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Abstract

We investigate paradigmatic representations
of word context in the domain of unsupervised
syntactic category acquisition. Paradigmatic
representations of word context are based on
potential substitutes of a word in contrast to
syntagmatic representations based on prop-
erties of neighboring words. We compare
a bigram based baseline model with several
paradigmatic models and demonstrate signif-
icant gains in accuracy. Our best model based
on Euclidean co-occurrence embedding com-
bines the paradigmatic context representation
with morphological and orthographic features
and achieves 80% many-to-one accuracy on a
45-tag 1M word corpus.

1 Introduction

Grammar rules apply not to individual words (e.g.
dog, eat) but to syntactic categories of words (e.g.
noun, verb). Thus constructing syntactic categories
(also known as lexical or part-of-speech categories)
is one of the fundamental problems in language ac-
quisition.

Syntactic categories represent groups of words
that can be substituted for one another without alter-
ing the grammaticality of a sentence. Linguists iden-
tify syntactic categories based on semantic, syntac-
tic, and morphological properties of words. There is
also evidence that children use prosodic and phono-
logical features to bootstrap syntactic category ac-
quisition (Ambridge and Lieven, 2011). However
there is as yet no satisfactory computational model
that can match human performance. Thus identify-
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ing the best set of features and best learning algo-
rithms for syntactic category acquisition is still an
open problem.

Relationships between linguistic units can be
classified into two types: syntagmatic (concerning
positioning), and paradigmatic (concerning substitu-
tion). Syntagmatic relations determine which units
can combine to create larger groups and paradig-
matic relations determine which units can be sub-
stituted for one another. Figure 1 illustrates the
paradigmatic vs syntagmatic axes for words in a
simple sentence and their possible substitutes.

In this study, we represent the paradigmatic axis
directly by building substitute vectors for each word
position in the text. The dimensions of a substi-
tute vector represent words in the vocabulary, and
the magnitudes represent the probability of occur-
rence in the given position. Note that the substitute
vector for a word position (e.g. the second word in
Fig. 1) is a function of the context only (i.e. “the
___cried”), and does not depend on the word that
does actually appear there (i.e. “man”). Thus substi-
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Figure 1: Syntagmatic vs. paradigmatic axes for words
in a simple sentence (Chandler, 2007).
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tute vectors represent individual word contexts, not
word types. We refer to the use of features based on
substitute vectors as paradigmatic representations of
word context.

Our preliminary experiments indicated that using
context information alone without the identity or the
features of the target word (e.g. using dimension-
ality reduction and clustering on substitute vectors)
has limited success and modeling the co-occurrence
of word and context types is essential for inducing
syntactic categories. In the models presented in this
paper, we combine paradigmatic representations of
word context with features of co-occurring words
within the co-occurrence data embedding (CODE)
framework (Globerson et al., 2007; Maron et al.,
2010). The resulting embeddings for word types are
split into 45 clusters using k-means and the clusters
are compared to the 45 gold tags in the 1M word
Penn Treebank Wall Street Journal corpus (Mar-
cus et al., 1999). We obtain many-to-one accura-
cies up to .7680 using only distributional informa-
tion (the identity of the word and a representation of
its context) and .8023 using morphological and or-
thographic features of words improving the state-of-
the-art in unsupervised part-of-speech tagging per-
formance.

The high probability substitutes reflect both se-
mantic and syntactic properties of the context as
seen in the example below (the numbers in paren-
theses give substitute probabilities):

“Pierre Vinken, 61 years old, will join the
board as a nonexecutive director Nov. 29.”

the: its (.9011), the (.0981), a (.0006), ...
board: board (.4288), company (.2584),
firm (.2024), bank (.0731), ...

Top substitutes for the word “the” consist of
words that can act as determiners. Top substitutes
for “board” are not only nouns, but specifically
nouns compatible with the semantic context.

