Popular 3164 23.4
Brown G Biographies 3279 25.5
Brown K General 3881 17.2
Brown L Mystery 3714 15.7
Brown M Science 881 16.6
Brown N Adventure 4415 16.0
Brown P Romance 3942 17.4
Brown R Humour 967 22.7
G-Web Blogs Blogs 1016 23.6
G-Web Email E-mail 2450 11.9

Table 6: Variation in size and contents of the domains we
consider. The variation in average sentence lengths skews
the results for errors per sentences, and so in Table 5 we
consider errors per word.

1993), and two parts of the Google Web corpus
(Petrov and McDonald, 2012). Table 6 shows statis-
tics for the corpora. The variation in average sen-
tence lengths skew the results for errors per sen-
tence. To handle this we divide by the number of
words to determine the results in Table 5, rather than
by the number of sentences, as in previous figures.

There are several interesting features in the table.
First, on the Brown datasets, while the general trend
is towards worse performance on all errors, NP in-
ternal structure is a notable exception and in some
cases PP attachment and unaries are as well.

In the other errors we see similar patterns across
the corpora, except humour (Brown R), on which the
parser is particularly bad at coordination and clause
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attachment. This makes sense, as the colloquial na-
ture of the text includes more unusual uses of con-
junctions, for example:

She was a living doll and no mistake – the ...

Comparing the Brown corpora and the Google
Web corpora, there are much larger divergences. We
see a particularly large decrease in NP internal struc-
ture. Looking at some of the instances of this error, it
appears to be largely caused by incorrect handling of
structures such as URLs and phone numbers, which
do not appear in thePTB. There are also some more
difficult cases, for example:

... going up for sale in the next month or do .

whereor do is a QP. This typographical error is ex-
tremely difficult to handle for a parser trained only
on well-formed text.

For e-mail there is a substantial drop on single
word phrases. Breaking the errors down by label we
found that the majority of the new errors are miss-
ing or extra NPs over single words. Here the main
problem appears to be temporal expressions, though
there also appear to be a substantial number of errors
that are also at the POS level, such as when NNP is
assigned tota in this case:

... let you know that I ’m out ta here !

Some of these issues, such as URL handling,
could be resolved with suitable training data. Other
issues, such as ungrammatical language and uncon-
ventional use of words, pose a greater challenge.

6 Conclusion

The single F-score objective over brackets or depen-
dencies obscures important differences between sta-
tistical parsers. For instance, a single attachment er-
ror can lead to one or many mismatched brackets.

We have created a novel tree-transformation
methodology for evaluating parsers that categorises
errors into linguistically meaningful types. Using
this approach, we presented the first detailed exam-
ination of the errors produced by a wide range of
constituency parsers for English. We found that PP
attachment and clause attachment are the most chal-
lenging constructions, while coordination turns out
to be less problematic than previously thought. We

also noted interesting variations in error types for
parsers variants.

We investigated the errors resolved in reranking,
and introduced by changing domains. We found that
the Charniak rerankers improved most error types,
but made little headway on improving PP attach-
ment. Changing domain has an impact on all error
types, except NP internal structure.

We have released our system so that future con-
stituent parsers can be evaluated using our method-
ology. Our analysis provides new insight into the
development of parsers over the past fifteen years,
and the challenges that remain.
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