This example illustrates two concerns inherent in
all distributional methods: (i) words that are gener-
ally substitutable like “the” and “its” are placed in
separate categories (DT and PRP$) by the gold stan-
dard, (ii) words that are generally not substitutable
like “do” and “put” are placed in the same category
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(vB). Freudenthal et al. (2005) point out that cat-
egories with unsubstitutable words fail the standard
linguistic definition of a syntactic category and chil-
dren do not seem to make errors of substituting such
words in utterances (e.g. “What do you want?” vs.
*“What put you want?”). Whether gold standard
part-of-speech tags or distributional categories are
better suited to applications like parsing or machine
translation can be best decided using extrinsic eval-
uation. However in this study we follow previous
work and evaluate our results by comparing them to
gold standard part-of-speech tags.

Section 2 gives a detailed review of related work.
Section 3 describes the dataset and the construction
of the substitute vectors. Section 4 describes co-
occurrence data embedding, the learning algorithm
used in our experiments. Section 5 describes our
experiments and compares our results with previ-
ous work. Section 6 gives a brief error analysis
and Section 7 summarizes our contributions. All the
data and the code to replicate the results given in
this paper is available from the authors’ website at
http://goo.gl/RogEh.

2 Related Work

There are several good reviews of algorithms
for  unsupervised  part-of-speech  induction
(Christodoulopoulos et al., 2010; Gao and Johnson,
2008) and models of syntactic category acquisition
(Ambridge and Lieven, 2011).

This work is to be distinguished from supervised
part-of-speech disambiguation systems, which use
labeled training data (Church, 1988), unsupervised
disambiguation systems, which use a dictionary of
possible tags for each word (Merialdo, 1994), or
prototype driven systems which use a small set
of prototypes for each class (Haghighi and Klein,
2006). The problem of induction is important for
studying under-resourced languages that lack la-
beled corpora and high quality dictionaries. It is also
essential in modeling child language acquisition be-
cause every child manages to induce syntactic cat-
egories without access to labeled sentences, labeled
prototypes, or dictionary constraints.

Models of unsupervised part-of-speech induction
fall into two broad groups based on the information
they utilize. Distributional models only use word



types and their context statistics. Word-feature mod-
els incorporate additional morphological and ortho-
graphic features.

2.1 Distributional models

Distributional models can be further categorized into
three subgroups based on the learning algorithm.
The first subgroup represents each word type with its
context vector and clusters these vectors accordingly
(Schiitze, 1995). Work in modeling child syntac-
tic category acquisition has generally followed this
clustering approach (Redington et al., 1998; Mintz,
2003). The second subgroup consists of proba-
bilistic models based on the Hidden Markov Model
(HMM) framework (Brown et al., 1992). A third
group of algorithms constructs a low dimensional
representation of the data that represents the empir-
ical co-occurrence statistics of word types (Glober-
son et al., 2007), which is covered in more detail in
Section 4.

Clustering: Clustering based methods represent
context using neighboring words, typically a sin-
gle word on the left and a single word on the right
called a “frame” (e.g., the dog is; the cat is). They
cluster word types rather than word tokens based on
the frames they occupy thus employing one-tag-per-
word assumption from the beginning (with the ex-
ception of some methods in (Schiitze, 1995)). They
may suffer from data sparsity caused by infrequent
words and infrequent contexts. The solutions sug-
gested either restrict the set of words and set of con-
texts to be clustered to the most frequently observed,
or use dimensionality reduction. Redington et al.
(1998) define context similarity based on the num-
ber of common frames bypassing the data sparsity
problem but achieve mediocre results. Mintz (2003)
only uses the most frequent 45 frames and Biemann
(2006) clusters the most frequent 10,000 words us-
ing contexts formed from the most frequent 150-200
words. Schiitze (1995) and Lamar et al. (2010b)
employ SVD to enhance similarity between less fre-
quently observed words and contexts. Lamar et al.
(2010a) represent each context by the currently as-
signed left and right tag (which eliminates data spar-
sity) and cluster word types using a soft k-means
style iterative algorithm. They report the best clus-
tering result to date of .708 many-to-one accuracy
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on a 45-tag 1M word corpus.

HMMs: The prototypical bitag HMM model max-
imizes the likelihood of the corpus wi...w,
expressed as P(wi|c1) [Ty P(wilei)P(cilci—1)
where w; are the word tokens and ¢; are their (hid-
den) tags. One problem with such a model is its ten-
dency to distribute probabilities equally and the re-
sulting inability to model highly skewed word-tag
distributions observed in hand-labeled data (John-
son, 2007). To favor sparse word-tag distributions
one can enforce a strict one-tag-per-word solution
(Brown et al., 1992; Clark, 2003), use sparse pri-
ors in a Bayesian setting (Goldwater and Griffiths,
2007; Johnson, 2007), or use posterior regulariza-
tion (Gancheyv et al., 2010). Each of these techniques
provide significant improvements over the standard
HMM model: for example Gao and Johnson (2008)
show that sparse priors can gain from 4% (.62 to .66
with a 1M word corpus) in cross-validated many-
to-one accuracy. However Christodoulopoulos et al.
(2010) show that the older one-tag-per-word models
such as (Brown et al., 1992) outperform the more
sophisticated sparse prior and posterior regulariza-
tion methods both in speed and accuracy (the Brown
model gets .68 many-to-one accuracy with a 1M
word corpus). Given that close to 95% of the word
occurrences in human labeled data are tagged with
their most frequent part of speech (Lee et al., 2010),
this is probably not surprising; one-tag-per-word is
a fairly good first approximation for induction.

2.2 Word-feature models

One problem with the algorithms in the previous
section is the poverty of their input features. Of the
syntactic, semantic, and morphological information
linguists claim underlie syntactic categories, con-
text vectors or bitag HMMSs only represent limited
syntactic information in their input. Experiments
incorporating morphological and orthographic fea-
tures into HMM based models demonstrate signifi-
cant improvements. (Clark, 2003; Berg-Kirkpatrick
and Klein, 2010; Blunsom and Cohn, 2011) incor-
porate similar orthographic features and report im-
provements of 3, 7, and 10% respectively over the
baseline Brown model. Christodoulopoulos et al.
(2010) use prototype based features as described in
(Haghighi and Klein, 2006) with automatically in-



duced prototypes and report an 8% improvement
over the baseline Brown model. Christodoulopou-
los et al. (2011) define a type-based Bayesian multi-
nomial mixture model in which each word instance
is generated from the corresponding word type mix-
ture component and word contexts are represented
as features. They achieve a .728 MTO score by ex-
tending their model with additional morphological
and alignment features gathered from parallel cor-
pora. To our knowledge, nobody has yet tried to
incorporate phonological or prosodic features in a
computational model for syntactic category acquisi-
tion.

2.3 Paradigmatic representations

Sahlgren (2006) gives a detailed analysis of paradig-
matic and syntagmatic relations in the context of
word-space models used to represent word mean-
ing. Sahlgren’s paradigmatic model represents word
types using co-occurrence counts of their frequent
neighbors, in contrast to his syntagmatic model that
represents word types using counts of contexts (doc-
uments, sentences) they occur in. Our substitute
vectors do not represent word types at all, but con-
texts of word tokens using probabilities of likely sub-
stitutes. Sahlgren finds that in word-spaces built by
frequent neighbor vectors, more nearest neighbors
share the same part-of-speech compared to word-
spaces built by context vectors. We find that rep-
resenting the paradigmatic axis more directly using
substitute vectors rather than frequent neighbors im-
prove part-of-speech induction.

Our paradigmatic representation is also related to
the second order co-occurrences used in (Schiitze,
1995). Schiitze concatenates the left and right con-
text vectors for the target word type with the left con-
text vector of the right neighbor and the right con-
text vector of the left neighbor. The vectors from the
neighbors include potential substitutes. Our method
improves on his foundation by using a 4-gram lan-
guage model rather than bigram statistics, using the
whole 78,498 word vocabulary rather than the most
frequent 250 words. More importantly, rather than
simply concatenating vectors that represent the tar-
get word with vectors that represent the context we
use S-CODE to model their co-occurrence statistics.
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2.4 Evaluation

We report many-to-one and V-measure scores for
our experiments as suggested in (Christodoulopou-
los et al., 2010). The many-to-one (MTO) evaluation
maps each cluster to its most frequent gold tag and
reports the percentage of correctly tagged instances.
The MTO score naturally gets higher with increas-
ing number of clusters but it is an intuitive met-
ric when comparing results with the same number
of clusters. The V-measure (VM) (Rosenberg and
Hirschberg, 2007) is an information theoretic met-
ric that reports the harmonic mean of homogeneity
(each cluster should contain only instances of a sin-
gle class) and completeness (all instances of a class
should be members of the same cluster). In Sec-
tion 6 we argue that homogeneity is perhaps more
important in part-of-speech induction and suggest
MTO with a fixed number of clusters as a more in-
tuitive metric.

3 Substitute Vectors

In this study, we predict the part of speech of a word
in a given context based on its substitute vector. The
dimensions of the substitute vector represent words
in the vocabulary, and the entries in the substitute
vector represent the probability of those words be-
ing used in the given context. Note that the substi-
tute vector is a function of the context only and is
indifferent to the target word. This section details
the choice of the data set, the vocabulary and the es-
timation of substitute vector probabilities.

The Wall Street Journal Section of the Penn Tree-
bank (Marcus et al., 1999) was used as the test cor-
pus (1,173,766 tokens, 49,206 types). The tree-
bank uses 45 part-of-speech tags which is the set we
used as the gold standard for comparison in our ex-
periments. To compute substitute probabilities we
trained a language model using approximately 126
million tokens of Wall Street Journal data (1987-
1994) extracted from CSR-III Text (Graff et al.,
1995) (we excluded the test corpus). We used
SRILM (Stolcke, 2002) to build a 4-gram language
model with Kneser-Ney discounting. Words that
were observed less than 20 times in the language
model training data were replaced by UNK tags,
which gave us a vocabulary size of 78,498. The per-
plexity of the 4-gram language model on the test cor-



pus is 96.

It is best to use both left and right context when
estimating the probabilities for potential lexical sub-
stitutes. For example, in “He lived in San Francisco
suburbs.”, the token San would be difficult to guess
from the left context but it is almost certain look-
ing at the right context. We define c¢,, as the 2n — 1
word window centered around the target word posi-
tion: W_yp41...W0 ... Wu—1 (n = 4 is the n-gram
order). The probability of a substitute word w in a
given context c,, can be estimated as:

P(w_n+1 oW ... wn_l)(l)

= P(w_ns1)P(w_ni2|w_ni1)

P(wy = wley)

. .P(wn,1|wfgil) (2)
~ P(wo‘w:rlz+1)P(w1|w9n+2)
o Plwy 1 |wi™?) (3)

! represents the sequence of words

wiWi41 ... w;. In Equation 1, P(w|c,) is pro-
portional to P(w_p41...wq ... wp41) because the
words of the context are fixed. Terms without wy
are identical for each substitute in Equation 2 there-
fore they have been dropped in Equation 3. Finally,
because of the Markov property of n-gram language
model, only the closest n — 1 words are used in the
experiments.

where w

Near the sentence boundaries the appropriate
terms were truncated in Equation 3. Specifically, at
the beginning of the sentence shorter n-gram con-
texts were used and at the end of the sentence terms
beyond the end-of-sentence token were dropped.

For computational efficiency only the top 100
substitutes and their unnormalized probabilities
were computed for each of the 1,173,766 positions
in the test set!. The probability vectors for each po-
sition were normalized to add up to 1.0 giving us the
final substitute vectors used in the rest of this study.

!The substitutes with unnormalized log probabilities can be
downloaded from http://goo.gl/jzKHO. For a descrip-
tion of the FASTSUBS algorithm used to generate the substitutes
please see http://arxiv.org/abs/1205.5407v1.
FASTSUBS accomplishes this task in about 5 hours, a naive
algorithm that looks at the whole vocabulary would take more
than 6 days on a typical 2012 workstation.
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4 Co-occurrence Data Embedding

The general strategy we follow for unsupervised
syntactic category acquisition is to combine features
of the context with the identity and features of the
target word. Our preliminary experiments indicated
that using the context information alone (e.g. clus-
tering substitute vectors) without the target word
identity and features had limited success.” It is the
co-occurrence of a target word with a particular type
of context that best predicts the syntactic category.
In this section we review the unsupervised meth-
ods we used to model co-occurrence statistics: the
Co-occurrence Data Embedding (CODE) method
(Globerson et al., 2007) and its spherical extension
(S-CODE) introduced by (Maron et al., 2010).

Let X and Y be two categorical variables with fi-
nite cardinalities | X | and |Y|. We observe a set of
pairs {z;,y;};~, drawn IID from the joint distribu-
tion of X and Y. The basic idea behind CODE and
related methods is to represent (embed) each value
of X and each value of Y as points in a common
low dimensional Euclidean space R? such that val-
ues that frequently co-occur lie close to each other.
There are several ways to formalize the relationship
between the distances and co-occurrence statistics,
in this paper we use the following:

1 d2

p(e,y) = Zp(@)ply)e” “4)

where d?v’y is the squared distance between the em-
beddings of x and y, p(x) and p(y) are empirical
probabilities, and Z = Z%yﬁ(x)ﬁ(y)e_d%y is a
normalization term. If we use the notation ¢, for
the point corresponding to = and ), for the point
corresponding to y then d%y = ||¢z — 1yl|®. The
log-likelihood of a given embedding ¢(¢, 1)) can be

2A 10-nearest-neighbor supervised baseline using cosine
distance between substitute vectors gives .7213 accuracy. Clus-
tering substitute vectors using various distance metrics and di-
mensionality reduction methods give results inferior to this up-
per bound.



expressed as:

U(,0) = p(x,y)logp(z, y)

I7y

=3 (e, y)(—

= —log Z + const — Zﬁ(az, y)diy
x?y

)

log Z + log p()p(y) — dz.,)

The likelihood is not convex in ¢ and ). We use
gradient ascent to find an approximate solution for
a set of ¢, v, that maximize the likelihood. The
gradient of the di,y term pulls neighbors closer in
proportion to the empirical joint probability:

azxz—p:vy Z2pfcy

w7y

— ¢z)

(6)
The gradient of the Z term pushes neighbors apart
in proportion to the estimated joint probability:

0 —logZ) = Zpry

9, )

(N

Thus the net effect is to pull pairs together if their
estimated probability is less than the empirical prob-
ability and to push them apart otherwise. The gradi-
ents with respect to 1, are similar.

S-CODE (Maron et al., 2010) additionally re-
stricts all ¢, and v, to lie on the unit sphere. With
this restriction, Z stays around a fixed value dur-
ing gradient ascent. This allows S-CODE to sub-
stitute an approximate constant Z in gradient calcu-
lations for the real Z for computational efficiency.
In our experiments, we used S-CODE with its sam-
pling based stochastic gradient ascent algorithm and
smoothly decreasing learning rate.

S Experiments

In this section we present experiments that evaluate
substitute vectors as representations of word con-
text within the S-CODE framework. Section 5.1
replicates the bigram based S-CODE results from
(Maron et al., 2010) as a baseline. The S-CODE
algorithm works with discrete inputs. The substi-
tute vectors as described in Section 3 are high di-
mensional and continuous. We experimented with
two approaches to use substitute vectors in a dis-
crete setting. Section 5.2 presents an algorithm that
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partitions the high dimensional space of substitute
vectors into small neighborhoods and uses the par-
tition id as a discrete context representation. Sec-
tion 5.3 presents an even simpler model which pairs
each word with a random substitute. When the left-
word — right-word pairs used in the bigram model
are replaced with word — partition-id or word — sub-
stitute pairs we see significant gains in accuracy.
These results support our running hypothesis that
paradigmatic features, i.e. potential substitutes of
a word, are better determiners of syntactic category
compared to left and right neighbors. Section 5.4
explores morphologic and orthographic features as
additional sources of information and its results im-
prove the state-of-the-art in the field of unsupervised
syntactic category acquisition.

Each experiment was repeated 10 times with dif-
ferent random seeds and the results are reported
with standard errors in parentheses or error bars in
graphs. Table 1 summarizes all the results reported
in this paper and the ones we cite from the literature.

5.1 Bigram model

In (Maron et al., 2010) adjacent word pairs (bi-
grams) in the corpus are fed into the S-CODE algo-
rithm as X, Y samples. The algorithm uses stochas-
tic gradient ascent to find the ¢, 1), embeddings for
left and right words in these bigrams on a single 25-
dimensional sphere. At the end each word w in the
vocabulary ends up with two points on the sphere,
a ¢,, point representing the behavior of w as the
left word of a bigram and a 1), point representing
it as the right word. The two vectors for w are con-
catenated to create a 50-dimensional representation
at the end. These 50-dimensional vectors are clus-
tered using an instance weighted k-means algorithm
and the resulting groups are compared to the cor-
rect part-of-speech tags. Maron et al. (2010) report
many-to-one scores of .6880 (.0016) for 45 clusters
and .7150 (.0060) for 50 clusters (on the full PTB45
tag-set). If only ¢,, vectors are clustered without
concatenation we found the performance drops sig-
nificantly to about .62.

To make a meaningful comparison we re-ran the
bigram experiments using our default settings and
obtained a many-to-one score of .7314 (.0096) and
the V-measure is .6558 (.0052) for 45 clusters. The
following default settings were used: (i) each word



Distributional Models MTO VM Models with Additional Features MTO VM

(Lamar et al., 2010a) 708 - (Clark, 2003)* 712 .655

(Brown et al., 1992)* .678 .630 (Christodoulopoulos et al., 2011) 728 .661
(Goldwater et al., 2007) | .632 562 (Berg-Kirkpatrick and Klein, 2010) | .755 -

(Ganchev et al., 2010)* | .625 .548 (Christodoulopoulos et al., 2010) 761 .688

(Maron et al., 2010) .688 (.0016) - (Blunsom and Cohn, 2011) 175 .697

Bigrams (Sec. 5.1) 7314 (.0096) | .6558 (.0052) || Substitutes and Features (Sec. 5.4) .8023 (.0070) | .7207 (.0041)
Partitions (Sec. 5.2) 7554 (.0055) | .6703 (.0037)

Substitutes (Sec. 5.3) 7680 (.0038) | .6822 (.0029)

Table 1: Summary of results in terms of the MTO and VM scores. Standard errors are given in parentheses when
available. Starred entries have been reported in the review paper (Christodoulopoulos et al., 2010). Distributional
models use only the identity of the target word and its context. The models on the right incorporate orthographic and

morphological features.

was kept with its original capitalization, (ii) the
learning rate parameters were adjusted to g =
50, no = 0.2 for faster convergence in log likeli-
hood, (iii) the number of s-code iterations were in-
creased from 12 to 50 million, (iv) k-means initial-
ization was improved using (Arthur and Vassilvit-
skii, 2007), and (v) the number of k-means restarts
were increased to 128 to improve clustering and re-
duce variance.

5.2 Random partitions

Instead of using left-word — right-word pairs as in-
puts to S-CODE we wanted to pair each word with a
paradigmatic representation of its context to get a di-
rect comparison of the two context representations.
To obtain a discrete representation of the context,
the random—partitions algorithm first designates a
random subset of substitute vectors as centroids to
partition the space, and then associates each context
with the partition defined by the closest centroid in
cosine distance. Each partition thus defined gets a
unique id, and word (X)) — partition-id (Y") pairs are
given to S-CODE as input. The algorithm cycles
through the data until we get approximately 50 mil-
lion updates. The resulting ¢, vectors are clustered
using the k-means algorithm (no vector concatena-
tion is necessary). Using default settings (64K ran-
dom partitions, 25 s-code dimensions, Z = 0.166)
the many-to-one accuracy is .7554 (.0055) and the
V-measure is .6703 (.0037).

To analyze the sensitivity of this result to our spe-
cific parameter settings we ran a number of experi-
ments where each parameter was varied over a range
of values.

Figure 2 gives results where the number of initial
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Figure 2: MTO is not sensitive to the number of partitions
used to discretize the substitute vector space within our
experimental range.

random partitions is varied over a large range and
shows the results to be fairly stable across two orders
of magnitude.

Figure 3 shows that at least 10 embedding dimen-
sions are necessary to get within 1% of the best re-
sult, but there is no significant gain from using more
than 25 dimensions.

Figure 4 shows that the constant Z approximation
can be varied within two orders of magnitude with-
out a significant performance drop in the many-to-
one score. For uniformly distributed points on a 25
dimensional sphere, the expected Z ~ 0.146. In the
experiments where we tested we found the real Z al-
ways to be in the 0.140-0.170 range. When the con-
stant Z estimate is too small the attraction in Eq. 6
dominates the repulsion in Eq. 7 and all points tend
to converge to the same location. When Z is too
high, it prevents meaningful clusters from coalesc-
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Figure 3: MTO falls sharply for less than 10 S-CODE
dimensions, but more than 25 do not help.
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0.71

0.7 o :

0.01 0.1 1

s-code Z approximation

Figure 4: MTO is fairly stable as long as the Z constant
is within an order of magnitude of the real Z value.

ing.

We find the random partition algorithm to be
fairly robust to different parameter settings and the
resulting many-to-one score significantly better than
the bigram baseline.

5.3 Random substitutes

Another way to use substitute vectors in a dis-
crete setting is simply to sample individual substi-
tute words from them. The random-substitutes al-
gorithm cycles through the test data and pairs each
word with a random substitute picked from the pre-
computed substitute vectors (see Section 3). We ran
the random-substitutes algorithm to generate 14 mil-
lion word (X) — random-substitute (Y') pairs (12
substitutes for each token) as input to S-CODE.
Clustering the resulting ¢, vectors yields a many-
to-one score of .7680 (.0038) and a V-measure of
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.6822 (.0029).

This result is close to the previous result by the
random-partition algorithm, .7554 (.0055), demon-
strating that two very different discrete represen-
tations of context based on paradigmatic features
give consistent results. Both results are significantly
above the bigram baseline, .7314 (.0096). Figure 5
illustrates that the random-substitute result is fairly
robust as long as the training algorithm can observe
more than a few random substitutes per word.

0.8
0.79 -
0.78 - 4
0.77 -
0.76 -
0.75 &
074 L . . . . . PR
0.73 , : L Ll
0.72 - =
0.71 - 4

0.7 4

1 10

number of random substitutes per word

Figure 5: MTO is not sensitive to the number of random
substitutes sampled per word token.

5.4 Morphological and orthographic features

Clark (2003) demonstrates that using morpholog-
ical and orthographic features significantly im-
proves part-of-speech induction with an HMM
based model. Section 2 describes a number other ap-
proaches that show similar improvements. This sec-
tion describes one way to integrate additional fea-
tures to the random-substitute model.

The orthographic features we used are similar to
the ones in (Berg-Kirkpatrick et al., 2010) with small
modifications:

o Initial-Capital: this feature is generated for cap-
italized words with the exception of sentence
initial words.

e Number: this feature is generated when the to-
ken starts with a digit.

e Contains-Hyphen: this feature is generated for
lowercase words with an internal hyphen.



o Initial-Apostrophe: this feature is generated for
tokens that start with an apostrophe.

We generated morphological features using the
unsupervised algorithm Morfessor (Creutz and La-
gus, 2005). Morfessor was trained on the WSJ sec-
tion of the Penn Treebank using default settings, and
a perplexity threshold of 300. The program induced
5 suffix types that are present in a total of 10,484
word types. These suffixes were input to S-CODE
as morphological features whenever the associated
word types were sampled.

In order to incorporate morphological and ortho-
graphic features into S-CODE we modified its in-
put. For each word — random-substitute pair gen-
erated as in the previous section, we added word —
feature pairs to the input for each morphological and
orthographic feature of the word. Words on average
have 0.25 features associated with them. This in-
creased the number of pairs input to S-CODE from
14.1 million (12 substitutes per word) to 17.7 mil-
lion (additional 0.25 features on average for each of
the 14.1 million words).

Using similar training settings as the previous
section, the addition of morphological and ortho-
graphic features increased the many-to-one score of
the random-substitute model to .8023 (.0070) and
V-measure to .7207 (.0041). Both these results im-
prove the state-of-the-art in part-of-speech induction
significantly as seen in Table 1.

6 Error Analysis

Figure 6 is the Hinton diagram showing the rela-
tionship between the most frequent tags and clusters
from the experiment in Section 5.4. In general the
errors seem to be the lack of completeness (multi-
ple large entries in a row), rather than lack of ho-
mogeneity (multiple large entries in a column). The
algorithm tends to split large word classes into sev-
eral clusters. Some examples are:

e Titles like Mr., Mrs., and Dr. are split from the
rest of the proper nouns in cluster (39).

e Auxiliary verbs (10) and the verb “say” (22)
have been split from the general verb clusters

(12) and (7).
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e Determiners “the” (40), “a” (15), and capital-
ized “The”, “A” (6) have been split into their
own clusters.

e Prepositions “of” (19), and “by”, “at” (17) have
been split from the general preposition cluster

(8).

Nevertheless there are some homogeneity errors as
well:

e The adjective cluster (5) also has some noun
members probably due to the difficulty of sep-
arating noun-noun compounds from adjective
modification.

e Cluster (6) contains capitalized words that span
a number of categories.

Most closed-class items are cleanly separated into
their own clusters as seen in the lower right hand
corner of the diagram. The completeness errors are
not surprising given that the words that have been
split are not generally substitutable with the other
members of their Penn Treebank category. Thus it
can be argued that metrics that emphasize homo-
geneity such as MTO are more appropriate in this
context than metrics that average homogeneity and
completeness such as VM as long as the number of
clusters is controlled.

7 Contributions

Our main contributions can be summarized as fol-
lows:

e We introduced substitute vectors as paradig-
matic representations of word context and
demonstrated their use in syntactic category ac-
quisition.

e We demonstrated that using paradigmatic rep-
resentations of word context and modeling co-
occurrences of word and context types with
the S-CODE learning framework give superior
results when compared to a baseline bigram
model.

e We extended the S-CODE framework to in-
corporate morphological and orthographic fea-
tures and improved the state-of-the-art in un-
supervised part-of-speech induction to 80%
many-to-one accuracy.



Figure 6: Hinton diagram comparing most frequent tags and clusters.

e All our code and data, including the sub-
stitute vectors for the one million word
Penn Treebank Wall Street Journal dataset,
is available at the authors’ website at
http://goo.gl/RogEh.
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